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Abstract

Intracellular proteolytic pathways have been validated as rational targets in multiple myeloma with the approval of two
proteasome inhibitors in this disease, and with the finding that immunomodulatory agents work through an E3 ubiquitin
ligase containing Cereblon. Another E3 ligase that could be a rational target is the murine double minute (MDM) 2 protein,
which plays a role in p53 turnover. A novel inhibitor of this complex, MI-63, was found to induce apoptosis in p53 wild-type
myeloma models in association with activation of a p53-mediated cell death program. MI-63 overcame adhesion-mediated
drug resistance, showed anti-tumor activity in vivo, enhanced the activity of bortezomib and lenalidomide, and also
overcame lenalidomide resistance. In mutant p53 models, inhibition of MDM2 with MI-63 also activated apoptosis, albeit at
higher concentrations, and this was associated with activation of autophagy. When MI-63 was combined with the BH3
mimetic ABT-737, enhanced activity was seen in both wild-type and mutant p53 models. Finally, this regimen showed
efficacy against primary plasma cells from patients with newly diagnosed and relapsed/refractory myeloma. These findings
support the translation of novel MDM2 inhibitors both alone, and in combination with other novel agents, to the clinic for
patients with multiple myeloma.
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Introduction

Multiple myeloma is a malignant plasma cell dyscrasia

characterized clinically in patients with symptomatic disease by

anemia, hypercalcemia, renal insufficiency, or bony lesions [1,2],

and is the second most commonly diagnosed hematologic

malignancy [3]. Novel drug classes such as proteasome inhibitors

and immunomodulatory agents have had a significant impact

upon the natural history of this disease, with some studies

suggesting a doubling in the median overall survival

[4,5,6,7,8,9]. Bortezomib and carfilzomib are the currently

approved proteasome inhibitors for multiple myeloma, and exert

their effects by blocking the turnover of poly-ubiquitinated

proteins through the proteasome, which is the final effector of

the ubiquitin-proteasome pathway [10,11,12]. Downstream effects

of proteasome inhibition include activation of the endoplasmic

reticulum stress response, inhibition of adherence and survival

signaling through nuclear factor kappa B [10,11,12], and

induction of a pro-apoptotic program, including through p53

[13,14,15,16,17]. Interestingly, recent studies of the immunomod-

ulatory agents thalidomide, lenalidomide, and pomalidomide have

indicated that they work in part through an effect on an E3

ubiquitin ligase that incorporates the immunomodulatory drug

binding protein Cereblon [18,19]. This influences substrate

specificity of the ligase for targets such as the Ikaros and Aiolos

transcription factors [20,21], whose degradation results in anti-

proliferative plasma cell effects and T cell stimulation.

Another E3 ubiquitin ligase that may be a rational target for

multiple myeloma therapy is murine double minute (MDM) 2, a

pleiotropic protein best known for facilitating the p53 ubiquitina-

tion required for its proteasome-mediated turnover [22]. Regula-

tion of p53 function also occurs by binding of MDM2 to p53

amino acids 15–29, preventing p53 interactions with transcrip-

tional machinery, forming a negative feedback loop limiting p53

accumulation and function [22]. MDM2 may be over-expressed in

some cases of multiple myeloma [23,24] through mechanisms such

as gene amplification or chromosomal trisomy [24]. In addition,

epigenetic suppression of the promoter for the micro RNA 194-2-

192 cluster may also enhance MDM2 expression [25]. This over-

expression has been shown to result in enhanced cell cycle
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progression, proliferation, and survival of myeloma cells, in part

through down-regulation of the cyclin-dependent kinase inhibitor

p21 [26]. Since p21 accumulation is a part of the mechanism of

action for both proteasome inhibitors [14] and immunomodula-

tory agents [19,27], these findings together support the possibility

that approaches targeting MDM2 could be attractive options for

myeloma patients.

Small molecule inhibitors of the MDM2/p53 interaction have

been identified, such as the Nutlins [28], which were the first

generation of agents directly targeting this pathway, and bind in

MDM2’s p53 binding pocket in the N-terminal region to induce

p53 accumulation. These have helped in elucidating the biology of

MDM2 and p53, such as by allowing identification of new MDM2

targets [29], and have shown pre-clinical activity against myeloma

in vitro [30,31,32]. However, the low potency of these first

generation agents has limited their potential clinical applicability.

We therefore sought to determine if one of the second-generation

MDM2 inhibitors [33], MI-63 [34,35], could be active against

myeloma, and if it could fit into our armamentarium in

combination with other currently approved and novel agents

against this disease. In this study, we present data which indicate

that MI-63 has potent activity against myeloma using both in vitro
and in vivo models. Also, studies in mutant p53 models show

evidence of activity, and indicate activation of autophagy. Finally,

MI-63 can overcome lenalidomide resistance, can be combined

with other currently approved agents, such as bortezomib or

lenalidomide, and also with novel drugs including the BH3

mimetic ABT-737, to enhance activity against both myeloma cell

lines and primary samples. Together, the data support the

translation of approaches targeting the interaction between

MDM2 and p53 to the clinic for patients with relapsed and/or

refractory myeloma.

Materials and Methods

Reagents
MI-63 and MI-219 were provided by Sanofi (Bridgewater, NJ),

while ABT-737, bortezomib, and lenalidomide were purchased

from Selleck Chemicals (Houston, TX).

Chloroquine and 3-methyladenine were purchased from Sigma-

Aldrich (St. Louis, MO).

Tissue culture and patient samples
Myeloma cell lines were purchased either from the German

Collection of Microorganisms and Cell Cultures (Braunschweig,

Germany), or the American Type Culture Collection (Manassas,

VA), and validated by the MD Anderson Characterized Cell Line

Core Facility. Primary samples were from patients who had

provided written informed consent in compliance with the

Declaration of Helsinki according to an MD Anderson Institu-

tional Review Board 5 approved protocol (LAB11-0321). CD138+

or 2 cells were isolated from these fresh bone marrow aspirates

with the CD138 Positive Plasma Cell Isolation Kit (Miltenyi

Biotec; Auburn, CA). Cells were cultured in RPMI 1640 medium

with 2 mM L-glutamine (Invitrogen; Carlsbad, CA) supplemented

with 10% fetal bovine serum (Sigma-Aldrich), 100 U/mL

penicillin (Invitrogen) and 100 mg/ml streptomycin (Invitrogen).

HS-5 stromal cells from the American Type Culture Collection

were cultured in Dulbecco’s modified Eagle’s medium containing

fetal bovine serum and penicillin and streptomycin as above.

Cell viability assays
Cell viability was determined using the tetrazolium reagent

WST-1 (Roche Applied Science; Indianapolis, IN) according to

the manufacturer’s instructions and as previously described [36].

Viability curves were fitted in GraphPad Prism version 6 (La Jolla,

CA) and median inhibitory concentrations (IC50) were calculated

using log (inhibitor) vs. response – variable slope (four parameters).

shRNA gene knockdown
Lentiviral constructs containing non-targeting shRNA sequenc-

es, or shRNAs designed to suppress expression of MDM2, p53,

autophagy (ATG)-related protein 5 (ATG5) and Beclin-1 were

purchased from Sigma-Aldrich. Viral particles were generated

from 293T cells following standard protocols, and myeloma cells

were infected and selected with the use of polybrene and

puromycin, as detailed previously [37].

Reverse transcription and quantitative PCR
Total RNA was extracted using Trizol (Invitrogen), and cDNA

was synthesized with High-Capacity cDNA Reverse Transcription

Kits (Applied Biosystems; Grand Island, NY) as previously

described [38]. TaqMan Gene Expression Master Mix and probes

were purchased from Applied Biosystems and used to perform

quantitative PCR (qPCR) reactions on an Applied Biosystems

StepOnePlus Real-Time PCR system. Expression of glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) was used as an

internal control.

Proteomic assays
Western blotting and immunoprecipitation of protein extracts

was performed using standard procedures [39]. Antibodies which

were used included: anti-p53 (DO-1) and Bax (6A7)(Santa Cruz

Biotechnology; Santa Cruz, CA); anti-MDM2 (Ab-1) and -Bak

(Ab-1)(Calbiochem; San Diego, CA); anti-Caspase-3 (5A1E), -9

(D2D4), -poly ADP ribose polymerase (PARP)(D64E10), -p53

upregulated modulator of apoptosis (PUMA)(D30C10), -Microtu-

bule-associated protein 1 light chain 3 (LC3)(D3U4C & D11), -

Cytochrome C (136F3), -Beclin-1 (#3738) and -ATG5

(#2630)(Cell Signaling Technology; Danvers, MA); and anti-

Actin (A2066)(Sigma-Aldrich). Densitometry was performed using

ImageJ software version 1.46 (National Institute of Health;

Bethesda, MD). Mitochondrial isolation prior to Western blotting

was performed where indicated using the Mitochondria Isolation

Kit (Thermo Scientific; Rockford, IL). Reverse phase protein array

(RPPA) analyses were performed by the MD Anderson Cancer

Center RPPA/Functional Proteomics Core Facility.

Cell cycle analysis and apoptosis
Cell cycle analysis was performed by staining with propidium

iodide (Sigma-Aldrich), and then analyzing cells by flow cytometry

as described previously [40]. Annexin V staining was used to

detect apoptosis by flow cytometry using the manufacturer’s

instructions (Invitrogen).

Drug synergy calculations and statistical analyses
Data were analyzed using CalcuSyn software (Biosoft; Cam-

bridge, United Kingdom), and combination indices (CI) were

calculated to determine if synergistic interactions were being

observed. Statistical analyses were performed with unpaired t tests

in GraphPad, and p-values less than 0.05 were judged to be

significant.

Xenograft model
Experiments were performed in accordance with procedures

and protocols approved by the MD Anderson Cancer Center

Animal Care and Use Committee using xenografts developed as

Inhibition of MDM2 Induces Apoptosis and Autophagy
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detailed previously [36,41]. In brief, 107 MM1.S cells were

inoculated subcutaneously in 6-week-old nonobese diabetic severe

combined immunodeficiency (NOD/SCID) gamma mice (The

Jackson Laboratory; Bar Harbor, ME) to establish tumors. Vehicle

(10% polyethylene glycol, 3% Cremophor EL in phosphate

buffered saline) or MI-219 (100 mg/kg) was injected intraperito-

neally three times a week. Tumor diameters were measured with a

digital caliper, and tumor volume was calculated by the formula:

volume = (width)26length/2.

Results

MDM2 inhibition with MI-63 is cytotoxic to wild-type p53
myeloma cells

Nutlin-based inhibitors of MDM2 have been found to have

activity predominantly against wild-type (wt) p53 myeloma

models. To evaluate the activity of MI-63, we exposed a panel

of wt p53 myeloma cell lines (MM1.S, H929, MOLP-8) to this

agent, and measured viability with a tetrazolium reagent. All of

these cell lines were found to be very sensitive to low drug levels

over the course of a 48-hour exposure (Figure 1A), with a median

inhibitory concentration (IC50) in the low single mM range or less

(MM1.S: 0.6 mM; H929: 0.4 mM; MOLP-8: 1.5 mM). In order to

verify that MI-63 was indeed inhibiting the interaction between

MDM2 and p53, we subjected extracts of MM1.S cells to

immunoprecipitation with an anti-MDM2 antibody, and then

analyzed these by Western blotting. Compared to vehicle-treated

controls, the level of p53 immunoprecipitated in association with

MDM2 was reduced after these cells were treated with MI-63

(Figure 1B). In comparison, MI-63 did not alter the interaction

with MDM4, which associates with MDM2 through the RING

finger domain (Figure S1) [42]. We then prepared MM1.S cells in

which p53 expression had been stably suppressed at the mRNA

(Figure S2A) and protein levels (Figure S2B) using a Lentiviral-

delivered small hairpin (sh) RNA construct. MI-63 retained

activity against MM1.S cells harboring a non-targeting shRNA

construct (Figure 1C), but this was substantially blunted in the cells

with decreased p53 content (control shRNA IC50: 2.2 mM; p53

shRNA IC50: 5.2 mM), consistent with a strong impact of p53

status. Finally, since microenvironmental effects, such as expres-

sion of interleukin (IL)-6, may modulate the expression of p53

[43], we evaluated the activity of MI-63 on myeloma cells in the

presence of HS-5 human stromal cells. When MM1.S cells were

co-cultured with stromal cells, the IC50 of MI-63 was not

significantly altered (MM1.S+HS-5 IC50: 1.9 mM; MM1.S IC50:

3.4 mM) (Figure 1D), and similar data were obtained in MOLP-8

cells (control shRNA IC50: 3.5 mM; p53 shRNA IC50: 3.5 mM;

Figure S3). Next, we generated a xenograft model using NOD/

SCID mice and MM1.S myeloma cells. Compared to vehicle-

treated mice, which experienced a substantial increase in their

tumor burden over the period of the experiment, treatment with

the in vivo analogue of MI-63, MI-219, induced a significant

tumor growth delay (Figure 1E).

Molecular mechanisms of MI-63 action
Inhibition of MDM2 should result in accumulation of p53

protein with downstream activation of a p53-mediated cell death

program, and we therefore examined these myeloma cell lines for

evidence of this mechanism. Using qPCR, we found a significant

increase of transcript levels for p53 up-regulated modulator of

apoptosis (PUMA), Bcl-2 associated protein x (BAX), Noxa, p21,

and MDM2 (Figure 2A). Many of these findings were then

confirmed by RPPA, a high-throughput antibody-based technique

developed for functional proteomics studies to evaluate protein

activity in signaling networks. Results from MM1.S and MOLP-8

cells indicated an up-regulation of pro-apoptotic Bax, cell cycle

regulators p21 and p27, and cleaved/active caspases-3 and -7,

highlighting the activation of type I programmed cell death (Figure

S4). Consistent in part with the induction of cyclin-dependent

kinase inhibitors p21, p27, and with programmed cell death, cell

cycle profiling showed an increased content of cells at G0/G1 after

exposure to MI-63 (Figure 2B). Activation of apoptosis was

confirmed using flow cytometry after Annexin V staining for cell

surface phosphatidylserine levels, which were strongly enhanced

by MDM2 inhibition (Figure 2C). Finally, at the protein level, MI-

63 induced accumulation of p53, MDM2, and PUMA, and

induced release of cytochrome c from mitochondria into the

cytosol, resulting in activation of caspase-9 and the downstream

effector caspase-3 (Figure 2D).

Inhibition of MDM2 is also active against mutant p53
myeloma

The majority of newly-diagnosed patients with myeloma are felt

to have wt p53, but the incidence of deletion at the 17p locus by

fluorescence in situ hybridization ranges from 7%–11% [44,45],

and later increases to ,22% in the relapsed and/or refractory

setting [46]. We therefore sought to determine if MDM2 inhibitors

could retain some activity in mutant (mut) p53 models using a

different cell line panel (ANBL-6, KAS-6/1, RPMI 8226, U266,

and OPM-2). While single mM concentrations were, in part as

expected, largely ineffective, a dose-dependent decrease in viability

was nonetheless seen in these mutant cells at higher concentrations

(Figure 3A), with an IC50 in the range of 20–40 mM (ANBL-6:

30.1 mM; KAS-6/1: 36 mM; RPMI 8226: 27.9 mM; U266:

27.9 mM; OPM-2: 20.4 mM). Cell cycle analysis showed that

RPMI 8226 and U266 cells exposed to MI-63 did accumulate at

G0/G1 (Figure 3B). Furthermore, this was associated with

induction of apoptosis as measured both by Annexin V staining

(Figure 3C), and by activation of caspases-9 and -3, as well as

cleavage of PARP (Figure 3D). This occurred without any impact

on the expression levels of p53, or on downstream targets of wt

p53, such as PUMA (Figure 3D), as would be expected in a mut

p53 background. Given the high MI-63 concentrations required to

induce cell death, we considered the possibility that this could be

occurring through an off-target effect. U266 cells were therefore

prepared that expressed either a non-targeting shRNA, or one of

two different shRNAs that suppressed MDM2 (Figure S5). When

these were exposed to MI-63, the two clones in which MDM2 was

reduced showed a lower IC50 and therefore greater sensitivity

compared to the controls (control shRNA IC50: 36.3 mM; MDM2

shRNA clone 3380 IC50: 24.7 mM; MDM2 shRNA clone 3376

IC50: 23.8 mM; Figure 3E). This finding is consistent with a

continued role for MDM2 in the mechanism of action of MI-63 in

these models, since decreased expression of MDM2 led to a need

for less drug to elicit the same phenotype, whereas if MI-63 were

active through a different target, MDM2 knockdown would not

have changed the IC50.

MDM2 inhibitors induce autophagy in mut p53 myeloma
models

While RPPA studies in wt p53 cells showed induction of type I

apoptosis, RPMI 8226 and KAS6/1 cells exposed to MI-63

showed induction of several targets involved in autophagy,

including AMP-activated protein kinase, and p70 S6 and S6

kinase (Figure S6 and results not shown). Moreover, by Western

blotting, we did detect enhanced conversion of microtubule-

associated protein (MAP)-1 light chain 3 (LC3) form I to form II

Inhibition of MDM2 Induces Apoptosis and Autophagy
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Figure 1. MI-63 is cytotoxic to wild-type p53 myeloma cells. A. Cell viability assays were performed in wild-type p53 myeloma cell lines
exposed to the indicated concentrations of MI-63 for 48 hours using a tetrazolium reagent. Error bars represent standard errors of the mean from
three or more replicates, and all experiments in this and later figures were repeated three times, with one representative figure shown. B. Whole cell
extracts were prepared from MM1.S cells treated with vehicle or MI-63, and then subjected to immunoprecipitation with an antibody to MDM2. The
precipitates were then probed by Western blotting using specific antibodies to MDM2 or p53, and densitometry was performed using Image J
software. C. MM1.S cells stably infected with a Lentiviral vector expressing either a control, non-targeted shRNA or an shRNA directed at p53 were
exposed to MI-63 as above, and viability was measured using the WST-1 reagent. D. Human stromal HS-5 cells or MM1.S myeloma cells were
propagated in culture either alone, or co-cultured at a ratio of 20:1, and viability was measured in the presence of MI-63. E. A murine xenograft
myeloma model was developed in NOD/SCID mice, and when tumor volume reached 100 mm3, mice were treated intraperitoneally with 100 mg/kg
MI-219 or vehicle, and tumor volume was monitored three times a week. Vehicle-treated mice experienced a substantial increase in the tumor
burden, while MI-219 induced a significant tumor growth delay, (*p,0.05).
doi:10.1371/journal.pone.0103015.g001
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(Figure 3D) after treatment with MI-63, which has been associated

with autophagy. To obtain additional support for the possibility

that autophagy was being induced, we stained cells with acridine

orange, a hydrophobic dye that accumulates in acidic vesicles such

as lysosomes and autophagic vacuoles. Compared to wt p53

MM1.S and MOLP-8 cells exposed to MI-63, which showed a

slight increase in staining (Figure 4A), mut p53 RPMI 8226 and

U266 cells showed a strong increase in acridine orange staining.

The autophagic cell death program involves input from a number

of genes, including ATG3 and 5, and we therefore performed

qPCR to evaluate their expression. In wt p53 MM1.S and MOLP-

8 cells exposed to MI-63, expression of ATG3 or 5 was unaltered

(Figure 4B), but both were increased in mut p53 RPMI 8226 and

U266 cells. Since autophagy may under some conditions promote

cell survival, we evaluated the impact of MI-63 in the presence of

chloroquine (ChQ), which raises lysosomal pH and inhibits

autophagosome and lysosome fusion, or with 3-methyladenine

(3-MA), an inhibitor of autophagic sequestration. In the context of

wt p53, titrated ChQ slightly enhanced the cytotoxicity of MI-63,

while 3-MA had no effect (Figure 4C). When mut p53 cells were

studied, however, ChQ somewhat protected RPMI 8226 cells

from MI-63, and 3-MA did so in both RPMI 8226 and U266 cells.

Because these pharmacologic inhibitors can under some circum-

stances promote autophagy [47], we prepared RPMI 8226 cells

harboring an shRNA to ATG5 (Figure S7A), and found that the

IC50 to MI-63 was increased from 26.2 mM to 37.8 mM when

ATG5 expression was suppressed (Figure 4D). Also, when the

autophagy regulator Beclin-1 was suppressed (Figure S7B), the

IC50 to MI-63 was again increased from 28.3 mM to 40.9 mM

(Figure 4E). Finally, we evaluated the molecular effects of

pharmacologic inhibitors of autophagy on apoptosis, and found

that co-incubation of MI-63 with either ChQ or 3-MA reduced

LC3 processing (Figure 4F), as expected, and also reduced the

levels of activated caspase-3. Together, these findings show that

MI-63 induces autophagy in mut p53 myeloma models, and

suggests that there is cross-talk between autophagy and apoptosis

in these plasma cells.

MI-63 acts synergistically with other agents
Novel therapeutics for myeloma typically find their greatest

efficacy in combination with standard, already approved agents,

and we therefore sought to determine if MI-63 could show

Figure 2. Molecular mechanisms underlying the action of MI-63. A. Quantitative PCR was performed of selected p53 transcriptional targets
in wild-type cell lines after exposure to MI-63 at the IC50 for 48 hours. Values were normalized to GAPDH as a control (*p,0.005; **p,0.05). B. The
indicated cell lines were treated with MI-63 at its IC50 for 48 hours, and cell cycle analysis was performed after propidium iodide staining. C.
Activation of apoptosis was evaluated after Annexin V staining by flow cytometry in MM1.S and MOLP-8 cells treated with MI-63 for 48 hours. D.
Western blotting of cells treated for 48 hours with MI-63 at the IC50 was performed to detect changes in key downstream targets, with Actin as the
loading control.
doi:10.1371/journal.pone.0103015.g002
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Figure 3. MI-63 is also active against mutant p53 myeloma cell lines. A. Cell viability assays were performed in a panel of mutant p53
myeloma cell lines, including ANBL-6, KAS-6/1, RPMI 8226, U266, and OPM-2 cells after exposure to MI-63 for 48 hours. B. Analysis of cell cycle
distribution was performed in RPMI 8226 and U266 cells exposed to MI-63. C. Induction of apoptosis was evaluated by Annexin V staining and flow
cytometry in RPMI 8226 and U266 cells treated with MI-63 at its IC50 for 48 hours. D. Extracts of RPMI 8226 cells treated with MI-63 were subjected to
Western blotting to detect key intermediates in apoptosis and autophagy. E. The impact of MDM2 suppression on the efficacy of MI-63 was studied
in U266 cells harboring either a control shRNA, or one of two different constructs that suppressed expression of MDM2.
doi:10.1371/journal.pone.0103015.g003
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additive activity with other drugs. In MM1.S and MOLP-8 wt p53

cells, bortezomib alone and MI-63 alone showed single-agent

activity, but the combinations showed additive to greater than

additive effects in reducing myeloma cell viability (Figure S8A).

Also, we tested the activity of a combination of MI-63 with the

immunomodulatory agent lenalidomide, which does have direct

anti-myeloma activity as a single agent in vitro [40]. As was the

case for the combination with bortezomib, MI-63 with lenalido-

mide enhanced the reduction in viability induced by either agent

alone (Figure S8B). Moreover, when MM1.S cells that had

become resistant to lenalidomide [40,41] were exposed to MI-63,

this agent was able to overcome this resistance (Figure S8C).

We also examined a combination of MI-63 with ABT-737, a

BH3 mimetic inhibitor of B-cell lymphoma 2 (Bcl-2), Bcl-xL, and

Bcl-w [48]. In wt p53 MM1.S and MOLP-8 cells, while both MI-

63 and ABT-737 were able to reduce viability, the combination

showed a greater effect than either agent alone (Figure 5A, left

panel). Interestingly, this was also true in mut p53 RPMI 8226 and

U266 cells (Figure 5A, right panel). By flow cytometry, the

combination showed a strong increase in Annexin V staining in

both MOLP-8 (Figure 5B, left panel) and U266 cells (Figure 5B,

right panel), indicating that this was likely due to enhanced type I

cell death, or apoptosis. Consistent with this possibility, Western

blotting revealed increased activation of caspase-3 and cleavage of

PARP in both MOLP-8 (Figure 5C, left panel) and U266 cells

(Figure 5C, right panel).

Finally, we sought to examine the possibility that a combination

of MI-63 and ABT-737 could show activity against primary

patient samples, which were from bone marrow aspirates that

were purified to obtain CD138+ plasma cells. In all four tested

samples (Figure 6, A–D), both MI-63 and ABT-737 showed an

ability to reduce cellular viability as single agents. When

combined, the two drugs both revealed synergistic activity as

measured by an increased reduction in viability compared with

either agent by itself (combination index 0.01, 0.46, 0.53 and 0.15,

respectively). Notably, CD1382 cells were also available from one

patient (Figure 6A), and although some reduction in viability was

seen with MI-63, ABT-737, and the combination, the magnitude

was substantially less than that seen in CD138+ plasma cells,

suggesting that there may be some measure of a therapeutic index.

These data support possible translation to the clinic of the regimen

of an MDM2 inhibitor and a BH3 mimetic.

Discussion

Despite therapeutic advances that have improved the overall

survival of myeloma patients, this plasma cell dyscrasia remains

incurable, and is characterized clinically by multiple relapses,

reduced benefit from subsequent treatments, and the development

of refractory disease [4,5,6,7,8,9]. These facts support the need for

continued research to identify novel targets and treatment

approaches that can be used alone, or in combination with

current standards of care, first in the relapsed and/or refractory

setting, and eventually perhaps as part of initial therapy. The

current data provide further support for the possibility that agents

targeting the MDM2 E3 ubiquitin ligase, such as MI-63, could

form part of our armamentarium against myeloma. This agent

was shown to be active against in vitro and in vivo wt p53

myeloma models through a p53-dependent program (Figure 1)

including PUMA, Bax, p21, and Noxa, leading to cell cycle arrest

and apoptosis (Figure 2). While MI-63 and the Nutlins have a

similar mechanism of action, they differ in that Nutlins bind

MDM2 residues Phe-19, Trp-23, and Leu-26 in the p53

interacting domain, while MI-63 binds these and also Leu-22

[34,49,50]. This suggests the possibility that MI-63 could prove to

be more potent than is the case for the Nutlins. Interestingly,

recent studies from our group showed that resistance mechanisms

were similar for both agents in models of myeloma and mantle cell

lymphoma, including formation of point mutations in the p53

DNA binding and dimerization domains [51].

While the potency of MI-63 was reduced against mut p53

models, cell death could still be induced using ten-fold higher drug

concentrations, which was associated with cell cycle arrest and

type I programmed cell death (Figure 3). Under these conditions,

MDM2 inhibition in a mut p53 background seemed to be

accompanied by activation of autophagy (Figure 4). Since

inhibition of autophagy protected myeloma cells from MI-63, this

at first appeared to suggest that autophagy could be contributing

to cell death [52,53]. However, additional studies revealed that the

pharmacologic approaches which were used to inhibit autophagy

also resulted in a reduction in type I cell death. These findings

therefore argue in favor of cross-talk between these pathways

[52,53], such as perhaps at the level of Beclin-1 and Bcl-2.

Interestingly, wt p53 itself can in some models induce autophagy,

in part through damage-regulated autophagy modulator [54,55],

while in other models degradation of p53 through a pathway

relying on MDM2 [56] induces autophagy. Additional studies will

therefore be needed to determine the mechanism by which

MDM2 inhibition leads to autophagy in a mut p53 background.

Rationally designed combination regimens often show increased

activity against multiple myeloma compared with single agent

approaches, and we were able to show that MI-63 did show

enhanced efficacy when it was added to bortezomib (Figure S8). In

this property, MI-63 is similar to Nutlin-3a, which has previously

been shown to induce synergistic activity with bortezomib [31,32]

against in vitro myeloma models, largely in association with a p53-

mediated cell death program. One difference is that Nutlin-3a was

inhibited by adhesion-mediated drug resistance [31], whereas MI-

63 showed similar activity in the absence or presence of human

bone marrow-derived stromal cells (Figure 1), possibly suggesting

it may be a superior clinical candidate. We were also able for the

first time to show that MDM2 inhibition could act synergistically

in combination with the immunomodulatory agent lenalidomide,

and could also overcome lenalidomide resistance (Figure S8). The

mechanisms of lenalidomide resistance are under active investiga-

tion, and while initial studies showed that mutations of Cereblon

might be responsible [18], sequencing of primary samples has

shown that this likely occurs only in a small minority [57].

Interestingly, while p21 abundance is enhanced by lenalidomide in

drug-sensitive plasma cells, in drug-resistant cells that express low

Figure 4. MI-63 induces autophagy in mutant p53 myeloma models. A. Acridine orange staining and flow cytometry were used to study the
appearance of acidic vacuoles in mutant p53 RPMI 8226 and U266 cells, and wild-type p53 MM1.S and MOLP-8 cells exposed to the IC50 of MI-63 for
48 hours. B. Transcript levels of ATG3 and ATG5 were studied in mutant and wild-type p53 myeloma cells exposed to MI-63 (*p,0.005). C. The
impact of the autophagy inhibitors chloroquine (100 nM) and 3-methyladenine (1 mM) on the activity of MI-63 against mutant and wild-type p53 cell
lines was studied using viability assays (*p,0.005). D. ATG5 expression was suppressed with a Lentiviral shRNA in RPMI 8226 cells, and the effect of
MI-63 was then studied in comparison to control shRNA cells. E. Beclin-1 was depleted with an shRNA, and the median inhibitory concentration of MI-
63 was determined in comparison with a control shRNA. F. Activation of autophagy and apoptosis in mutant p53 myeloma cells treated with MI-63
and/or autophagy inhibitors.
doi:10.1371/journal.pone.0103015.g004
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levels of p21, neither lenalidomide nor pomalidomide substantially

enhance p21 expression [19]. It is therefore tempting to speculate

that it is this restoration of p21 levels by inhibition of MDM2,

leading to transactivation of p21 by p53, that is at the center of the

ability of an MDM2 inhibitor to overcome lenalidomide

resistance, at least in a p53 wt background. If MDM2 inhibitors

are translated to the clinic as part of combination regimens with

proteasome inhibitors or immunomodulatory drugs, attention may

need to be paid to the potential for additive myelosuppression.

This conclusion is based on results from a proof of concept study in

patients with liposarcomas of single-agent RG-7112, an inhibitor

in the Nutlin family, which induced neutropenia and thrombocy-

topenia in 30% and 40%, respectively, of patients [58].

Finally, we sought to determine if the addition of a BH3

mimetic could enhance the activity of an MDM2 inhibitor, in part

with the rationale that the p53-mediated activation of Bax could

Figure 5. MI-63 acts synergistically with ABT-737. A. The combination of MI-63 and ABT-737 was studied in wild-type p53 MM1.S and MOLP-8
cells (left panel), and in mutant RPMI 8226 and U266 cells (right panel). Multiple doses of each drug were used for this experiment, with one
representative condition shown. *p,0.005, ** p,0.05. B. Apoptosis was studied by staining for Annexin V in both wild-type p53 (MOLP-8; left panel)
and mutant p53 (U266; right panel) cells treated with vehicle, MI-63, ABT-737, or the combination. C. Abundance of important intermediates in type I
programmed cell death was studied in MOLP8 and U266 cells by Western blotting.
doi:10.1371/journal.pone.0103015.g005

Figure 6. Combination studies in primary patient samples. A. The combination of MI-63 and ABT-737 was studied against CD138+ primary
plasma cells from a patient with multiple myeloma (left panel), and CD1382 marrow cells (right panel). Note that multiple doses of each drug were
used for this experiment to calculate combination indices, with one representative condition shown. B–D. Additional primary plasma cells isolated
from unique patients were exposed to the combination of MI-63 and ABT-737.
doi:10.1371/journal.pone.0103015.g006
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be potentiated by blocking its interaction with Bcl-2. Consistent

with this possibility, we did find that the combination of MI-63

and ABT-737 induced a greater reduction in cellular viability and

induction of apoptosis than did either agent alone (Figure 5). This

was accompanied by increased conversion of Bax and Bak to their

active pro-apoptotic forms, as judged by conformation-specific

antibodies (results not shown). Interestingly, the benefits of this

combination may at least in part be due to possible off-target

effects of MDM2 inhibitors. Indeed, the Nutlin class of drugs have

been reported to also bind anti-apoptotic Bcl-2 family proteins,

including Bcl-xL and Bcl-2 itself [59,60], though whether this is

also the case for MI-63 is not known. Notably, enhanced activity

was seen even in the mut p53 models, which again seemed to

occur through type I programmed cell death (Figure 5). Thus,

while some combinations based on an MDM2 inhibitor may be

expected to benefit only those patients with wt p53, such as with a

death receptor 5 agonist [61], a regimen of a BH3 mimetic and an

MDM2 inhibitor could benefit patients with either wt or mut p53.

This would be especially important since recent studies with p53-

specific probes and sequencing have suggested that higher rates of

p53 deletion may be present than previously thought [62,63,64],

particularly at the time of relapse [64]. Moreover, p53 deletion

and mutation are universally recognized as poor prognostic

features in myeloma, and approaches that could help such

patients would be very welcome. We are therefore working at

this time to translate such a regimen to the clinic in the relapsed

and/or refractory setting.

Supporting Information

Figure S1 Impact of MI-63 on the interactions between
MDM2 and other proteins. MM1.S cells were treated with

various doses of MI-63 for the indicated times, and cell extracts

were subjected to immunoprecipitation with MDM2 antibodies,

followed by Western blotting with antibodies specific to either p53

or MDM4.

(TIF)

Figure S2 p53 knock down in MM1.S cells. A. Impact of a

Lentiviral-delivered shRNA targeting p53 compared to a control,

non-targeting shRNA on p53 mRNA levels in MM1.S cells (*p,

0.005). B. Western blotting shows the impact of these shRNAs on

p53 protein expression.

(TIF)

Figure S3 Impact of stromal cells on the efficacy of MI-
63 in MOLP-8 cells. The viability of MOLP-8 cells exposed to

MI-63 either alone, or when propagated in co-culture with

human-derived HS-5 stromal cells.

(TIF)

Figure S4 Proteomic studies of wild-type p53 myeloma
cells exposed to MI-63. MM1.S and MOLP-8 cells were

treated with MI-63 at its IC50 for 48 hours, and cell extracts were

subjected to reverse phase protein array analysis. Changes are

shown in selected proteins of interest. Error bars represent

standard deviations of duplicate samples.

(TIF)

Figure S5 Suppression of MDM2 in U266 myeloma
cells. U266 cell clones infected with one of two different shRNA

constructs targeting MDM2 were isolated, and the reduction in

MDM2 mRNA was evaluated by qPCR.

(TIF)

Figure S6 Proteomic studies of RPMI 8226 cells exposed
to MI-63. RPMI 8226 cells were treated with MI-63 at its IC50

for 48 hours, and cell extracts were subjected to reverse phase

protein array analysis. Changes are shown in selected proteins of

interest. Error bars represent standard deviations of duplicate

samples.

(TIF)

Figure S7 Knockdown of ATG5 and Beclin-1. A. Suppres-

sion of ATG5 in RPMI 8226 cells using a Lentiviral shRNA

compared with a non-targeting control documented by Western

blotting. B. Suppression of Beclin-1 in U266 cells using a

Lentiviral shRNA compared with a non-targeting control

documented by Western blotting.

(TIF)

Figure S8 MI-63 augments the activity of other ap-
proved anti-myeloma agents. A. MI-63 was combined with

bortezomib in wild-type p53 MM1.S (left panel) and MOLP-8

(right panel) cells. Multiple doses of each drug were used with one

representative condition shown (*p,0.005). B. MI-63 was

combined with lenalidomide in wild-type p53 MM1.S (left panel)

and MOLP-8 (right panel) cells. Multiple doses of each drug were

used with one representative condition shown (*p,0.005). C. Cell

viability was evaluated in lenalidomide-resistant MM1.S cells

exposed to MI-63 for 48 hours, and compared to the efficacy of

lenalidomide itself.

(TIF)
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