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Intuitive, But Not Simple:  Including Explicit Water 

Molecules in Protein-Protein Docking Simulations 

Improves Model Quality  

 

Hardik I. Parikh and Glen E. Kellogg* 

 

Department of Medicinal Chemistry and Institute for Structural Biology and 

Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, 

23298-0540, USA. 

 

Abstract:  Characterizing the nature of interaction between proteins that have not been 
experimentally co-crystallized requires a computational docking approach that can successfully 
predict the spatial conformation adopted in the complex. In this work, the Hydropathic 
INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 
high-resolution crystallographically characterized “dry” protein-protein complexes, and was 
shown to reliably identify native-like models.  However, most current protein-protein docking 
algorithms fail to explicitly account for water molecules involved in bridging interactions that 
mediate and stabilize the association of the protein partners, so we used HINT to illuminate the 
physical and chemical properties of bridging waters and account for their energetic stabilizing 
contributions.  The HINT water Relevance metric identified the ‘truly’ bridging waters at the 30 
protein-protein interfaces and we utilized them in “solvated” docking by manually inserting them 
into the input files for the rigid body ZDOCK program.  By accounting for these interfacial waters, 
a statistically significant improvement of ~24% in the average hit-count within the top-10 
predictions the protein-protein dataset was seen, compared to standard “dry” docking.  The 
results also show scoring improvement, with medium and high accuracy models ranking much 
better than incorrect ones.  These improvements can be attributed to the physical presence of 
water molecules that alter surface properties and better represent native shape and hydropathic 
complementarity between interacting partners, with concomitantly more accurate native-like 
structure predictions. 
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INTRODUCTION 
 

 Protein-protein interactions play a fundamental role in most biological events and 

many pathological processes.  Virtually every molecular process in a cell is carried out 

via interactions between two macromolecules: DNA synthesis, gene expression, post-

translational modifications, transport, signal transduction, etc.  Various genetic, 

biochemical, or bioinformatics studies have identified tens of thousands of proteins 

interacting with each other forming millions of putative complexes.  A detailed atomic 

understanding of the nature of these often-transient interactions is a key step to 

exploiting/inhibiting these biomolecular associations as potential new routes to disease 

therapeutics. 

A large number of datasets exist that contain experimentally verified protein-

protein interactions, like HPRD (Human Protein Reference Database),1 BIND 

(Biomolecular Interaction Network Database),2 MINT (Molecular Interactions 

Database),3 etc.  These databases contain, as of September 2013, more than 240,000 

binary protein-protein interactions, and thereby provide a wealth of information 

pertaining to the human proteome.  These data are related to thousands of protein-

protein interactions, post-translational modifications, enzyme/substrate relationships, 

disease associations and more. 

In contrast, the RCSB Protein Data Bank (http://www.rcsb.org/pdb/) only contains 

a few hundred protein-protein complex structures.  One of the reasons for this lack of 

structural information is that experimental structural determinations using techniques 

like X-ray crystallography, Nuclear Magnetic Resonance (NMR) and Electron 

Microscopy (EM) are very demanding.4 
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Consequently, there has been a rapid emergence of computational algorithms to 

predict, model and understand these interactions – by producing a class of tools 

generically known as protein-protein docking methods.  The first such predictive 

algorithm, which generated possible orientations of one protein relative to another, was 

developed Wodak and Janin in the late 1970s.5  Since experimental structural 

determination techniques, although powerful, have low throughput, predictive methods, 

even of dubious quality, have been routinely used since then.  Computational 

predictions that are accurate and reliable could obviously prove to be even more useful 

for the generation of testable hypotheses such as inferring how two proteins bind, giving 

valuable functional information about the interacting proteins and also helping guide 

new genetic and biochemical experiments – if the predictions can be validated.  Notably, 

as docking algorithms and scoring functions have proliferated, the CAPRI (Critical 

Assessment of PRedicted Interactions) communitywide experiment has regulated the 

quality and utility of these tools through blind prediction competitions.6 

Protein-protein docking 

As the field developed, docking algorithms have become more sophisticated, 

partly due to the rapid progress in computer hardware with an ever-increasing 

availability of cost-effective computational resources, but also due to our improving 

understanding of biomacromolecular structure.  Docking protocols have evolved from 

simple rigid-body docking (where both interacting partners are treated as rigid),7, 8 to 

soft body docking (where side-chain and backbone flexibility is allowed in either or both 

molecules),9-12 to incorporation of short molecular dynamics (MD) simulations (i.e., 

induced fit),13-15 to the inclusion of implicit solvent models and explicit solvent 
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molecules.16-18  The process of docking macromolecules is multi-step and usually 

computationally demanding.19 

In most current docking approaches, the protein surface is represented 

atomically at its solvent-exposed residues with mathematical models, e.g., geometric 

shape descriptors like Connolly surfaces.20  This description of the shape function21, 22 

can be combined with affinity grids encoding force field potentials.23  Search of 

conformational space can be referenced to matches of surface complementarity at the 

protein-protein interface,24 the combination of geometric complementarity with pairwise 

amino acid affinities,9 or interface contacts analyzed by Fourier correlation, e.g., 

Katchalski-Katzir et al.25 geometric hashing,21, 26-28 genetic algorithms,29 Brownian 

dynamics simulations,30 and Brownian simulations combined with energy minimization31 

have all been utilized to generate energetically viable poses prior to scoring.  A number 

of issues are related to the conformational changes that may occur upon binding, i.e., 

flexibility, presaged by Koshland’s suggestion of induced fit in 1958.32  A recent review 

by Andrusier et al.33 described the treatment of protein flexibility during different stages 

of the docking process; most methods focus on the easier to simulate interfacial 

sidechains,34,35 because implementing full backbone flexibility is far more challenging.   

All docking protocols generate a huge number of potential solutions, from which 

the one or few corresponding to the lowest free energies of binding must be identified 

with a scoring function.  Ideally, scoring functions should be able to distinguish between 

native-like models and false models.  During protein-protein complex prediction, metrics 

such as shape complementarity between interacting protein surfaces are used as filters 

to eliminate incorrect predictions, but are insufficient to evaluate the complete 
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energetics of protein-protein associations.  Thus, filtering is usually followed by applying 

scoring functions that rank the solutions by quantitating geometric complementarity, 

electrostatic interactions, hydrogen bonding and/or desolvation energy.8,36,37  Most 

scoring functions are designed to predict the free energy of binding, ΔGbinding, which is 

neither trivial nor a solved problem because the associated algorithms are imperfectly 

able to completely characterize processes of biomacromolecular association.23 Scoring 

remains perhaps the most significant challenge in modeling the protein-protein (or even 

protein-small molecule) docking process. 

Since 2003, the CAPRI (Critical Assessment of PRedicted Interactions)6 

experiment has enabled evaluation of protein-protein docking algorithms through blind 

predictions of target protein-protein or protein-DNA complexes for which X-ray or NMR 

structures have been strategically withheld from publication.  First, a target complex is 

made available by experimentalists to CAPRI management.  From the coordinates of 

the interacting partners, the participants generate and submit models of the complex 

that are then compared to the experimental structure based on standard criteria.6, 38-40 A 

recent review23 that analyzed the quality of submitted models showed that ICM-

DISCO,41 ZDOCK,37 HADDOCK42 and RosettaDock8 have been the best predictors over 

the past decade.23  Literature citations suggest that HADDOCK, RosettaDock and 

ClusPro43 followed by PatchDock10 and ZDOCK are the most popular.23  

The hydropathic roles of water in biological associations 

Water is a vital component of all living organisms and plays a crucial role in all 

biological processes.  Particularly with proteins, the dynamics of water interactions 

govern many molecular phenomena like protein folding and molecular recognition,44 as 
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well as maintenance of structural integrity.45  The strongly bound or “conserved” waters 

are, at a minimum, able to modify protein surface properties like shape and charge.  

Bogan and Thorn claimed, in their O-ring hypothesis for interfaces, that occlusion of 

solvent by “hot spot” residues is necessary for energetically favorable interactions,46 but 

the abundant presence of water at protein-protein and protein-DNA interfaces belies this 

model and instead highlights the vital role played by water in the polar interactions that 

stabilize such complexes.  Janin’s structure-based examination of protein-protein and 

protein-DNA recognition sites revealed that these interfaces contain at least as many 

water-mediated interactions as direct hydrogen bonds or salt bridges.47  The 

displacement of waters upon association is, however, a recipe for increased free energy 

of binding through the entropy those waters gain.  

 Likewise, we have long been interested in understanding the functional and 

energetic contribution of water molecules in various biological environments.  The 

empirical HINT forcefield (vide infra) models both hydrophobic and polar non-covalent 

interactions between molecules48 and is the basis for our analyses.  Previously, we 

analyzed the structures of mutant hemoglobins and calculated the contribution of 

crystallographically important water molecules in dimer-tetramer assembly,49 mapped 

the energetics of water-protein and water-ligand interactions at protein-ligand interfaces 

in HIV-1 protease-ligand complexes with a significant improvement in binding energy 

prediction when bridging water molecules were scored,50 evaluated protein-water and 

water-ligand interactions in paired sets of uncomplexed and ligand-complexed proteins 

with scores calculated by HINT51 and the geometric Rank algorithm,52 and quantified 

the key energetic role of bridging interfacial waters in protein-DNA associations.53 
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HINT free energy scoring and Rank were combined in the statistically validated 

water Relevance metric,54 which classifies water molecules in protein active sites in 

terms of a continuum from easily displaced (Relevance ~ 0) to generally conserved 

(Relevance > 0.5).  High Relevance waters are not likely to be casually displaced by a 

ligand and should be explicitly considered when building geometrically and functionally 

correct models of the binding site.  Ligands designed to specifically target such waters 

can be comparatively more potent if they have polar functional groups capable of 

mimicking the waters’ hydrogen bonds.  

Recently, we performed a comprehensive study on the multiple roles of bound 

water at protein-protein interfaces.55  Analysis of 4741 water molecules at the interfaces 

of 179 high-resolution (< 2.3 Å) heterodimeric protein-protein complex structures 

showed that 21% of waters are involved in bridging interactions with both proteins, while 

53% and 26% are involved with one or neither of the proteins, respectively.  The total 

energetic contribution of bridging water is not insignificant as it ranges up to -11.35 kcal 

mol-1 per protein pair.  This emphasized the importance of characterizing the behavior 

of biological waters at biomacromolecular interfaces, as they clearly influence complex 

assembly.  Also, these data have contributed, in our view, towards the establishment of 

a rational basis for including the effects of individual waters in macromolecular docking. 

Solvated docking 

 Substantive effort has been applied towards incorporation, both implicitly and 

explicitly, of water molecules in protein-ligand docking protocols.  Several of the 

methods available for identifying/predicting protein-ligand interfacial waters have shown 

promise; e.g., GRID,56 AQUARIUS,57 CS-Map58 and Fold-X.59  A more recently 
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available tool, WaterMap,60,61 predicts active site bound water molecules by solvating 

the site and calculating its thermodynamic properties.  Some protein-ligand docking 

programs like Flex-X,62 Autodock,63 GOLD,64 and GLIDE65, 66 have shown significant 

improvements in docking performance67 by developing algorithms to include 

contributions from interfacial waters.   

Although the challenges remain significant, the majority of tools for protein-

protein docking have been reasonably successful at modeling these associations, as 

seen from the recent CAPRI experiment.40  Overall, 67% of the participating research 

teams produced acceptable models for at least one target.  However, no evident 

correlation has been seen between the ranking of models and their accuracy,68 

underscoring the weakness of current scoring function methodology.  Importantly, 

however, water has been neglected in almost all protein-protein docking algorithms.  

Instead, developments in solvated protein-protein docking have been focused on 

implicit treatment of solvent molecules, which has reduced computational cost 

compared with explicit treatment.  Chen et al.69 recently reviewed the progress from in 

vacuo to in solutio docking, using implicit solvent-based methods.  While this approach 

has shown some promise, a more detailed understanding of protein-protein interfaces 

will likely be achieved with explicit treatment of waters molecules.  

HADDOCK is one of the very few docking programs designed to explicitly treat 

water molecules in macromolecule docking.17,70,71  The most recent70 implementation of 

the protein-protein docking algorithm: 1) hydrates the individual protein molecules, 2) 

performs a rigid-body docking that results in a water layer between the two proteins, 3) 

removes all non-interfacial water molecules and 4) subjects the remainder to a biased 



 9 

Monte Carlo procedure that disqualifies waters with respect to water-mediated contact 

probabilities derived from the Kyte-Doolittle72 hydrophobicity scale.  Only waters having 

favorable interaction energies with the surrounding protein(s) are then retained in the 

final predictions.  This methodology resulted in improvements, both in quality and 

scoring, over “unsolvated” HADDOCK docking.70 It should be noted, however, that Kyte-

Doolittle contact propensities would fail to detect bridged interactions that involve 

backbone atoms, which we previously reported account for 21.5% of all water-mediated 

protein-protein interactions.55  Also, as used, the K-D scale does not take into account 

hydrogen bond directionality and, thus, their quality.  

Our interest in this problem, and our previous studies showing the utility of the 

HINT scoring function in various biological environments,50,73-77 have led us to a long-

range goal of incorporating the HINT force field, including its ancillary tools54,75,78 into a 

new protein-protein docking algorithm.  In this work, we are testing HINT scoring and 

water Relevance in second stage refinement and model scoring.  While we believe that 

protein-protein docking algorithms should account for physical effects such as shape 

complementarity and residue flexibility, as well as chemical effects like hydropathic 

complementarity, residue ionization states and explicit consideration of interfacial water 

molecules, will yield more realistic models, many of these effects will need to be 

incorporated during the search stage.  Nevertheless, much can be learned about the 

importance of water in protein-protein associations through careful model preparation 

and during the scoring stage.  Thus, we identified interfacial waters relevant to both 

interacting partners using the HINT Relevance metric and we used ZDOCK, a rigid-

body docking program, for the docking search stage.  We forced ZDOCK to include the 
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Relevant waters as atoms in one of the two interacting proteins, and show that more 

accurate results are obtained when water is not ignored. 

 

Methods 

Data set preparation 

 A non-redundant benchmark for protein-protein docking algorithms, which 

contains test cases where 3D structures of the complex and both unbound components 

are available, was designed by Weng and colleagues.79  We filtered this data set for 

structures where the resolution of the bound complex is ≤ 2.0 Å to ensure that the 

interfacial water molecules were well-structured and thus more reliable.  Coordinates for 

all complexes in the data set were obtained from the RCSB Protein Data Bank 

(http://www.pdb.org/).80  Ligands and/or cofactors were deleted from each complex 

structure. For cases of multimer assembly, only one chain of each component forming 

the complex was retained.  Hydrogen atoms were added with Sybyl 8.1, and minimized 

with the Tripos force field (1000 iterations, 0.01 kcal mol-1 Å-1 gradient, Gasteiger-

Hückel charges), while the coordinates of all heavy atoms were fixed.  Interfacial waters, 

defined as those within 4 Å of atoms on both interacting proteins, were retained with 

each protein-protein complex.  The larger of the two proteins was designated as the 

“receptor” protein, to be held static during the docking process, while the smaller one as 

the “ligand” protein.  

Hydropathic scoring of protein-protein interfaces 

 Intermolecular interaction scores were calculated between each receptor-ligand 

pair using the HINT scoring function, which has been described previously.48  First, 
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direct HINT interaction scores were calculated for every complex, without accounting for 

the contributions made by interfacial waters, using HINT parameters and controls 

similar to those in previous studies;51,53,76 protein molecules were partitioned with the 

dictionary, with essential hydrogen treatment (explicit polar hydrogens and implicit non-

polar hydrogens), and with the usual 30 Å2 correction for the solvent accessible surface 

areas of backbone amide nitrogens.  

Identification of “bridging” interfacial waters 

 The orientation of every interfacial water molecule was optimized using an 

algorithm that performs an exhaustive rotational search to assign H-atom positions.78  

This algorithm individually treats each water molecule as a small “ligand” and the 

surrounding atoms within 8 Å from both proteins as its “binding site”.  HINT scores are 

calculated and maximized between this “ligand” and “binding site” through rotation of 

the water around its three axes and allowing for limited (< 0.5 Å) translation of its O 

centroid. 

The water Relevance54 was calculated for each optimized water molecule.  

Relevance is a metric combining the water’s HINT score (as above) with its Rank.78  

Rank is a geometric evaluation of the water’s potential for hydrogen bond formation in 

its site, calculated as:  

 𝑹𝒂𝒏𝒌 = 𝚺𝒏{(𝟐. 𝟖𝟎 Å/𝒓𝒏) + [𝚺𝒎 𝒄𝒐𝒔(𝜽𝑻𝒅 −  𝜽𝒏𝒎)]/𝟔}  (1) 

where rn is the distance between the water’s O and target heavy atom n (n = 1 to 

number of targets), θTd is the ideal tetrahedral angle (109.5°) and θnm is the angle 

between targets n and m (n = m to number of valid targets).  Rank values range from 0 

for waters that do not form any hydrogen bonds to about 6 for waters forming four 



 12 

hydrogen bonds (two as donor, two as acceptor) with excellent bond lengths and bond 

angle geometries.  The Relevance of a water molecule is calculated using the weighted 

probability equation: 

 
 𝑷𝑨 =  

𝑷𝑹(|𝑾𝑹| + 𝟏)𝟐 +  𝑷𝑯(|𝑾𝑯| + 𝟏)𝟐 

(|𝑾𝑹| + 𝟏)𝟐 + (|𝑾𝑯| + 𝟏)𝟐 
 

(2) 

where PA is the overall probability or Relevance for a water molecule, PR and PH are the 

probabilities for water conservation based on Rank and HINT score, and WR and WH 

are the weights for these probabilities, respectively.  Water Relevance was trained such 

that a water molecule in an unliganded protein with PA ≥ 0.5 is “conserved”, meaning it 

would be present in the ligand-bound complex.54  Relevance has been extended to 

protein-protein complexes55 to identify waters contributing bridging interactions. 

 The Relevance for each interfacial water molecule was calculated as above.  An 

interfacial water molecule that is involved in bridging interactions should be Relevant 

with respect to both proteins; as before,55 our criterion for “bridging” was that such 

waters have Relevance scores of ≥ 0.25 with respect to both proteins (thus, a total 

value of ≥ 0.5).  Water molecules meeting this condition were carried through to the next 

step.  

Solvated docking using ZDOCK 

ZDOCK v3.0.2,81 which incorporates a 3D convolution library to improve its 

efficiency, was obtained from http://zdock.umassmed.edu/software/.  100 solutions were 

generated for each receptor-ligand (protein-protein) pair in the data set.  Since bound-

bound docking was performed, a seed integer was specified for randomization of the 

ligand’s starting coordinates.  Rotational sampling was set as dense, i.e., the rotational 

search was performed in 6° steps. The receptor protein’s coordinates were fixed, 
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preventing its rotation or switching with ligand during execution.  Using these 

parameters, we designed and evaluated two different docking protocols for each 

member of our protein-protein complex data set: 1) unsolvated docking, with standard 

rigid-body methodology and the absence of interfacial water molecules; and 2) solvated 

docking, again with rigid-body methodology, but with explicit inclusion of the bridging 

water molecules identified as described above.  In order to assess the influence of 

incorporating waters that are not Relevant to either interacting partner, we performed a 

third, “negative control”, protocol with incorrect waters, i.e., with Relevance < 0.25, with 

the same rigid-body methodology on five randomly selected cases from our dataset. 

For solvated docking, the bridging water molecules were added to the receptor 

file and considered as a part of that protein.  The ZDOCK program is not parameterized 

to include cofactors such as explicit waters in its algorithm; thus, we simulated their 

effect by manually inserting: the atomic contact energy (ACE) type (0), atomic radius 

(1.38 Å) and atomic charge, (-0.25 for those acting as H-bond donors and -0.55 for 

those acting as H-bond acceptors with respect to the ligand protein) for each water’s O-

atom into the ZDOCK input files. 

 ZDOCK’s output results are the rotation and translation matrices for the ligand 

with respect to its initial positioning.  From this, the model for the protein-protein 

complex was generated for each prediction; hydrogens stripped by ZDOCK were re-

added and subjected to minimization under the Tripos force field (1000 iterations, 0.01 

kcal mol-1 Å-1 gradient, Gasteiger-Hückel charges).  Next, for unsolvated docking, HINT 

interaction scores were calculated between the receptor protein and ligand protein for 

each prediction.  In the case of solvated docking, the water molecules at the interface 
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were first optimized using the water optimization algorithm, followed by calculation of 

the HINT interaction score as HTOTAL = Hprot1-prot2 + Hprot1-water + Hprot2-water, where the 

terms represent scores between the two proteins and between each protein and the 

water set.   For the purpose of comparisons between proteins in the data set, HINT 

scores were normalized with respect to the top HINT score for each case.  Predictions 

were then ranked based on these scaled HINT scores. 

The CAPRI assessment protocol 

 The standard CAPRI assessment criteria was used to evaluate our predictions 

against the target crystallographic structures.38  Three characteristics of predicted 

complexes were evaluated: root mean square deviations (interfacial and ligand) and the 

identification of correct residue-residue contact pairs (see Supporting Information, 

Figure S1).  The ligand root mean square deviation (l-RMSD) and interface root mean 

square deviation (i-RMSD) are parameters that evaluate the 3D fit between the 

predicted complexes and target structures.  The l-RMSD represents the global 

geometric fit, defined as the RMSD between the ligand backbone atoms in the predicted 

complexes versus in the target structure, after superimposition of the receptor.  The i-

RMSD is calculated between predicted and target structures for the backbone atoms of 

all interfacial residues, i.e., those within 10 Å of their partner molecule.  Calculations of l-

RMSD and i-RMSD were performed using the McLachlan algorithm82 as implemented in 

ProFit (Martin and Porter, http://www.bioinf.org.uk/software/profit/).  Residues on either 

protein at the interface were considered to be in contact if any of their atoms were within 

5 Å of atoms of each other.  The total number of residue-residue contact pairs was 
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calculated for each target (crystallographic) and for each predicted structure.  fnat is 

defined as the fraction of predicted contact pairs relative to experimental.  

The predicted structures were classified into one of four categories – incorrect 

models, acceptable models (*), medium accuracy models (**) and high accuracy models 

(***) based on the criteria listed in Table I.  Predictions of medium accuracy or better (** 

or ***) were considered to be “hits”.  Hit counts, CN, and average hit counts, CN
ave, were 

calculated for the top N predictions for both the unsolvated and solvated docking 

protocols.  To more quantitatively measure the success of the two docking protocols, 

the weighted quality, QN, and average weighted quality, QN
ave, were calculated by giving 

a value of 0, 1, 2, or 3 to the incorrect, acceptable, medium and high accuracy 

predictions, respectively, for the top ranked N models.  All statistical analyses were 

performed at significance level α = 0.05 using JMP v.10.83 

 

Results and Discussion 

Organization, preparation and docking of data set  

 Weng’s protein-protein docking benchmark,79 is a set of 176 cases classified into 

three classes based on the extent of conformational change at the interface upon 

complex formation: rigid body cases (123), medium difficulty cases (29) and difficult 

cases (24).  The high-resolution (< 2.0 Å) subset of 42 complexes contains cases from 

all three classes defined by Weng and also samples well the protein interface sizes,84 

with changes in accessible surface areas (ΔASA) on complex formation ranging from 

808 to 3347 Å2.79  Within this subset, complete hydropathic analyses of the protein-

protein interfaces were performed using HINT.  Only those water molecules that were 
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Relevant to both proteins were retained within their protein-protein complexes, while 

other waters, even at the interface, were deleted. Twelve of the forty-two had no 

bridging waters and were removed from the data set.  Table II lists the 30 protein-

protein complexes used for this study with their crystallographic data, chain IDs within 

the complex for the proteins designated as receptor (larger of the two) and ligand 

(smaller of the two), the total numbers of interfacial and bridging waters, and their HINT 

interaction scores calculated from the crystal structures, with and without accounting for 

the bridging waters.  

 It is clear from Table II that including the effects of water in the HINT score 

calculations is beneficial to the overall structure.  Only one of the thirty is not stabilized 

by water, and that structure, 1fle, has only one bridging water molecule.  On average, 

the thirty structures are stabilized by 1123 HINT score units, which based on our 

previous studies,84,85 represents a ∆∆G of -2.18 kcal mol-1.  Each of the bridging waters 

contributes 232 score units (-0.45 kcal mol-1), which is very similar to values reported in 

other studies from our group,51,55,87 and in the range of other techniques.67,88,89  

Re-docking of protein-protein complexes 

 ZDOCK, which applies a Fourier Transform (FFT) algorithm90 to model the 3D 

structure of a protein complex starting from the structures of individual components, was 

used to recreate by docking the protein-protein complexes.  It proceeds by optimizing 

three parameters: shape complementarity, electrostatics and desolvation free energy.81  

Each individual protein is analyzed with the mark_sur algorithm that calculates the 

accessible surface area (ASA) for each atom (using a water probe) and marks its atom 

type based on atomic contact energy (ACE).91  This is followed by a search in the 3D 
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translational space with the ligand protein rotated in 6° steps, resulting in tens of 

thousands of angle sets, of which top 2000 translations with the high internal ZDOCK 

scores are retained.  ZDOCK scores physical and biochemical properties: 1) pair-wise 

shape complementarity (PSC) combining a favorable term measuring the number of 

atom pairs between the receptor and ligand proteins within a cutoff distance and a 

penalty term for the number of overlapping grid points; 2) an electrostatic energy term 

that correlates the electric potential generated by the receptor with the charges of the 

ligand; and 3) a desolvation free energy term calculated from atomic contact energies.92 

HINT scores predict correct re-docked geometry  

 HINT scores have been previously shown to correlate with the free energy of 

binding in protein-ligand systems,86,93-95 and in a few cases of protein self assembly.49  

The HINT scoring function is designed and calibrated around these predictions, rather 

than, like most scoring functions for docking, recreation of crystal structure 

geometries.93  First, we needed to demonstrate that, regardless of its training, the HINT 

scoring function can accurately predict geometry in protein-protein experiments.  To test 

this, we performed a rigid-body docking with ZDOCK on the data set described above.  

Using the unsolvated protocol, we obtained 100 predictions for each of the 30 protein-

protein complexes.  The intermolecular interaction score for each prediction was 

calculated using HINT, and they were ranked based on their scaled HINT scores.  The 

accuracy of each prediction was evaluated using the CAPRI criteria, fnat, l-RMSD and i-

RMSD, as described above.  Then, as defined in Table I, predictions were classified as 

incorrect, acceptable accuracy, medium accuracy and high accuracy models. 
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A prediction with high fnat (approaching 1) indicates correct identification of the 

interface.  Figure 1A shows a plot of fnat vs. scaled HINT score for all predictions (n = 

30  100 = 3000) obtained from the unsolvated docking of fifteen protein-protein 

complexes.  A significant positive linear correlation is observed between the scaled 

HINT scores and fnat (r = 0.252, p < 0.0001), i.e., predictions with high HINT scores 

have fnat values close to 1, and those with lower HINT scores have fnat values close to 

0.  The fnat values of the top-10 and lowest-10 HINT-ranked predictions for each test 

case were also examined (see Supporting Information, Figure S2).  For the top-10, 160 

of the 300 predictions (53%) have fnat values of ≥ 0.3 (one of the criteria for medium or 

better accuracy); with 17 of the 30 (57%) top-1 ranked predictions with fnat > 0.5 (high 

accuracy criterion).  On the other extreme, 226 of 300 (75%) of the lowest-10 ranked 

predictions have fnat < 0.3 and 21 of the 30 (70%) lowest-1 ranked predictions have 

fnat < 0.1 (incorrect prediction).  Lastly, 1053 out of 1263 predictions (83%) with fnat = 0, 

i.e., predictions that did not identify a single native residue-residue contact, have scaled 

HINT scores < 0.5.  Clearly, high HINT-ranked predictions have fnat values close to 1, 

and the HINT score is an effective filter for pose selection. 

Unsolvated docking vs. solvated docking  

 The protein-protein docking problem remains difficult due to the inherent 

complexity of these biological systems.  There are many more degrees of freedom 

involved in bringing two proteins together as opposed to docking a small molecule in a 

pocket, and much algorithm development has been devoted to the problem.  Yet, one of 

the most critical factors influencing the assembly of proteins – water – is almost always 

ignored.  The purpose of this work is to test whether simply including “bridging” waters, 



 19 

or as we have defined it, Relevant interfacial waters, in a docking protocol would 

improve its accuracy and reliability.  After determining the Relevance of all interfacial 

waters in our dataset, and deleting those not Relevant (< 0.25) with respect to either 

protein, we forced ZDOCK to include the remaining waters as atoms of the receptor 

protein and generated 100 solutions for each of the 30 complexes in our data set.  Next, 

those waters were extracted and individually optimized for orientation using the HINT-

based algorithm.  HINT interaction scores for the solvated complex were calculated: 

HTOTAL = Hprot1-prot2 + Hprot1-water + Hprot2-water, and the predictions were ranked, as before, 

based on their scaled HINT scores, evaluated with CAPRI criteria, and classified as 

described in Table I. 

 The overall performance of unsolvated vs. solvated docking was compared by 

calculating the hit count (CN) for each complex, total hit counts (CN
TOT) for all complexes, 

average hit counts (CN
ave), weighted quality (QN) for each complex, total weighted 

quality (QN
TOT) for all complexes, and average weighted quality (QN

ave) (see Methods).  

Table III lists CN for the top N (1, 10, 25, 50 and all) predictions for both unsolvated and 

solvated docking of each complex.  As can be seen, solvated docking performs better 

overall than unsolvated docking in terms of hit counts, especially in the important top 

10% regime, i.e., C10.  Note that C10 = 5 means that five of the top-10 predictions were 

of medium (**) or high accuracy (***).   C10
TOT, the total of all C10 values, increases from 

156 in unsolvated docking to 194 in solvated docking.  This is a significant (paired t-test, 

p < 0.05) improvement of 24.42%.  Similarly, the quality metric for predictions, QN, 

which rewards high, medium, acceptable and incorrect predictions differentially (see 

Methods), tells the same story.  The solvated docking protocol performs better than the 
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standard protocol, as measured by QN (see Table S1, Supporting Information).  Table 

IV summarizes the overall result well: the counts of high accuracy (***) predictions are 

drastically better for solvated docking with 8/30 (27%) top-1 scoring high accuracy 

models compared to only 3/30 (10%) using the unsolvated protocol.  Thus, more 

accurate and reliable results are obtained when bridging interfacial waters are not 

ignored. 

Figure 1B shows the plot of fnat vs. scaled HINT scores for all predictions from 

the solvated docking protocol, colored by quality.  A total of n = 194 out of 300 (65%) 

top-10 predictions were of medium accuracy or better (Table III), i.e., improving not only 

the number of hits, but also their scores, as more high/medium accuracy models are 

found in the upper right region of the Figure 1B plot.  In contrast, the “negative control” 

experiment, where crystallographic, but non-Relevant, water molecules were included in 

the models for five complexes, the performance was poor compared to solvated docking, 

as expected, but even compared to unsolvated docking: only n = 27 out of 50 (54%) 

top-10 predictions were of medium accuracy or better (see Table S3).  

Illustrative case 1:  HyHEL-63 antibody complexed with HEL (1dqj) 

With this example, the anti-lysozyme antibody HyHEL-63 complexed with hen 

egg white lysozyme HEL (PDB ID: 1dqj), we will illustrate how docking results and 

interpretability can improve when a solvated docking approach is applied.  The crystal 

structure of the complex is relatively high-resolution (2.0 Å) and 17 interfacial waters 

(within 4.0 Å of both proteins) are reported.96  After optimization of each water 

molecule’s orientation, the Relevance of each was calculated.  Seven water molecules 

were found to be Relevant (≥ 0.25 ) with respect to both proteins, thus forming bridging 
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interactions with interfacial residues (see Table V and Figure 2A and B).  For solvated 

docking, those bridging waters were considered as a part of the receptor protein. 

For unsolvated docking, clustering of the top-10 predictions (Table VI) revealed 

three distinct poses for the ligand proteins: cluster a1, consisting of five predictions (1, 2, 

3, 4 and 8), was clearly an incorrect pose (8.55 ≤ i-RMSD ≤ 9.86, 11.00 ≤ I-RMSD ≤ 

12.33); cluster a2, consisting of four predictions (5, 6, 7 and 9) was similarly poor (7.95 

≤ i-RMSD ≤ 8.39, 12.73 ≤ I-RMSD ≤ 13.44); and cluster a3, consisting of one prediction 

(10), was a medium accuracy pose (i-RMSD = 1.72, I-RMSD = 2.32).  The top-10 

predictions from solvated docking were, in contrast, notably more accurate.  Clustering 

these (Table VII) revealed two distinct poses: cluster b1, consisting of two predictions (1 

and 3), was an incorrect pose (i-RMSD = 6.44 & 7.19, I-RMSD = 7.04 & 7.47); while 

cluster b2, consisting of the remaining eight predictions was the native-like pose, with 

six predictions of medium accuracy (1.05 ≤ i-RMSD ≤ 2.48, 1.21 ≤ I-RMSD ≤ 3.06) and 

two predictions (7 and 8) of high-accuracy (i-RMSD = 0.90 & 0.95, I-RMSD = 0.64 & 

1.72). 

It is clear that the presence of water molecules, which change the physical and 

chemical properties of the receptor protein interface, have brokered this improvement in 

docking performance.  To zero in on a single interaction: water HOH 143 is seen in the 

crystal structure (Figure 2C) to be involved in bridging interactions between B/Tyr58 of 

HyHEL–63 (receptor) and C/Val99 and C/Asp101 of HEL (ligand).  The interaction with 

B/Tyr58 is incorrectly construed in two of the solution clusters from unsolvated docking 

(see Figure 3) to be direct interactions between Tyr’s OH and C/Gly22 in cluster a1 or 

C/Gln57 in cluster a2.  The third solution cluster, a3, while of overall medium quality, 
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does not show the interaction between B/Tyr58 and C/Val99.  However, applying the 

solvated docking protocol (see Figure 4) results in better shape and hydropathic 

complementarity of the receptor with the ligand surface and leads to more accurate and 

native-like predictions: cluster b2 correctly predicts the water-mediated interaction 

between B/Tyr58 and both C/Val99 and C/Asp101 that was seen in the crystal structure.  

Illustrative case 2: Potassium channel KcsA complexed with Fab (1k4c) 

For the KcsA potassium channel complexed with Fab (PDB ID: 1k4c),97 a 

noteworthy improvement was seen in not only the number and quality of hits obtained, 

but also in their rankings (Table III, S1).  A total of n = 6 hits were obtained for the 

unsolvated docking protocol, with no hits identified in the top-10 predictions.  The 

solvated docking protocol (incorporating three bridging water molecules, Table II), 

however, performed significantly better, with a total of n = 15 hits identified, with all of 

the top-10 predictions being hits. 

We focus on a residue-residue contact pair observed in the crystal structure: 

A/Glu62 of Fab (receptor protein) is within 5 Å of C/Gly53 of KcsA (ligand) as illustrated 

in Figure 5.  HINT analysis of the dry interface indicates this interaction to be 

energetically unfavorable (+0.22 kcal mol-1).  However, a water molecule, HOH 2016, 

bridges between the side-chain carboxylic group of A/Glu62 and the backbone carbonyl 

of C/Gly53, transforming this to an overall favorable interaction (-0.62 kcal mol-1).  Table 

VIII tabulates the interaction energetics of this particular interaction for all the hits 

obtained from both unsolvated and solvated docking.  For all but one of the unsolvated 

docking hits, direct interaction between the two residues not detected (i.e., they were at 

least 5 Å from each other).  However, this interaction was conserved in all fifteen 
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solvated docking hits, with seven of them revealing the water molecule having favorable 

interaction energies with both residues.  For these hits, the average water-mediated 

interaction energy was -0.61 kcal mol-1.  Also of note was that the top-10 HINT-ranked 

models were hits while the best ZDOCK-ranked model was 11th overall.  Clearly, 

explicitly accounting for water-mediated interactions affords better scores for identifying 

native-like predictions, resulting in better ranking.  

These two cases were obviously chosen for their dramatic results, but there are 

many water-mediated interactions at protein-protein interfaces, some of which will 

certainly be even more important.  Dismissing water and water-mediated interactions as 

irrelevant in protein-protein docking reduces our ability to truly understand biological 

associations at an atomic level. 

Limitations and alternate protocols 

This study focused on understanding the direct influence of interfacial water on 

the quality of structure prediction for protein-protein complexes.  We performed a 

bound-bound docking, which means that the starting structures of the two proteins were 

obtained from the crystal structure of the bound complex.  This eliminates two major 

issues that might result in incorrect predictions: 1) protein flexibility and conformational 

adjustments that could be seen with unbound/unconstrained docking and 2) finding 

positions for important water molecules.  Ideally, we would like to like to start with native, 

unbound structures for the interacting partners, identify ab initio the locations of 

important waters, and then predict the bound complex, but this would add many more 

degrees of freedom to an already spectacularly underdetermined problem.  Just as an 

aside, we applied a few unbiased protocols to this problem: 1) without assessing the 
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Relevance of crystallographically-determined waters at an interface, we toggled each 

one, and all combinations of them, to see if we could determine which water(s) were 

most influential (and presumably Relevant) for protein-protein docking.  Unfortunately, 

this problem scales as 2n, where n is the number of waters; 2) we de novo solvated, 

with both HINT98 and GRID56 tools, the “receptor” protein surface with high Relevance  

(-8 kcal mol-1 binding energy in GRID) waters and repeated the docking protocol.  The 

resulting models were poorer, even, than those from unsolvated docking.  In simple 

terms, waters with high Relevance with respect to one protein are not likely to be those 

that are bridging in the final complex and low Relevance waters are both numerous and 

hard to characterize; and 3) we solvated98 the protein-protein interface of all unsolvated 

predictions from a single complex, and scored and re-ranked the resulting models.  Only 

a statistically insignificant improvement in ranking was found, but this approach would 

appear to hold more promise and/or accessibility than the others.  

Conclusions 

Successfully predicting the conformation adopted by two proteins within a 

complex requires enhanced understanding of interfacial interactions and integrating this 

knowledge to the docking problem.  Most current docking programs only take into 

account the underlying physics of protein-protein interactions, ignoring, in a sense, 

chemistry – like the roles of water molecules. Interfacial waters have been shown to 

contribute immensely to the kinetics and thermodynamics underlying protein-protein 

interactions.  Also, these water molecules are not just randomly trapped in the protein–

protein interface, but are part of the recognition code facilitating interactions that are 

less favorable in their absence.99  It may even be possible to say that water-mediated 
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residue-residue interactions have a structural advantage over their dry counterparts, as 

they are less susceptible to disruptions by changes in pH.55 

The conformational search step of conventional “dry” docking is generally 

performed in vacuum and, thus, does not account for the presence of any water 

molecules.  Some docking algorithms attempt to mitigate this problem by incorporating 

a desolvation term in their scoring functions, implicitly accounting for water, which does 

improve the ranking of docked predictions and subsequent identification of correct 

configuration.69 However, implicitly treating water introduces various concomitant 

approximations and thus results in a coarse description of energetics.  

Our solvated docking protocol, which utilizes HINT-based tools for identifying and 

optimizing bridging water molecules and rationally scoring the final solvated models, 

can improve protein-protein docking results.  It is also likely that other paradigms that 

accomplish the same task would also be profitably applied to this problem.  This is 

intuitive in concept but not simple in execution.  It should be noted that this approach as 

we performed it is woefully crude because water is represented as only a single 

immobile atom that is part of the receptor during the docking search stage and thus 

does not really reproduce water’s true chemical properties, i.e., as a potential hydrogen 

bond donor to two partners and as an acceptor for two partners.  It is only during the 

scoring stage, when protons are re-added and the water molecules are optimized, that 

their complete set of properties is incorporated.  

An overarching goal of our studies in protein-protein interactions is to lay the 

groundwork for a docking tool that accomplishes the above result.  We have shown 

here that the HINT forcefield and water Relevance metric add context to evaluating the 
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roles of water at docked protein-protein interfaces.  Analyses of interfacial water at static 

structures,55, 87 are also ongoing and informing the direction of research.  Other tools, 

like extension of the HINT-based computational titration algorithm, which would provide 

a rational approach to optimizing the ionization states of interfacial residues, and 

Relevance-driven ab initio positioning of water molecules, are under development.  

Basically, if we can introduce such HINT functionality in the first stage search of 

conformational space to ascertain the viability of a particular pose, we will have more 

accurate predictions for the subsequent refinement and scoring stages, and improve the 

success rate of docking.  Even in this current work, where we explicitly accounted for 

interfacial waters by “tricking” ZDOCK, we showed that using hydropathic 

complementarity and not ignoring Relevant waters in modeling protein complexes does 

show a statistically significant improvement in the quality of docking predictions. 
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TABLES: 
 
Table I.  Predicted model quality classification criteria from CAPRI experiments.38 

Model Quality Criteria 

Incorrect (fnat < 0.1) OR [(l-RMSD > 10.0 Å) AND (i-RMSD > 4.0 Å)] 

Acceptable (*) 

[(fnat ≥ 0.1) AND (fnat < 0.3)] AND [(l-RMSD ≤ 10.0 Å) OR (i-RMSD ≤ 4.0 Å)] 

OR 

[(fnat ≥ 0.3) AND (l-RMSD > 5.0 Å) AND (i-RMSD > 2.0 Å)] 

Medium (**) 

[(fnat ≥ 0.3) AND (fnat < 0.5)] AND [(l-RMSD ≤ 5.0 Å) OR (i-RMSD ≤ 2.0 Å)] 

OR 

[(fnat ≥ 0.5) AND (l-RMSD > 1.0 Å) AND (i-RMSD > 1.0 Å)] 

High (***) (fnat ≥ 0.5) AND [(l-RMSD ≤ 1.0 Å) OR (i-RMSD ≤ 1.0 Å)] 
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Table II.  Solvated protein-protein docking data set with crystal structure data. 
 

  
PDB 
ID 

Resolution 
(Å) 

Chain ID 
Recep / Lig 

Water count 
HINT Score of X-ray 

structure 

Interfacial Bridging Without HOH 
With 
HOH 

1 1acb 2.0 E / I 7 1 -17 79 

2 1avx 1.9 A / B 8 2 2122 2365 

3 1clv 2.0 A / I 30 8 -167 2319 

4 1dqj 2.0 AB / C 17 7 1787 2864 

5 1eer 1.9 BC / A 22 8 4864 6128 

6 1fle 1.9 E / I 12 1 1063 1035 

7 1gcq 1.7 C / B 6 1 80 332 

8 1i2m 1.8 B / A 28 11 5492 9079 

9 1iqd 2.0 AB / C 25 6 2012 2589 

10 1j2j 1.6 A / B 16 6 1035 2327 

11 1jiw 1.7 P / I 29 3 -2856 -1540 

12 1jps 1.9 HL / T 8 3 1172 1458 

13 1k4c 2.0 AB / C 15 3 2586 3150 

14 1klu 1.9 AB / D 8 3 1250 1586 

15 1ppe 2.0 E / I 19 2 536 820 

16 1pxv 1.8 A / C 24 5 451 2509 

17 1r0r 1.1 E / I 27 6 -1361 -497 

18 1r8s 1.5 E / A 24 5 118 1975 

19 1vfb 1.8 AB / C 28 7 1047 3185 

20 1wej 1.8 HL / F 10 6 1848 2735 

21 1z0k 1.9 A / B  26 5 1567 2657 

22 1z5y 1.9 E / D 17 2 -809 -591 

23 1zhh 1.9 A / B 32 10 -411 2223 

24 2a5t 2.0 A / B 25 4 -1477 -822 

25 2hqs 1.5 A / H 46 7 -421 1524 

26 2i25 1.8 L / N 13 6 3081 4763 

27 2nz8 2.0 B / A 42 10 -722 1996 

28 2sic 1.8 E / I 17 1 -1 159 

29 2z0e 1.9 A / B 23 4 -4889 -3891 

30 3sgq 1.8 E / I 11 2 -617 -470 
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Table III. Hit counts for top N predictions for unsolvated and solvated docking protocols 

PDB ID 
Unsolvated Docking Solvated Docking Diff. (Solv. – Unsolv.) 

C1 C10 C25 C50 Call C1 C10 C25 C50 Call ∆C1 ∆C10 ∆C25 ∆C50 ∆Call 

1acb 0 0 0 6 17 0 0 0 4 16 0 0 0 -2 -1 

1avx 1 8 20 36 54 0 9 22 41 63 -1 1 2 5 9 

1clv 1 10 25 50 95 1 10 25 50 99 0 0 0 0 4 

1dqj 0 1 10 16 16 0 8 19 31 32 0 7 9 3 16 

1eer 1 10 24 48 91 1 10 23 48 93 0 0 -1 0 2 

1fle 1 5 5 5 5 1 5 8 9 9 0 0 3 4 4 

1gcq 0 0 0 2 5 0 1 3 3 10 0 1 3 1 5 

1i2m 1 10 24 47 71 1 9 21 45 72 0 -1 -3 -2 1 

1iqd 1 10 25 50 76 1 10 25 49 85 0 0 0 -1 9 

1j2j 1 10 23 25 25 1 9 17 32 39 0 -1 -6 7 14 

1jiw 0 4 15 25 32 1 7 17 27 33 1 3 2 2 1 

1jps 0 0 1 1 1 0 2 2 2 2 0 2 1 1 1 

1k4c 0 0 1 3 6 1 10 14 15 15 1 10 13 12 9 

1klu 1 2 2 2 2 1 4 5 5 5 0 2 3 3 3 

1ppe 1 10 25 50 99 1 10 25 50 100 0 0 0 0 1 

1pxv 1 10 25 49 59 1 10 24 43 62 0 0 -1 -6 3 

1r0r 0 0 0 0 13 0 0 0 0 25 0 0 0 0 12 

1r8s 1 10 24 48 96 1 10 25 50 93 0 0 1 2 -3 

1vfb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1wej 0 4 4 4 4 1 10 11 11 11 1 6 7 7 7 

1z0k 1 10 20 35 58 1 10 18 35 54 0 0 -2 0 -4 

1z5y 0 0 3 18 61 0 0 2 20 68 0 0 -1 2 7 

1zhh 1 6 8 9 9 1 7 16 20 20 0 1 8 11 11 

2a5t 0 0 0 0 1 0 0 1 2 3 0 0 1 2 2 

2hqs 1 9 16 19 19 1 9 16 18 18 0 0 0 -1 -1 

2i25 1 10 25 50 89 1 10 25 48 87 0 0 0 -2 -2 

2nz8 1 6 14 26 32 1 9 16 26 33 0 3 2 0 1 

2sic 1 10 24 47 74 1 10 22 46 72 0 0 -2 -1 -2 

2z0e 0 1 4 13 54 0 5 10 27 67 0 4 6 14 13 

3sgq 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 

𝑪𝑵
𝑻𝑶𝑻 17 156 367 684 1165 19 194 412 757 1286 2 38 45 61 121 

𝑪𝑵
𝑨𝒗𝒈

 0.57 5.20 12.23 22.80 38.83 0.63 6.47 13.73 25.23 42.87 0.07 1.27 1.50 2.03 4.03 
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Table IV.  Count of high accuracy (***) models in top N predictions 

PDB ID 
Unsolvated Docking Solvated Docking 

C1 C10 C25 C50 Call C1 C10 C25 C50 Call 

1acb 0 0 0 3 4 0 0 0 3 7 

1avx 0 1 3 7 8 0 0 5 6 7 

1clv 1 10 25 49 94 1 10 25 50 98 

1dqj 0 0 4 4 4 0 2 5 7 7 

1eer 0 3 3 5 5 1 4 4 5 5 

1fle 0 4 4 4 4 1 5 8 9 9 

1gcq 0 0 0 2 5 0 0 0 0 2 

1i2m 0 4 4 4 4 1 5 6 7 7 

1iqd 0 3 9 12 16 0 1 6 10 14 

1j2j 0 6 7 8 8 0 4 10 14 14 

1jiw 0 0 4 9 9 0 2 5 11 11 

1jps 0 0 1 1 1 0 0 0 0 0 

1k4c 0 0 0 0 0 0 1 4 4 4 

1klu 1 2 2 2 2 1 4 5 5 5 

1ppe 0 0 0 7 35 0 0 4 11 42 

1pxv 0 1 1 3 3 0 1 1 5 6 

1r0r 0 0 0 0 11 0 0 0 0 21 

1r8s 0 0 0 0 3 0 0 1 2 2 

1vfb 0 0 0 0 0 0 0 0 0 0 

1wej 0 2 2 2 2 1 6 6 6 6 

1z0k 1 4 8 10 12 0 3 5 9 9 

1z5y 0 0 0 2 12 0 0 0 5 14 

1zhh 0 2 2 2 2 0 0 1 1 1 

2a5t 0 0 0 0 1 0 0 0 0 1 

2hqs 0 5 8 11 11 1 5 8 9 9 

2i25 0 5 13 18 21 0 4 13 19 25 

2nz8 0 1 2 4 5 0 0 3 6 6 

2sic 0 6 12 18 19 1 8 15 20 21 

2z0e 0 0 0 1 10 0 0 0 0 7 

3sgq 0 0 0 0 0 0 0 0 0 0 

𝑪𝑵
𝑻𝑶𝑻 3 59 114 188 311 8 67 140 224 360 

𝑪𝑵
𝑨𝒗𝒈

 0.10 1.97 3.80 6.27 10.37 0.27 2.23 4.67 7.47 12.00 
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Table V. HINT water Relevance report for interfacial watersa in anti-lyzozyme antibody 
HyHEL-63 / lyzozyme HEL complex crystal structure (1dqj).  
 

Water # 
Monomer 

Name 

Target One - Anti-Lyzozyme 
Antibody HyHEL-63 (Chain A+B) 

Target Two -Lyzozyme  
HEL (Chain C) 

Rank HINT Score Relevance Rank HINT Score Relevance 

1 HOH 130 4.1

9 

68.60 0.65 1.5

1 

72.20 0.37 

2 HOH 131 1.2

6 

122.40 0.39 2.3

4 

-314.10 -0.47 

3 HOH 133 2.7

4 

124.60 0.56 2.7

8 

-36.50 0.39 

4 HOH 134 1.0

3 

-5.70 0.25 2.5

8 

-218.80 -0.24 

5 HOH 138 1.4

2 

-58.90 0.21 3.5

9 

-195.60 -0.19 

6 HOH 140 0.0

0 

-64.00 -0.04 2.2

1 

196.70 0.57 

7 HOH 141 2.5

0 

48.70 0.45 1.3

2 

16.80 0.30 

8 HOH 143 1.4

4 

117.60 0.41 3.9

2 

48.20 0.62 

9 HOH 146 0.9

0 

-42.40 0.20 1.2

0 

272.00 0.44 

10 HOH 152 1.0

3 

-43.40 0.22 1.1

4 

121.50 0.36 

11 HOH 182 2.4

0 

123.30 0.52 1.3

2 

29.50 0.31 

12 HOH 222 3.0

0 

270.70 0.71 2.8

5 

113.00 0.55 

13 HOH 243 1.0

2 

-78.60 0.19 1.0

8 

116.60 0.35 

14 HOH 263 1.1

3 

60.30 0.32 0.0

0 

-153.80 -0.07 

15 HOH 327 0.9

6 

7.00 0.24 0.9

3 

42.50 0.27 

16 HOH 335 1.0

3 

166.90 0.34 0.0

0 

-79.10 -0.04 

17 HOH 388 1.1
1 

43.70 0.30 0.9
2 

36.50 0.26 
aWaters within 4.0 Å of atoms on both proteins.   
Relevant/bridging waters (having relevance ≥ 0.25 with respect to both proteins) are shown in bold. 
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Table VI.  Unsolvated docking results for HyHEL-63 / HEL complex.a 

Predictionb  
HINT 
Score 

Scaled HINT 
Score 

i-RMSD l-RMSD fnat 
Cluster / 

Posec 
CAPRI 

Qualityd 

model 1 4806 1.000 8.55 11.00 0.127 a1 - 

model 2 4355 0.906 9.86 12.26 0.113 a1 - 

model 3 4237 0.882 9.81 12.17 0.127 a1 - 

model 4 4124 0.858 8.84 11.37 0.127 a1 - 

model 5 4116 0.856 7.95 12.73 0.028 a2 - 

model 6 4105 0.854 8.26 13.21 0.028 a2 - 

model 7 4037 0.840 8.39 13.44 0.028 a2 - 

model 8 3881 0.807 9.57 12.33 0.141 a1 - 

model 9 3836 0.798 8.24 13.06 0.014 a2 - 

model 10 3796 0.790 1.72 2.32 0.915 a3 ** 

aTop-10 predictions, ranked/named based on their HINT scores.  
i-RMSD, l-RMSD and fnat values calculated with respect to the complex crystal structure.   
bPredictions in bold are hits, i.e., medium or high accuracy.  
cClustering the ten solutions revealed three pose clusters for the ligand protein (RMSD within 2.0 Å). 
dCAPRI quality criteria: high accuracy (***), medium accuracy (**), acceptable (*) and incorrect (-). 
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Table VII.  Solvated docking results for HyHEL-63 / HEL complex.a 

Predictionb  
HINT 
Score 

Scaled HINT 
Score 

i-RMSD l-RMSD fnat 
Cluster / 

Posec 
CAPRI 

Qualityd 

model 1 6099 1.000 6.44 7.04 0.00 b1 - 

model 2 5328 0.874 1.62 2.22 0.94 b2 ** 

model 3 5046 0.827 7.19 7.47 0.00 b1 - 

model 4 4983 0.817 1.50 1.21 0.99 b2 ** 

model 5 4855 0.796 1.08 1.31 0.96 b2 ** 

model 6 4852 0.796 1.05 2.93 0.76 b2 ** 

model 7 4774 0.783 0.95 1.72 0.90 b2 *** 

model 8 4715 0.773 0.90 0.64 0.96 b2 *** 

model 9 4638 0.761 2.48 2.46 0.87 b2 ** 

model 10 4634 0.760 1.41 3.06 0.78 b2 ** 

aTop-10 predictions, ranked/named based on their HINT scores.  
i-RMSD, l-RMSD and fnat values calculated with respect to the complex crystal structure.   
bPredictions in bold are hits, i.e., medium or high accuracy.  
cClustering the ten solutions revealed two pose clusters for the ligand protein (RMSD within 2.0 Å). 
dCAPRI quality criteria: high accuracy (***), medium accuracy (**), acceptable (*) and incorrect (-). 
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Table VIII.  HINT-based interaction energy between A/Glu62 (receptor protein) and 
C/Gly53 (ligand protein) of KcsA/Fab complex, bridged via HOH 2016.* 

 
 Predictionsa 

ZDOCK 
rank 

Model 
Qualityb 

Interaction Energy (kcal mol-1)c 

A/Glu62 - 
C/Gly53 

A/Glu62 – 
HOH 2016 

HOH 2016 
- C/Gly53 

Total residue-
residue 

interaction 

Crystal 
Structure 

1k4c 

 
 

 
 

 
 0.22 -0.67 -0.17 -0.62 

Unsolvated 
Docking 

model 12 72 ** 0.27   0.27 

model 27 63 ** -   - 

model 46 31 ** -   - 

model 58 25 ** -   - 

model 66 39 ** -   - 

model 82 67 ** -   - 

Solvated 
Docking 

model 1 97 ** 0.19 -0.93 0.09 -0.65 

model 2 54 ** 0.24 -0.87 -0.06 -0.69 

model 3 63 ** 0.34 -0.87 -0.10 -0.62 

model 4 83 ** 0.26 -0.88 -0.09 -0.71 

model 5 31 ** 0.23 -0.89 -0.01 -0.67 

model 6 65 ** 0.19 -0.90 0.04 -0.66 

model 7 60 ** 0.21 -0.85 0.10 -0.53 

model 8 11 ** 0.22 -0.89 0.07 -0.60 

model 9 18 ** 0.22 -0.86 0.12 -0.52 

model 10 59 *** 0.50 -0.88 -0.19 -0.57 

model 11 72 *** 0.28 -0.92 -0.03 -0.67 

model 12 56 *** 0.23 -0.83 0.09 -0.51 

model 13 21 ** 0.24 -0.84 -0.01 -0.61 

model 14 44 *** 0.14 -0.89 0.11 -0.64 

model 35 70 ** 0.28 -0.85 0.06 -0.52 
aOnly predictions of medium accuracy or better are shown, ranked/named based on their HINT scores.   
bCAPRI quality criteria: high accuracy (***), medium accuracy (**) and acceptable (*).   
cInteraction energy calculated based on HINT scores (previous studies show ~515 HINT units = 1 kcal 
mol-1).86   
*Solvated docking hits with HOH 2016 showing favorable interaction energies with both residues are 
shown in bold. “-“ indicates interaction not present in model. 
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FIGURES and CAPTIONS 
 
Figure 1.  Scatterplots of fnat vs scaled HINT scores for all predictions (n = 3000 for 
100 poses in each complex) grouped based on their quality: blue (incorrect), green 
(acceptable, *), yellow (medium, **), red (high, ***).  (A) Results from unsolvated 
docking.  There is a positive linear correlation (not shown) between scaled HINT scores 
and fnat values (r = 0.252, p < 0.0001).  (B) Results from solvated docking. On average, 
predictions of high/medium accuracy rank much better than the incorrect ones.  
Predictions with higher HINT scores have fnat values closer to 1, indicating the ability of 
HINT to identify correct poses.  For clarity, points with scaled HINT scores < -2.0 are not 
shown. 
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Figure 2. The anti-lysozyme antibody HyHEL-63 / lysozyme HEL complex (PDB 1dqj). 
(A) Crystal structure of HyHEL-63 (green) / HEL (cyan) in complex.  The image shows 
the presence of Relevant interfacial waters (red spheres).  (B) Detailed view of the 
interface showing bridging interactions of Relevant waters with residues on both 
proteins. (C) Bridging interactions formed by Relevant interfacial water HOH 143 with 
Tyr58 of HyHEL-63 and Val99 and Asp101 of HEL.  Image prepared using PyMOL.100  
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Figure 3.  Unsolvated docking results for HyHEL-63 / HEL complex. The left panels 
overlay the predicted ligand poses (cyan) with the crystal structure (red); the right 
panels illustrate the interactions of B/Tyr58 with ligand residues. (A) model 
representative of cluster a1 (n=5); (B) model representative of cluster a2 (n=4); (C) 
model representative of cluster a3 (n=1).  Neither cluster a1 nor cluster a2 show native 
residue-residue contacts, and are thus incorrect predictions, but cluster a3 is of medium 
accuracy.  Image prepared using PyMOL. 
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Figure 4.  Solvated docking results for HyHEL-63 / HEL complex. Unsolvated docking 
results for HyHEL-63 / HEL complex. The left panels overlay the predicted ligand poses 
(cyan) with the crystal structure (red); the right panels illustrate the interactions of 
B/Tyr58 with ligand residues. (A) model representative of cluster b1 (n=2); (B) model 
representative of cluster b2 (n=8).  Cluster b1 are non-native-like predictions showing 
water-mediated interaction between B/Tyr58 and C/Lys116. In cluster b2 native water-
mediated residue-residue contacts are retained, with B/Tyr58 showing a water-mediated 
hydrogen-bonding network with C/Val99 and C/Asp101.  Image prepared using PyMOL. 
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Figure 5. Interfacial residue-residue contacts between A/Glu62 of Fab and C/Gly53 of 
KcsA: (A) energetically stabilized by a water molecule, HOH 2016, as observed in the 
crystal structure of the complex (PDB ID: 1k4c), distances shown in Å; (B) A/Glu62–
C/Gly53 interaction as observed in top HINT-ranked “hit” (model 12) for unsolvated 
docking (the interaction is scored unfavorably, Table VIII); (C) A/Glu62–HOH2016–
C/Gly53 interaction as observed in second HINT-ranked “hit” (model 2) for solvated 
docking. Model 2 was selected because HOH 2016 shows favorable interactions with 
respect to both proteins. Now, the overall interaction is favorable and energetically 
similar to the native (Table VIII).  
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