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Abstract
Background: The local environment of single nucleotide polymorphisms (SNPs) contains
abundant genetic information for the study of mechanisms of mutation, genome evolution, and
causes of diseases. Recent studies revealed that neighboring-nucleotide biases on SNPs were strong
and the genome-wide bias patterns could be represented by a small subset of the total SNPs. It
remains unsolved for the estimation of the effective SNP size, the number of SNPs that are
sufficient to represent the bias patterns observed from the whole SNP data.

Results: To estimate the effective SNP size, we developed a novel statistical method, SNPKS,
which considers both the statistical and biological significances. SNPKS consists of two major steps:
to obtain an initial effective size by the Kolmogorov-Smirnov test (KS test) and to find an
intermediate effective size by interval evaluation. The SNPKS algorithm was implemented in
computer programs and applied to the real SNP data. The effective SNP size was estimated to be
38,200, 39,300, 38,000, and 38,700 in the human, chimpanzee, dog, and mouse genomes,
respectively, and 39,100, 39,600, 39,200, and 42,200 in human intergenic, genic, intronic, and CpG
island regions, respectively.

Conclusion: SNPKS is the first statistical method to estimate the effective SNP size. It runs
efficiently and greatly outperforms the algorithm implemented in SNPNB. The application of
SNPKS to the real SNP data revealed the similar small effective SNP size (38,000 – 42,200) in the
human, chimpanzee, dog, and mouse genomes as well as in human genomic regions. The findings
suggest strong influence of genetic factors across vertebrate genomes.

Background
Single nucleotide polymorphisms (SNPs) are the most
abundant genetic variation in vertebrate genomes. They
have been important tools in many biological fields,
including mutation mechanisms, genome evolution, dis-
ease studies, pharmacogenomics, and fine mapping [1-4].
Strong demands of SNP data and rapid technology
advancements helped us to have observed an exponential

rate in the discovery of SNPs during the past decade. As of
October 2006, the largest public SNP database, dbSNP,
deposited more than 87 million submitted SNPs from 35
organisms; among them, more than 50 million SNPs have
their references to the genomes [5]. Many more SNPs are
to be identified in the near future.
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Mutation at the nucleotide level does not occur randomly.
Recent studies of mutational mechanisms revealed that
the influence of neighboring nucleotides on SNPs was
strong in the human and mouse genomes [4,6,7]. Specifi-
cally, strong biases relative to the genome average were
observed at the two adjacent sites of the SNPs and small
biases could extend farther, i.e., as far as 200 nucleotides
at each flanking side. Further, the bias patterns varied
among the SNP types, e.g., the extent of the biases for tran-
sition SNPs (A/G and C/T) was much stronger than those
for transversion SNPs (A/C, G/T, A/T, and C/G). Impor-
tantly, the bias patterns observed in the whole genome
could be sufficiently represented by only a small subset of
SNPs randomly sampled from the genome-wide data [8].
The effective SNP size, defined as the minimum number
of the SNPs that can essentially represent the bias patterns
of the whole SNPs, was roughly estimated to be 30,000 in
the human and mouse genomes [8]. Because the SNPs
identified in the today's genomes reflect the combinatory
evolutionary processes such as methylated CpG mutation
hotspots, high transition rate, selection on functional ele-
ments, and error-prone DNA replication and repair, a
small effective SNP size suggests the strong influence of
one or several genetic factors, especially the CpG effects in
vertebrate genomes [9,10].

So far, how to efficiently estimate the effective SNP size
remains unsolved. The SNPNB, an user-friendly applica-
tion implemented by Java and Perl, can assist the user to
evaluate and obtain a number which is close to the effec-
tive SNP size [8]. However, there are three major limita-
tions. First, because SNPNB is based on an empirical re-
sampling approach, it becomes impractical to find the
effective SNP size when the number of SNPs is very large,
which is always true for a genome-wide or chromosome-
wide analysis. Second, it is a challenging task on how to
define that the bias pattern observed from one data set is
(nearly) the same as that from another set. This is because
we need to combine four nucleotides at all sites on the 5'
side and 3' side of the SNPs. Third, there is a statistical
problem. The null hypothesis is that there is no neighbor-
ing nucleotide bias of SNPs in the genome, or the frequen-
cies of nucleotides at SNP neighboring sites are the same
as the average nucleotide frequencies in the genome
sequences. Therefore, the observed neighboring nucle-
otide biases (%) should be compared to the expected
value, which is 0 for each nucleotide at each site. How-
ever, a hypothesis test with a very large number of SNPs
may not lead to a meaningful conclusion. For example,
for the 8,043,656 human SNPs tested in SNPNB [8], when
the frequency difference is as low as 0.00028 (0.028%) for
nucleotide C, the Z test would be significant at the 5% sig-
nificance level (α = 0.05). As a result, the null hypothesis
is rejected. Obviously, such a small difference is not bio-
logically meaningful or significant. Here, we propose an

integrated statistical method to estimate the effective SNP
size. This method (SNPKS) considers both the biological
significance and the statistical significance so that it
avoids the problem of leading to an unreasonably large
effective SNP size when only the statistical significance is
considered [11]. We also developed an efficient pipeline
to iteratively evaluate the intermediate values for the effec-
tive size. SNPKS consists of two steps: (1) evaluation of an
initial effective size; and (2) iterative tests of the initial
effective size by interval evaluation.

Results
KS test and interval evaluation
To estimate the effective SNP size, we designed and inte-
grated a two-step procedure in our system (Figure 1). In
the first step, we apply the Kolmogorov-Smirnov test (KS
test) [11] to obtain an initial effective SNP size. Usually,
the KS test is used to evaluate whether a sample is from a
population based on a specific distribution by comparing
the corresponding cumulative frequencies. Here we esti-
mate an initial effective SNP size by comparing the cumu-
lative frequencies from the whole SNP data with those
from a sample SNP data.

For the whole SNP data with size N, we randomly gener-
ate a sub-sample of SNPs with size n0 (n0<<N). First, we
calculate the frequency of each nucleotide at each neigh-
boring site in the whole SNP data and sample SNP data,
respectively. According to our previous analyses [6,7], we
examine 20 neighboring sites immediately adjacent to
each SNP: 10 sites at the 5' side and 10 sites at the 3' side,
because these 20 sites have the largest neighboring-nucle-
otide biases. Figure 2 illustrates the polymorphic site of a
SNP and its 5' and 3' flanking sequences. Then, we com-
pare the cumulative relative frequency of each nucleotide
in the neighboring sequences. Let fi,j and gi,j be the fre-
quency of sample SNP data and whole SNP data, respec-
tively, and Fi,j and Gi,j be cumulative frequency of sample
SNPs and whole SNPs, respectively. Here i denotes one of
the four nucleotides (A, C, G, and T) and j denotes a
neighboring site in the SNP flanking sequences (-10 to -1
at the 5' side and +1 to +10 at the 3' side). The fi,j and Fi,j
of the sample SNPs are defined by:

The gi,j and Gi,j are defined similarly except for that N, the
size of the whole SNP data, instead of n0 is used. The max-
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Flowchart of the SNPKSFigure 1
Flowchart of the SNPKS. This figure illustrates the integrated two-step procedures in the SNPKS method. KS test: Kol-
mogorov-Smirnov test; C.I.: confidence interval; Ne0: intermediate effective SNP size; Ne: effective SNP size.
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imum difference of cumulative frequency for each nucle-
otide is defined by:

Next, we compare the maximum difference of cumulative
relative frequency of each nucleotide with the threshold
value of biological significance instead of test statistic
given by the KS test, because the tolerable difference in the
KS test is too generous to find a reasonable sample size
[11]. Here we specify 0.2% as a biological significance
threshold value because when the frequency difference is
< 0.2%, it appears that the biases are likely due to the sto-
chastic variance and they are not biologically meaningful
based on our previous studies [6-8]. When the Di fails to
be less than 0.2%, the size of the sample set is increased
by 10,000. The procedure above will run it again until the
criterion of Di < 0.2% is satisfied (Figure 1). This step gives
out an initial effective size (n) for the next procedure.

After getting an initial effective SNP size n, the second step
is to test whether the bias patterns obtained from the sam-
ple with this size can effectively represent the bias patterns
observed from the whole SNP data. This is performed by
an interval evaluation using 30 different SNP subsets with
size n randomly sampled from the whole SNP dataset. We
choose 30 different subsets because when the sample size

approaches 30, we can safely assume the distribution of
the bias patterns to be normal for inference purpose by
central limit theorem. For each nucleotide at each neigh-
boring site, we calculate the bias relative to the genome
sequence average (e.g., A: 29.55%, C: 20.44%, G: 20.46%,
and T: 29.54% in the human genome) in each of the 30

sample sets, and then get its average bias ( ). When the

difference between the average bias in the 30 sample sets

( ) and the corresponding bias in the whole SNP data

(Bi,j) is less than its standard deviation for all nucleotides

at all neighboring sites, an intermediate effective SNP size
(Ne0) is found. That is, the proposed method iteratively

evaluates the following difference:

|Bi,j - | <si,j, ∀ i, j  (4)

where si,j is the standard deviation from the 30 bias pat-
terns. Otherwise, we increase the sample size by 10,000
and run this step again. The procedure runs iteratively
until the criterion is satisfied.

The two steps above run repetitively 100 times. This leads
to 100 Ne0 estimates. The effective SNP size is thus the
mean of these 100 estimates.

D F Gi
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Annotation of a SNP and its flanking sitesFigure 2
Annotation of a SNP and its flanking sites. SNPKS uses ten sites immediately adjacent to the polymorphic site (A/G) at 
the 5' side and 3' side. A minus sign indicates the flanking site of the 5' side and a positive sign indicates the 3' side.
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Implementation
To implement the SNPKS method, we developed compu-
ter programs in C and Perl. In the SNPKS algorithm, we
need to regularly generate random numbers and then
extract random SNPs from the whole SNP dataset based
on the generated random numbers. This routine is com-
putationally intensive; therefore, we wrote a computer
program in C. The KS test and interval estimation were
implemented in a Perl script, which calls the C program
automatically. The application has been tested on both
Microsoft Windows and Linux operating systems. The
programs, instructions, and test data are available at the
website [12].

Applications
We applied SNPKS to estimate the effective SNP size in
four vertebrate genomes: human, chimpanzee, dog, and
mouse. The genome-wide SNP data were retrieved from
the dbSNP database of the National Center for Biotech-
nology Information (NCBI) (see Methods). The number
of the test SNPs are shown in Table 1. Here we describe the
procedures using dog SNPs because there is no previous
investigation of the point mutation patterns using SNPs in
the dog genome and also our analysis indicated that the
neighboring-nucleotide biases were strongest among
these four genomes. We started a random sample size
10,000 (n0) and run the SNPKS programs iteratively. We
got an initial effective size (n) 38,000. Then, we took 30
random subsets with size 38,000 and performed an inter-
val evaluation. As shown in Figure 3, for all four nucle-
otides at all 20 neighboring sites, the intervals obtained
from the 30 samples covered the frequencies observed
from the whole dog SNPs. Table S1 (see Additional file 1)
shows the biases relative to the average nucleotide fre-
quencies in dog genome for each neighboring site from
whole dog SNPs and from 30 random sample subsets
with size 38,000. It also includes the information of
standard deviation.

The effective SNP size was estimated to be 38,200 ± 2,500,
39,300 ± 2,100, 38,000 ± 2,300, and 38,700 ± 2,300 for
the human, chimpanzee, dog, and mouse genomes,
respectively. The 95% confidence intervals were in a nar-
row range in these four genomes (Table 1). Overall, the
effective SNP size (1) is similar in these four genomes, and
(2) represents only a small proportion of the genome-
wide SNP data (N). The comparative results suggest strong
genetic influences such as CpG effects across vertebrate
genomes [4,13,14].

We next estimated the effective SNP size for the specific
genomic regions in the human genome. We used SNPs in
intergenic regions, genes, introns, and CpG islands and
the average nucleotide frequencies in the corresponding
genomic regions. We did not test in exons or untranslated
regions (UTRs) because the number of SNPs mapped in
exons or UTRs was not sufficient. Although the numbers
of SNPs and sequence compositions in the genomic
regions varied greatly, their effective SNP sizes were esti-
mated to be similar: 39,100 ± 2,300 (intergenic regions),
39,600 ± 2,200 (genes), 39,200 ± 2,200 (introns), and
42,200 ± 2,700 (CpG islands). The effective SNP size in
the CpG islands is the largest. This reflects the lack of
methylation and suppression of 5mC deamination in CpG
islands [15].

Performance comparison
We compared the performance of our method versus the
empirical iterative procedures in SNPNB [8]. We tested on
a Dell Workstation (CPU 2 × 3.0 GHz, Memory 4 GB, Red-
hat Linux Enterprise WS 3.0) using human and mouse
SNP data. The results indicated that SNPKS greatly outper-
formed SNPNB. For human SNP data, SNPNB elapsed
~28 hours by a single round of evaluation and ~151 hours
by 10 rounds. This compares to only ~7.5 hours in
SNPKS, which doesn't require the recursive rounds to esti-
mate the effective SNP size (Table 2). Assuming that

Table 1: Estimation of the effective SNP size

Total # of test SNPs Effective SNP size (Ne) 95% C.I.

Human 5,200,425 38,200 35,700 – 40,700
Chimpanzee 1,470,501 39,300 37,200 – 41,400
Dog 2,690,084 38,000 35,700 – 40,300
Mouse (Build 126) 7,832,159 38,700 36,400 – 41,000
Mouse (Build 123) 376,146 39,100 36,800 – 41,400

Human HapMap phase I 861,498 38,400 35,800 – 41,000
Human HapMap phase II 2,435,362 39,100 36,900 – 41,300

Human intergenic regiona 2,422,730 39,100 36,800 – 41,400
Human genea 744,987 39,600 37,400 – 41,800
Human introna 889,956 39,200 37,000 – 41,400
Human CpG islanda 95,561 42,200 39,500 – 44,900

aThe average nucleotide frequencies in the genomic regions were used.
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SNPNB requires 10 rounds of evaluation to find a number
close to the effective SNP size, it required 20-fold more
computation time for human SNP data and 35-fold more
time for mouse SNP data than SNPKS (Table 2).

Discussion
The effective SNP size in this study is defined as the mini-
mum number of SNPs that are sufficient to represent the
bias patterns observed from the whole SNP data. It meas-
ures the sequence context patterns observed in the SNPs.
To our knowledge, this term has not been used in any
other report except for our previous study [8]. This term is
similar to the effective population size or effective sample
size, which has been widely used in the population genet-
ics or disease study. For example, the effective population
size (Ne) is used to measure the size of an idealized popu-
lation having the same effect of random sampling on gene

frequency as that in the actual population. It can be esti-
mated by Ne = θ/4 µ, where θ is the population parameter
and µis the mutation rate per sequence per generation
[16]. One example of the effective sample size in SNP
analysis (named as the SNP-effective sample size) is to
estimate the number of sequences in an alignment given
the observed number of SNPs in the sequences [17].

It is important to know how many SNPs are sufficient to
represent the bias patterns observed from the whole SNP
data. First, this evaluates whether the observed patterns
are representative or random in the genome [18,19]. The
early studies of mutation pattern often revealed inconsist-
ent results because of their limited size of the data, such as
the influence of the neighboring nucleotides on SNPs
[4,6,20], mutation direction (e.g., G/C → A/T vs. A/T →
G/C) [21-24], and methylation-dependent transition

Neighboring-nucleotide bias patterns for dog SNPs and interval evaluationFigure 3
Neighboring-nucleotide bias patterns for dog SNPs and interval evaluation. The color lines show the neighboring-
nucleotide biases relative to the dog genome sequence average using 2,690,084 dog SNPs. For 30 random sample sets with size 

38,000, we obtained their average bias ( ) and standard deviation (si,j) for each nucleotide at each position. The vertical bars 

represents the interval  ± si,j. The figure shows that the intervals at all positions cover the corresponding biases observed 

from the whole dog SNPs. On the x axis, a minus sign indicates the 5' side and a positive sign indicates the 3' side of the SNPs.
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rates [25,26]. To draw a firm conclusion, such an evalua-
tion is required. Second, a small effective size means high
confidence of the observed biases and indicates some
genetic factors (e.g., CpG effects) that contribute signifi-
cantly to the biases. Further investigations of these factors
will help us understand how mutation occurs in the spe-
cific sequence environment and has been maintained or
survived during the evolutionary paths. Third, compara-
tive analysis of the bias patterns and effective SNP size
should reveal the mutability of the sequences in the differ-
ent genomic regions among genomes, which is important
for the study of genome evolution. Currently, more than
300 genome sequences have been completed and availa-
ble in NCBI. The comparative genomics is emerging as an
important research field. The comparative analysis of SNP
data should provide us many insights on the mutability of
sequence, genome sequence evolution, genetic drift, and
natural selection among different genomes.

In this study, our analysis revealed the similar bias pat-
terns observed in the chimpanzee, dog, human, and
mouse genomes. However, the extent of the neighboring-
nucleotide biases was different among these four
genomes: the strongest in the dog genome and the weak-
est in the mouse genome (Figure 3, other data not
shown). For example, the bias for nucleotide G at the 3'
immediate adjacent site was +4.89% (human), +4.80%
(chimpanzee), +2.76% (mouse), and +6.21% (dog) rela-
tive to the corresponding genome average, respectively.
Surprisingly, the effective sizes of the SNPs in these four
genomes were similar (Table 1) and not statistically signif-
icantly different (ANOVA P = 0.83). While this may sug-
gest the strong influence of genetic factors in these
genomes, further investigations on these factors and SNP
ascertainment biases are warranted. Note that, because the
size was increased by 10,000 each time in the iterative
procedure in SNPKS, it is unlikely the method led to the
similar effective sizes. Further, the effective sizes of the
SNPs among the human genomic regions were overall

slightly higher than the genome-wide whole SNPs (Table
1). The effective SNP size was the largest in the CpG
islands and smallest in the intergenic and intronic
regions. This is consistent with the previous findings of
the strong CpG effect in the genome except for the CpG
islands [13,15] and the possible selection in the CpG
islands [27]. Further simulation analysis may figure out
how each genetic factor impacts on the effective SNP size.
Overall, the sizes obtained in this study were in a small
range, 38,000 – 42,200, suggesting that the effective SNP
size in vertebrate genomes and their genomic regions is
remarkably similar and close to 40,000. This effective size
may have three applications. First, it provides a new met-
ric to assess genetic variability in other studies or other
genomes. Second, millions of SNPs are to be discovered in
many vertebrate genomes in the near future. The effective
SNP size may be found larger or smaller than 40,000.
Then, comparative genomics studies may uncover one or
some genetic factors (e.g., mutability of nucleotides, CpG
effect, natural selection, biased gene conversion, recombi-
nation, biased DNA mismatch repair) contribute to the
difference. Third, it may be used to compare the mutation
pattern in a variety of specific datasets, such as disease
causing mutations, SNPs with rare allele frequencies or
common allele frequencies, different SNP types (e.g., C/T
polymorphisms, C → T changes), SNPs at the biased
codons or at the fourfold degenerate sites, mutation direc-
tion asymmetry at two DNA strands (e.g., A → G vs. T →
C).

To examine whether the above estimates of the effective
SNP size were reliable, we performed some additional
analysis using different datasets. First, SNP discovery and
sampling is often subject to ascertainment bias [28]. Some
SNPs in the dbSNP database were identified from a very
limited number of sequences, even from only two
sequences. To examine whether such an ascertainment
bias has an effect on the estimation of the effective SNP
size, we used HapMap phase I SNPs, which had strong

Table 2: Performance comparison with SNPNB

SNP data Processa SNPNB [8] SNPKS

1 round 5 rounds 10 rounds

Human Preprocessing data 2 h 50 m 25 s 2 h 24 m 49 s
Estimation of Ne 24 h 56 m 1 s 82 h 48 m 1 s 147 h 39 m 40 s 5 h 7 m 35 s
Total elapsed time 27 h 46 m 26 s 85 h 38 m 26 s 151 h 8 m 56 s 7 h 32 m 24 s

Mouse (Build 123) Preprocessing data 0 h 2 m 51 s 0 h 2 m 52 s
Estimation of Ne 7 h 27 m 55 s 37 h 53 m 53 s 75 h 18 m 28 s 2 h 4 m 50 s
Total elapsed time 7 h 30 m 46 s 37 h 56 m 44 s 75 h 21 m 19 s 2 h 7 m 42 s

aThe tests were performed in a Linux workstation (CPU 2 × 3.0 GHz, memory 4 GB).



BMC Genomics 2006, 7:329 http://www.biomedcentral.com/1471-2164/7/329

Page 8 of 10
(page number not for citation purposes)

ascertainment bias, and phase II SNPs, which had less
sampling ascertainment bias [2]. The effective SNP size
was estimated to be similar: 38,400 ± 2,600 for the
861,498 phase I SNPs and 39,100 ± 2,200 for the
2,435,362 phase II SNPs (Table 1). Second, we examined
whether a random subset of the total SNPs can have the
similar effective size as the total SNPs. We generated 9 ran-
dom subsets from the human SNPs, with their sizes rang-
ing from 1.0 to 5.0 million. The effective SNP sizes of
these 9 subsets were within a range of 36,200 to 39,800
(Table 3) and similar to that (38,200) of the total human
SNPs. Third, we compared the effective sizes of two sets of
SNPs in the mouse genome: 376,146 SNPs (Build 123)
and 7,832,159 (Build 126). Again, the effective sizes were
similar (Table 1). These results suggest that the estimation
of effective SNP size is less impacted by the ascertainment
biases and sample size, thus, is robust.

It is difficult to evaluate whether one bias pattern is statis-
tically the same as another because it needs to compare
each of the four nucleotides at each flanking site of SNPs.
If we consider 10 neighboring sites at each flanking side of
SNPs, we will run and compare 80 multiple statistical
tests. It is hard to control type I error (α). If we apply the
Bonferroni corrections for 80 multiple comparison tests,
we have the significance level α/80 for each test [29]. That
means the value of test statistic is too large to lead an
unreasonable effective size. Previously, a re-sampling
algorithm was implemented to evaluate the effective SNP
size [8]. That algorithm is based on an empirical approach
and is computationally intensive even with a few rounds
of re-sampling when the number of SNPs is large. Moreo-
ver, its algorithm can only evaluate a number which is
close to the effective SNP size. The SNPKS method pro-
posed in this study first applies the KS test to obtain an ini-
tial effective SNP size. Instead of a usual statistical
approach, the biological tolerable difference (i.e., 0.2%) is
used [11]. This improvement seems robust because the
patterns from the sample with size Ne are essentially the

same as those from the whole SNP data by our visual
examination (Figure 3). However, SNPKS is still heuristic.
While it should yield adequate approximation of the
effective SNP size for practical use, there is no guarantee
on finding the absolute minimum effective SNP size.

Conclusion
We proposed an integrated statistical method (SNPKS) to
estimate the effective SNP size. SNPKS consists of two
major steps: evaluation of an initial effective size and iter-
ative tests of the size by interval evaluation. SNPKS con-
siders both the biological significance and the statistical
significance. SNPKS is the first method to estimate the
effective size based on statistical tests and greatly outper-
forms SNPNB. The application of SNPKS to real SNP data
in the human, chimpanzee, dog, and mouse genomes
revealed the similar small effective SNP size (i.e., 38,000
– 42,200) in these four genomes and in human genomic
regions, suggesting strong influence of genetic factors
across vertebrate genomes.

Methods
Data preparation
We downloaded SNPs in four vertebrate genomes (chim-
panzee, dog, human, and mouse) from the dbSNP data-
base [5]. We retrieved 10,430,753 human SNPs,
1,470,601 chimpanzee SNPs, and 3,023,305 dog SNPs
from the Build 125. We retrieved 499,051 mouse SNPs
from the Build 123 because we found that more than 1
million SNPs that were newly deposited in the Build 125
were from Perlegen, Inc.. Our analysis indicated that these
SNPs were distributed mainly on three chromosomes (2,
4, and 11), which have higher GC content than the mouse
genome average. Because we are limited to apply our
method to the bias patterns in the whole genome in this
analysis, these skewed data would influence the interpre-
tation of the results [7]. When we prepared the manu-
script, the dbSNP database released the Build 126, which
increased the number of mouse SNPs to 8,274,228. There-
fore, we downloaded them for our analysis. We down-
loaded HapMap SNPs from the International HapMap
Project web site [30], including 1,156,867 Phase I SNPs
and 3,395,857 Phase II SNPs.

We selected only those SNPs that were biallelic, mapped
in the non-repetitive sequences, and at least 20 nucle-
otides long at each side of flanking sequences. A SNP was
assigned in the non-repetitive sequences if the 20 nucle-
otides at each side of the SNP did not overlap any repeats.
A total of 5,200,425 (human), 1,470,501 (chimpanzee),
2,690,084 (dog), 7,832,159 (mouse Build 126), 376,146
(mouse Build 123), 861,498 (HapMap phase I), and
2,435,362 (HapMap phase II) SNPs were extracted after
this data process (Table 1). We used these SNPs for SNPKS
analysis in this study and named them test SNPs.

Table 3: Estimation of the effective SNP size in random subsets 
of human SNPs

Sample size Effective SNP size (Ne) 95% C.I.

1.0 × 106 37,000 34,700 – 39,300
1.5 × 106 39,600 37,200 – 42,000
2.0 × 106 38,600 36,000 – 41,200
2.5 × 106 38,100 35,800 – 40,400
3.0 × 106 36,200 33,700 – 38,700
3.5 × 106 38,600 36,500 – 40,700
4.0 × 106 37,300 35,000 – 39,600
4.5 × 106 39,200 36,900 – 41,500
5.0 × 106 39,800 37,500 – 42,100

The effective SNP sizes of these 9 subsets are not statistically 
significantly different (ANOVA, P = 0.40).
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We next identified SNPs in human genomic regions using
the procedures described in Jiang and Zhao [21]. First, the
SNPs in human intergenic, genic, and intronic regions
were identified by comparing the SNP locations in the
assembled genomic sequences with the coordinates of
intergenic regions, genes, and introns. We retrieved the
coordinates of each genomic region (e.g., intron) from the
ENSEMBL database (version 32.35e, released in July
2005) [31]. We only included the known genic, intronic,
and intergenic regions and excluded any genomic region
that is predicted or possibly overlapped with another
genomic region (e.g., alternative transcripts). We also
excluded those SNPs that were not uniquely mapped in
the human genome. We identified 2,422,730, 744,987,
and 889,956 SNPs in the known intergenic, genic, and
intronic regions, respectively (Table 1). Second, we iden-
tified SNPs in the CpG islands. CpG islands were identi-
fied using the CpG island searching program (CpGi130)
[32]. We used stringent search criteria for GC content ≥
55%, ObsCpG/ExpCpG ≥ 0.65, and length ≥ 500 bp to
screen CpG islands in the human genome sequences. The
criteria above can effectively exclude the universal Alu
repeats, which typically have a sequence length of 300 bp,
GC content of 53%, and ObsCpG/ExpCpG ratio of 0.62
[33,34]. We identified the SNPs in the CpG islands by
matching the coordinates of the SNPs with those of the
CpG islands in the reference sequences. Again, we
excluded the SNPs that were not uniquely mapped in the
human genome. A total of 95,561 SNPs were identified in
the human CpG islands.
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