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RESEARCH ARTICLE Open Access

Detection of horizontal transfer of individual
genes by anomalous oligomer frequencies
Jeff Elhai1*, Hailan Liu2 and Arnaud Taton1,3

Abstract

Background: Understanding the history of life requires that we understand the transfer of genetic material across
phylogenetic boundaries. Detecting genes that were acquired by means other than vertical descent is a basic step
in that process. Detection by discordant phylogenies is computationally expensive and not always definitive. Many
have used easily computed compositional features as an alternative procedure. However, different compositional
methods produce different predictions, and the effectiveness of any method is not well established.

Results: The ability of octamer frequency comparisons to detect genes artificially seeded in cyanobacterial
genomes was markedly increased by using as a training set those genes that are highly conserved over all bacteria.
Using a subset of octamer frequencies in such tests also increased effectiveness, but this depended on the specific
target genome and the source of the contaminating genes. The presence of high frequency octamers and the GC
content of the contaminating genes were important considerations. A method comprising best practices from
these tests was devised, the Core Gene Similarity (CGS) method, and it performed better than simple octamer
frequency analysis, codon bias, or GC contrasts in detecting seeded genes or naturally occurring transposons. From
a comparison of predictions with phylogenetic trees, it appears that the effectiveness of the method is confined to
horizontal transfer events that have occurred recently in evolutionary time.

Conclusions: The CGS method may be an improvement over existing surrogate methods to detect genes of
foreign origin.

Background
A significant fraction of genes of many organisms appears
to have arisen not vertically, by lineal descent from ancient
ancestors of the organisms, but rather horizontally, by
acquisition from outside the line [1,2]. Recognition of
those genes acquired by horizontal transfer is necessary to
reconstruct the evolutionary events that shape genomes
and is useful in understanding the mechanisms by which
that shaping occurs [1,3,4].
Horizontal transfer may be viewed conceptually as a

discordance between the phylogeny of a gene and a
reference phylogeny of the cell that contains it, and so
the analysis of phylogenetic trees would seem to be a
natural tool to detect transfer events [5,6]. The construc-
tion of informative trees, however, may be computation-
ally intensive and require sequence information from

related species that is often not available. Furthermore,
the analysis of trees is by no means straightforward [7,8].
Several surrogate methods have been put forth to iden-

tify alien genes in a genome, using the sequence character-
istics of the genes rather than phylogenetic information.
Specific genes of putative alien origin have been identified
through unusual G +C content [9], codon usage [10,11], or
G +C content at position 1 and/or 3 within codons [12].
Compositional contrasts, measured through frequencies of
longer oligonucleotides or high order Markov models, have
been used to predict horizontal transfer [13-17], with
oligonucleotides as long as eight or nine found to be more
effective than shorter oligonucleotides [13,16].
All of these methods share a family resemblance: a

norm is established for a sequence characteristic, and
genes or genomic regions are sought that deviate from
the norm. For example, Tsirigos and Rigoutsos (2005)
[16] determined the frequencies of all octanucleotides in
a given genome and then compared these frequencies to
those determined for a specific gene, using statistical
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tests to assess whether the deviation from the first set of
frequencies was significant. A few critical components of
such tests are evident: The choice of the characteristic,
the choice of the norm, and the choice of how to deter-
mine significance.
It is important to note that many of these methods have

produced strikingly different predictions as to the extent of
horizontal transfer [18] and the specific genes predicted to
be alien [6], possibly because they are sensitive to different
ages of transfer events [19,20] or because they are not all
reliable predictors of evolutionary events. Most applica-
tions of these methods use the entire genome or the set of
all genes within it as a training set, but this practice taints
the training set with the foreign DNA and genes that are
sought [21].
We have developed a method to detect horizontally

transferred genes that seeks to maximize the signal to noise
ratio in oligonucleotide contrasts by limiting the training
set to conserved core genes [22], thereby (by hypothesis)
removing foreign genes. At the same time, we considered
that the paucity of genus-associated restriction sites in
many genomes [23,24] and the rapidity with which genes
encoding restriction enzymes are gained and lost in organ-
isms [25] might point to underrepresented oligonucleotides
as a source of a genome signature that changes rapidly over
evolutionary time. We therefore initially focused on this
subset, hoping to enhance the organism-specific signal.

Results
Method of evaluation
A method intended to detect horizontal gene transfer may
fail on either of two counts: a failure to detect a genuinely
foreign gene (false negative) or an erroneous claim that a
genuinely native gene is foreign (false positive). To test for
both possibilities, we assessed methods using two sets of
genes, those artificially introduced into the genome from a
single foreign source (the test-foreign set) and those within
the genome that were deemed provisionally to be genuinely
native (the test-native set). The latter were identified as
those genes having orthologs in all considered cyanobac-
teria (after removing the core genes, i.e. the fraction used to
construct the reference frequency set, as described later).
We chose to focus primarily on cyanobacterial genomes,

because cyanobacteria constitute a broad taxon with a
large number of fully sequenced genomes, and because a
tool exists, CyanoBIKE [26], that greatly facilitates analysis
of their genomes. With genomes from organisms of vary-
ing phylogenetic distance from each other (Figure 1 and
Additional file 1), we were able to assess the effect of
distance on the ability of different tools to pick out foreign
genes.
The goal of any method is to score genes in such a

way as to maximize the separation between native genes
and genes of foreign origin. Figure 2 shows examples of

the distribution of scores for the four methods consid-
ered: G + C frequency (GC), codon bias [11], octanucleo-
tide frequency (W8, as described above and in reference
16), and Core Gene Similarity (CGS, described below).
We define here discrimination as the difference between
the fraction of true positives (estimated by the fraction of
the test-foreign set predicted to be foreign at a given
threshold) minus the fraction of false-positives (estimated
by the fraction of the test-native set predicted to be foreign
at the same threshold). The decision of where to place a
threshold value is ultimately a matter of choice and will be
discussed later. For testing purposes, we determined the
maximal discrimination, defined as the discrimination at
the threshold value that maximizes the difference between
the detection of test-foreign and test-native genes. This is
equivalent to finding the x-value that produces the max-
imum area under the curve, as shown in Figure 2.

Tests of assumptions
The motivation behind this work stems from two assump-
tions. The first is that methods that compare the character-
istics of individual genes to those derived from an entire
genome will suffer because the genome (by hypothesis) is
contaminated by genes of foreign origin. The second as-
sumption is that foreign genes will be more easily discerned
if oligonucleotide frequency comparisons are confined to
those frequencies that are the most informative. Including
other frequencies in the analysis will only reduce the signal
to noise ratio. Each assumption was tested under controlled
albeit artificial conditions.
To determine the effect on the methods by contamin-

ation of a genome by foreign genes, the genome of
Synechocystis PCC 6803 (Syn; see Figure 1 for abbrevia-
tions) was seeded with varying numbers of genes from
two organisms, One organism, Prochlorococcus sp. MED4
(Pmm), was chosen because it is evolutionarily distant
from Syn and has a very different GC content (31%
compared to 47%), and a second, Thermosynechococcus
elongatus BP1 (Tel), was chosen as one that is more similar
to Syn with respect to GC fraction (though still phylogenet-
ically very distant) and transposon frequency (Figure 1) and
to the incidence of a highly iterated palindrome (HIP1)
sequence GCGATCC [41]. HIP1 sequences are greatly
enriched in the genomes of most cyanobacteria except those
of small marine Synechococcus and Prochlorococcus (Group
2 in Figure 1 and Elhai, unpublished results). Figure 3 shows
that as the fraction of contaminating Pmm genes increased
to 20%, the discriminating power of the W8 method
dropped to zero, consistent with an earlier, more limited test
[16]. Maximal discrimination by the GC% method was less
affected, and maximal discrimination by codon bias was
hardly affected at all. Contamination by Tel genes had a
much lesser effect on all three methods.
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Confining the range of oligonucleotide frequencies
considered also had a striking effect on the results of the
W8 method but not in the way we had anticipated. The
W8 method was modified so that its set of reference
octamers was taken from the lowest N percent of octa-
meric oligonucleotides frequencies, with N varying from
10 to the usual 100. We tested 116 donor/recipient
pairs, 20 in detail, and representative types of samples
are shown in Figure 4. The manner in which maximal
discrimination responded to varying the frequency slice
was found to be quite sensitive to the presence or ab-
sence in the donor and recipient genomes of HIP1
sequences. When a HIP1-rich genome was used to con-
taminate another HIP1-rich genome, the maximal dis-
crimination was little affected by the fraction of
oligonucleotides used in the reference set, except for a
large drop in discrimination when the 20% most overre-
presented oligonucleotides were included (Figure 4A).
Less predictably, high-GC, HIP1-poor genomes contami-

nated with high-GC genes sometimes increased maximal
discrimination as the frequency width increased, illustrated
in Figure 4B (lower curves), while the maximal discrimin-
ation values of most other donor/recipient pairs were only

modestly affected by the choice of frequency width (upper
curves). Considering the overwhelming influence of HIP1
frequency on the efficacy of omitting high frequency
oligonucleotides from the reference set (Figure 4B and
Additional file 2 (Table 1); see also Discussion), we consid-
ered the possibility that the genomes without frequent
HIP1 sequences might possess different high frequency
sequences that influence the results. Table 1 shows how
the varied results of suppressing high frequency nucleo-
tides in the reference set becomes more organized if organ-
isms are distinguished by their possession of frequencies of
HIP1 sites and other octanucleotides. In brief, when the
contaminating sequences are rich in HIP1 sites, a reduced
reference set is better able to pick them out, but when they
are rich in other octanucleotides and have a high GC%, a
complete reference set is more effective. There is no strong
preference of one method over another in other cases.

Preliminary tests of parameters of the standard method
In order to address the problems of existing methods
demonstrated in the previous section, we modified the
W8 method in two ways: (1) by defining the reference
set using core genes, highly conserved genes retained in

Figure 1 Characteristics of genomes used in this study. (A) The phylogenetic tree was inferred from 16 S rRNA gene sequences using a
Bayesian approach as described in the Methods section. The posterior probabilities are indicated at the nodes when equal to or greater than
80%. The length of the thick line at the bottom represents 0.1 mutations per position. The tree shown is substantially the same as that derived
from other methods (Additional file 1). The shading highlights the well isolated clade of small marine Prochlorococcus and Synechococcus (Group
2). At the end of each leaf is the nickname of the organism used in this study. 3-letter nicknames are those used by KEGG. (B) Other
characteristics of the genome. HIP1 frequency is given as the number of GCGATCGC sequences per 1 million nucleotides of genome sequence.
The transposase (Tn) frequency is given as the number of annotated transposase genes per 1 million nucleotides of genome sequence. The
source of the genome sequence is NCBI, with the given accession number, unless otherwise specified. The other sources are Kazusa DNA
Research Institute, Joint Genome Institute (JGI), and the J. Craig Venter Institute. Published sources, when available, are given in references [27-40].
n.d. = not determined.
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almost all eubacteria and therefore unlikely to be of for-
eign origin (addressing the artifact illustrated in Figure 3),
and (2) by limiting the oligonucleotides in the reference
set to the most underrepresented 20% (addressing the
common artifact illustrated in Figure 4A and Table 1).
The value of 20% was chosen for historical reasons and
is considered further in the Discussion section. The
parameters of the method (henceforth called Core Gene
Similarity, CGS) were tested as described below, by
measuring the effect of changing these parameters on
the maximal discrimination by CGS.
The CGS method relies on a set of genes, the core

reference set, that one might expect to be relatively free
of genes of foreign origin. However, if the set has just as
high a frequency of foreign genes as those outside the
set, then the method would not figure to have an

advantage over the W8 method. To test the robustness
of the method to contamination of the core reference set
by genes of foreign origin, the set was intentionally con-
taminated by introducing genes that had the lowest CGS
scores (furthest from core characteristics), as described
later and provided in Additional file 3. Using the Syn
genome as a test case, increasing contamination of the
core reference set with putative foreign genes led to a
drop in maximal discrimination, but the drop was slight
when contamination was less than 20% (Additional file 4A).
Contamination of the reference set had no effect in the case
of Pma (Additional file 4B), a genome that appears to have
few genes of foreign origin (see below). Contamination of
the reference set actually improved maximal discrimination
in the specific case where the genome with a relatively high
GC fraction (Pmt) was supplemented with genes from high

Figure 2 Distribution of gene scores according to four methods. Coding genes of Syn contaminated with 114 genes (3% of the total
number of coding genes of Syn) from Tel were used. The z-score is the deviation of a score of a gene from the mean score, in units of standard
deviations. Z-scores were binned every 0.25 units. For the two scoring methods (W8 and CGS) that use covariance, the signs of the Z scores were
reversed so that putative foreign genes would lie on the right side of the graph (see Methods). The thick lines, thin lines, and dashed lines show
the distributions of scores for all coding genes, test core genes, and introduced foreign genes, respectively. The right-most arrow identifies the
z-score that splits the test core gene distribution into a ratio of 95:5. The left-most arrow identifies the z-score that maximizes the difference
between the number of scores of introduced genes and number of scores of test core genes to the right of the arrow, a score that occurs at the
intersection of the two curves. The shaded area is the maximal discrimination, i.e., the area under the dashed line minus the area under the thin
line (the number of true positives minus the number of false positives) using the threshold marked by the left-most arrow. (A) GC, (B) Codon
bias, (C) W8, (D) CGS.
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GC organisms (Additional file 4C and 2D), consistent with
results described above, As one would expect, maximal dis-
crimination per CGS was approximately equal to that per
W8 when the reference set was contaminated by an
amount comparable to the predicted level of foreign genes
in the genome (see below and data not shown).
The CGS method appears therefore to be sufficiently

robust to withstand low levels of foreign genes in the refer-
ence set. How high a level would one expect? We estimate
that 6% of core genes have positions in phylogenetic trees
discordant with a consensus organismal tree, based on an
analysis of data presented by Zhaxybayeva et al. [42] on
1128 sets of orthologous genes from 11 cyanobacteria (see
Methods for a more detailed calculation). The effective
fraction may be significantly less, since many of the discor-
dances indicated by the analysis of Zhaxybayeva et al. [42]

are consistent with horizontal transfer events that took
place so far in the past that the participating genes would
not be recognized as foreign by CGS (see below). In brief,
the occasional foreign gene in the core reference set would
appear not to be a problem for the CGS method. The pres-
ence of foreign genes in the test-native set is another mat-
ter, one that is discussed in the next section.
One might imagine that scoring oligonucleotides from

the coding strand would be more informative, as doing
so might capture codon-specific tendencies. Alterna-
tively, examining both strands might double the amount
of information available. In fact, the choice made little
difference in three of the four target genomes tested,
while the coding strand was more effective in the case of
one target organism (Additional file 5). We chose to use
just the coding strand in subsequent calculations.
Tsirigos and Rigoutos [16] found that 8-nt was the opti-

mal length in determining the set of reference oligonucleo-
tides. We confirmed that 8-nt was generally more effective
than 6-nt (Additional file 6). Our results (Additional file 7)
were also consistent with those of Tsirigos and Rigoutos in
their finding that covariance was the most effective statis-
tical means of comparing oligonucleotide frequencies calcu-
lated from genes and the set of reference oligonucleotides.
The number of genes in the set of core genes had only a
minor effect on the ability to detect artificially seeded for-
eign genes (Additional file 8).

Choice of threshold
Maximal discrimination will not be a useful measure for
most who seek foreign genes in genomes. Instead, they will
want a measure that can answer one of two distinct ques-
tions: which genes are most likely to be of foreign origin
and which are most likely to have arisen by lineal descent.
In either case, it would be helpful to have an estimate of
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Figure 3 Degradation of maximal discrimination by increasing
contamination of a genome with foreign DNA. The genome of
Syn was contaminated with genes from either Pmm (solid symbols)
or Tel (hollow symbols), measuring maximal discrimination either by
W8 (□,■), codon bias (◊,♦), or GC% (Δ,▲). Maximal discrimination
measured by CGS is not shown because its reference set (hence its
calculated scores) is not affected by contaminating foreign genes.
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Figure 4 Influence on maximal discrimination by choice of oligonucleotides used by W8 method. The W8 method normally uses all
octanucleotide frequencies in its reference set. Here, the method was modified so that only the n% octanucleotides with the lowest frequencies
were used, where n varied from 10 to 100. In all cases, the target genome was contaminated to a level of 3% by foreign genes. (A) A HIP1-rich
genome (that of Syn; 47.4% GC, 855 HIP1/million nt) was contaminated with genes from a HIP1-rich genome (from Tel; 53.9% GC, 1418
HIP1/million nt). The bars show standard deviations from repetitions with three different sets of contaminating genes. (B) A low-GC, HIP1-poor
(36.4% GC, 2 HIP1/million nt) genome (Pma) was contaminated with genes from the HIP1-poor genomes of either Pmt (♦; 50.7 GC%, 39
HIP1/million nt) or Cel (■; 35.4 GC%, 5 HIP1/million nt). A high-GC, HIP1-poor genome (Gvi; ▲; 62.0% GC, 68 HIP1/million nt) or HIP1-rich genome
(Tel; ×; 53.9% ?GC, 1418 HIP1/million nt) was contaminated with high-GC genes from Syw (59.4% GC, 64 HIP1/million nt). The inset shows at the
same scale the spike near 100% usage of the reference set with Tel as the target genome.
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error, i.e., the probability that a gene identified in one class
is in fact a member of the other.
The descriptions of the W8 and codon bias methods pro-

vided empirical methods to calculate thresholds through
which to predict foreign genes, and we wished to determine
what fraction of false positives might be expected by using
these thresholds. Tsirigos and Rigoutsos (see also Methods)
placed the threshold at an inflection point in the distribu-
tion of scores obtained through the W8 method. When
this procedure was applied to each of 24 cyanobacterial
genomes not supplemented with test-foreign genes, 15%
(SD = 5%) of test-native genes were identified as foreign
(Additional file 9) and presumed to be false positives.
Mrazek et al. [11] provided a complex formula that takes
input from scores obtained from different classes of genes
to arrive at a threshold. Using this threshold, the codon-
bias method identified 7% (SD = 2%) of test-native genes
as foreign (Additional file 9).
To permit a fair comparison of the methods under con-

sideration, we chose to fix the thresholds for all methods
such that each method produced a 5% putative false posi-
tive rate. It must be noted that if the test-native set con-
tains genes of foreign origin with scores typical of foreign
genes, then the threshold will be misplaced to the extent
that false positives are replaced by foreign genes. For ex-
ample, in the unlikely event that 10% of the test-native set
are of foreign origin (unlikely – see above), half of the for-
eign genes in the genome may have scores beyond the 5%
threshold and thus go undetected.

Efficacy of CGS method relative to other methods
The efficacies of the four methods considered in this work
were compared with respect to their abilities to pick out
test-foreign genes in a variety of genomes. However, since

a natural genome is likely to pose quite a different chal-
lenge from one artificially seeded with foreign genes, we
also tried to assess effectiveness of the methods using in-
ternal measures, the identification of transposases and
genomic islands, and a comparison of predictions with
phylogenetic trees.
The CGS method was more effective than the GC

method in 92% of the donor/recipient trials in picking out
seeded foreign genes as judged by discrimination at a 5%
false positive rate (Figure 5A), including all of the 127
cases where at least one of the two discrimination values
exceeded 65%. The GC method did better in those cases
where the GC content of the donor organism is extreme.
One would expect that the GC method would suffer as
the GC content of the donor and recipient approached
each other, even when two genomes with similar GC con-
tent are evolutionarily distant, and indeed this was the
case (Figure 5B).
Maximal discrimination was very poor (less than 0.4)

when the two organisms differed by less than 5% in GC
fraction. In contrast, the performance of the CGS method
was much less tied to the GC contents (Figure 5C).
The codon bias method fared no better in this test

(Figure 6A), with CGS predicting seeded genes better than
codon bias in all of the 97 cases where at least one of the
two discrimination levels exceeded 65%. Codon bias
appeared to be generally more effective in those trials
where discrimination was poor, but this may be an artifact
of the method. The apparent floor value of 0.10 to 0.25 for
codon bias is consistent with a failure in our assumption
that the set of test genes (which excludes core genes) is a
random sampling of all native genes (including core genes)
with respect to the measured quantity. Indeed, confining
the analysis to 80% of the genes of Syn that have the most

Table 1 Change in maximal discrimination by W8 method in response to range of reference seta

Source of contaminationb

High GC Low GC

High HIP1 High 8mer Low 8mer High HIP1 High 8mer Low 8mer

Targetb High CG High HIP1 +0.30 (2) –0.47 (3) –0.03 (3) +0.15 (9) (0) (0)

High 8mer –0.01 (3) –0.13 (6) –0.02 (3) (0) (0) (0)

Low 8mer +0.21 (4) –0.05 (2) +0.07 (3) +0.04 (8) –0.02 (2) –0.06 (0)

Low CG High HIP1 +0.30 (8) –0.07 (7) –0.04 (8) +0.12 (21) +0.04 (8) –0.04 (2)

High 8mer (0) (0) –0.02 (1) +0.07 (10) +0.04 (3) +0.09 (0)

Low 8mer (0) (0) (0) (0) (0) (0)
a The values shown are the compilation of results of 116 experiments in which genes taken at random from one genome were used to contaminate a target
genome (see Methods for further explanation and Additional file 2 (Table 1) for a listing of the data on which the table is based). Each value shown is the
difference of the maximal discrimination calculated using the W8 method subtracted from the value calculated using a modified W8 method in which the
40% least frequent octanucleotides were chosen as the reference set. Values in which the difference is at least 5 percentage points in favor of the 40% choice of
octamers are rendered in bold. Those in which the difference is at least 5 percentage points in favor of the 100% choice of octamers are rendered in bold italics.
b The categories of the source/target combinations were determined by whether the source and target genomes were high GC (> 50%) or low and by the
frequency of the most frequent octameric sequence: high HIP1 if the most frequent octamer is GCGATCGC (HIP1) and occurs at least 180 instances per million
nucleotides, high 8mer if the most frequent octamer is not HIP1 and occurs at least 180 instances per million nucleotides, and otherwise low 8mer. The number
in parentheses indicates the number of times the particular source/target combination was tested. Combinations were counted only if at least one condition
(40% or 100% oligomers in reference set) yielded a maximal discrimination value between 0.10 and 0.90.
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normal scores, the average codon bias score for test-native
genes is far from the average score for all genes in the set
and close to the average score for the highly expressed
genes of the training set. In contrast, the average CGS

score for test-native genes is indistinguishable from the
average score for all genes of the set (data not shown).
Codon bias would therefore identify more genes as foreign
but at the cost of also identifying more native genes as for-
eign (see below).
The W8 method was more effective in this test than the

previous two methods (Figure 6B), as CGS had a higher
rate of success than W8 in only 76% of the cases. However,
CGS was more successful in almost all the cases where the
difference was major.
The W8 and CGS methods are very similar, differing

only in the reference frequency set (all octamers for W8 vs
least frequent octamers for CGS) and the choice of refer-
ence gene set (all genes for W8 vs core genes for CGS). In
formulating the CGS method, we confined the reference
set to core genes thinking that doing so would avoid the
poisonous influence of foreign genes in the genome. To
test how great this influence might be, we modified the
standard test of W8 so that artificially seeded genes were
tested one at a time, without affecting the set of reference
frequencies (calculated with no seeded genes), and we cal-
culated the frequency set using the same infrequent octa-
mers as used for CGS. With these modifications, the only
difference remaining between the two methods was that
the modified W8 method used all genes as the basis of the
frequency set, while CGS used only core genes. If pre-
existing foreign genes affected the frequency set, then it
should be apparent by a comparison between CGS and
modified W8. Of course it is not possible to exclude from
the W8 calculation foreign genes in the genome, except in
artificial tests such as these.
The results of such a comparison are shown in Figure 6C.

In accordance with results presented in the last section, the
discrimination ability of the modified W8 method was much
improved relative to the unmodified W8 method. However
there still remained a difference in discrimination relative to
CGS. The modified method was more effective, particularly
with the genomes of the marine Prochlorococcus and
Synechococcus, but less effective with the genomes of those
organisms with highest density of transposons.
One way to assess the effectiveness of the different

methods without the artificiality of seeding a genome with
exogenous genes is to identify genes that probably arose
by lateral transfer and examine the success the methods in
identifying them. Transposases are plausible candidates
[43], though it must be borne in mind that they, like
viruses, can establish a close relationship to a group of
related organisms. Figure 7 shows the success the W8 and
codon bias methods had relative to CGS in detecting
transposases in 15 cyanobacterial genomes where transpo-
sases have been annotated. It is not surprising that W8
suffers by comparison, since repeated sequences such as
transposons contribute to the reference set roughly in pro-
portion to their numbers. Codon bias also did not do well,
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Figure 5 Comparison of CGS and GC methods. (A) Discrimination
values based on CGS scores and GC scores were calculated using as
targets the genomes of Group 1 cyanobacteria (□) Ana, (Δ) Mar, and
(○) Syn; of Group 2 cyanobacteria (+) Pma, (-) Pmt, and (×) Syw; and
of (♦) Tel, contaminating them to a level of 3% with the same genes
from up to 25 different organisms. Each point is the average of
three trials. The values in the dotted box uses contaminating genes
from (-) Gvi (GC% of 62%), (♦) Gvi, Syw (GC% of 59%), and Cya (GC%
of 60%), (□) Pmm (GC% of 31%). (B) The same GC scores as in panel
A are shown related to the difference in GC% of the donor and
target genomes. (C) The same discrimination values as in panel A
are shown related to the difference in GC% of the donor and target
genomes. The identities of the genomes and values of both
methods are provided in Additional file 2.
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comparable to its showing with seeded foreign genes
(Figure 6A).
Another source of presumed foreign genes is the set of

genes in genome islands. Coleman et al. [44] compared the
genomes of Pmm and Pmi and identified genome islands
in each strain, presumably having arisen by lateral transfer.

We used the 210 coding genes from Pmm and the 246
coding genes from Pmi lying within genome islands in tests
of the methods (Table 2). No method detected more than
30% of the genes in the islands. Codon bias picked out the
most but also identified far more genes as putative foreign
than the other methods. As judged by a percentage of pu-
tative foreign genes confirmed by localization in genome
islands, CGS was as good as codon bias or better. W8 did
not find genes within the islands at a rate distinguishable
from chance.
Perhaps the ideal test is a comparison of the predictions

of each method against discordances found from analyses
of phylogenetic trees. Zhaxybayeva et al. [42] presented
131 trees, based on sets of well conserved orthologous
genes, that had a total of 135 conflicts with respect to an
organismal tree, each associated with a discordant pair of
genes. Surprisingly, in only 9% of these reported conflicts
was a gene predicted by CGS to be of foreign origin
included in the discordant pair. The other methods did no
better (data not shown). While this fraction is significantly
greater than that predicted by chance (p < 1% per χ2), it
nonetheless seemed low, so we examined the trees in de-
tail. All 12 conflicts from Zhaxybayeva et al's list that
name a gene with a low (< 0.05) CGS score were exam-
ined, along with 9 others chosen at random (2 involving
the same gene) with higher CGS scores, in order to assess
why the reported conflict was not detected by the CGS
method. All the trees are provided in Additional file 10.
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Figure 6 Comparison of effectiveness of CGS method vs other methods. Discrimination values determined by CGS, codon bias, W8, and

modified W8 were calculated using as targets the genomes of Group 1 cyanobacteria (□) Ana, (Δ) Cwat, (Δ) Mar, (○) Syn, and (◊) Ter; of Group 2
cyanobacteria (+) Pma, (-) Pmt, and (×) Syw; and of (♦) Tel, contaminating them to a level of 3% with the same genes from up to 25 different
organisms. (A) Comparison with Codon Bias (CB). The values in the dotted box were obtained from cases in which contaminating genes were
drawn from Gvi (GC% of 62%), Syw (GC% of 59%), and Cya (GC% of 60%). (B) Comparison with W8. The values in the dotted box were obtained
from cases in which contaminating genes were drawn from from Gvi (GC% of 62%) and Syw (GC% of 59%). (C) Comparison with the W8 method
modified to exclude contaminating genes. The W8 was modified so that genes artificially added to a genome did not contribute to the
calculation of the reference set of octamer frequencies. The identities of the genomes and values for all methods are provided in Additional file 2.

Figure 7 Detection of transposases by different methods
compared to CGS. Transposases from the 15 cyanobacterial
genomes considered in this study with annotated transposases were
predicted to be of foreign origin if their scores went beyond the
threshold that excluded all but 5% of the test-native set. The fraction
of transposases found for a given organism by the CGS method was
compared to the same fraction found by the W8 (□), codon bias (Δ),
and GC (◊) methods. The area of the symbol is proportional to the
fraction of the genome attributable to transposases (Additional file 9).

Elhai et al. BMC Genomics 2012, 13:245 Page 8 of 17
http://www.biomedcentral.com/1471-2164/13/245



They differ from those of Zhaxybaeva et al. in that they
consider sequences from up to 26 cyanobacteria (instead
of 11) and use a Bayesian approach and maximum likeli-
hood to construct trees, as described in Methods, instead
of quartet analysis. Trees from the two studies are often
inconsistent, and in some cases the additional sequences
in our trees reveal paralogous relationships that resolve
the reported conflicts.
The trees were interpreted, extracting from each a time

range of the simplest horizontal gene transfer events that
could have produced well supported discrepancies with re-
spect to the 16 S rRNA gene tree (Figure 1). In many
cases, multiple events are required. A summary of the ana-
lysis is shown in Figure 8. The time ranges of all 10 of the
events predicted by CGS are consistent with HGT events
that have occurred more recently than the divergence of
Pmf and Pmt from the remaining marine cyanobacteria.
Although many potentially recent HGT events thus defined
were not predicted by CGS, the probability is less than 5%
per χ2 analysis that 10 potentially recent HGT events would
arise from a random sampling of all the events considered.
Four syn genes chosen at random from those with CGS
scores less than 0.05 were also analyzed. In each case, their
trees showed strong evidence of HGT (Additional file 10).

Survey of putative foreign genes in cyanobacteria
One might reasonably expect that different genomes would
carry different fractions of genes of foreign origin. We ap-
plied three of the methods to the genomes of 25 cyanobac-
teria, asking how many genes fell beyond a threshold score
determined by a 5% false-positive rate. Codon bias almost
always identified more putative foreign genes for a given
genome (consistent with the failure mentioned earlier of

the assumption that the 5% threshold determined from
test-native genes corresponds to to the level appropriate to
identify 5% of all native genes), and the GC and W8 meth-
ods generally identified fewer putative foreign genes rela-
tive to CGS (Additional files 9 and 11). A possible reason
for this was discussed in the previous section. For now we
will focus on the values reported by CGS, which are given
for all genes in Additional file 3.
The number of foreign genes identified was correlated with

the clade of the organism (Figure 9 and Additional file 9).
Reasonably enough, the fewest foreign genes were found in
genomes of the low-GC Prochlorococcus of Group 2, which
are the smallest genomes amongst cyanobacteria, ranging
from 1.66 to 1.84 MB for the five genomes in this category.
Four of the five have fewer than 8.9% putative foreign genes
per CGS, which should be interpreted as 3.9%, as the chosen
threshold should lead to a misidentification of 5% of native
genes. The fifth, Pmz, is also the only Prochlorococcus with
identified transposases (five).
The four genomes from the filamentous cyanobacteria

also have a low reported incidence of putative foreign
genes per CGS, all less than 8.4% (calculated 3.4%), despite
a range of genome sizes from 7.04 to 9.06 MB.
The middle and high-GC marine Prochlorococcus/Syne-

chococcus of Group 2 have larger genomes (2.23 to
2.68 MB) and a relatively high fraction of putative foreign
genes (17.5% to 32.5%, calculated 12.5% to 27.5%). The uni-
cellular members of Group 1 have the broadest taxonomic
range and the broadest range of putative foreign genes,
from 11.6% (Cyanothece PCC 8801) to 38.2% (Microcystis
aeruginosa NIES 843).
As might be expected, the set of putative foreign genes is

heavily biased towards transposons and phage sequences

Table 2 Putative foreign genes in genome islands

Island hitsc

Methoda Total putative foreignb Expected Observed Observed/Totald

Pmm (Prochlorococcus marinus Med4)e

Codon bias 231 28 60* 0.260

CGS 91 11 23* 0.253

W8 96 12 15 0.156

GC 109 13 13 0.119

Pmi (Prochlorococcus marinus MIT9312)e

Codon bias 272 37 56* 0.206

CGS 118 16 29* 0.246

W8 107 15 16 0.150

GC 119 16 25* 0.21
a All methods used a threshold that excludes 95% of the test-native set.
b Genes identified as foreign by the method in the given genome. Pmm has 209 coding genes in genome islands out of a total of 1713 coding genes, and Pmi
has 246 coding genes in genome islands out of a total of 1810 coding genes, per Coleman et al. (2006). c The number of genes identified as foreign by the
method that lie within a genome island. The expected number is that which would arise if the genes identified as foreign were distributed randomly throughout
the genome. Asterisks indicate statistical significance to the level P < 0.001. Numbers without asterisks are not significant even to P < 0.05.
d The fraction of total putative foreign genes identified by the method that lie within genome islands.
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when such are present in the organism, and the same is
true for genes that have no known function (Figure 9).
Surprisingly, genes related to photosynthetic energy pro-
duction are also overrepresented in the set of putative for-
eign genes, at least in the case of Group II cyanobacteria.
Genes that are highly expressed, including photosynthesis
genes, have unusual codon preferences (11), which could
conceivably affect CGS scores, but this phenomenon is un-
likely to account for the observed bias, as we were unable
to detect any obvious correlation between gene expression
and CGS score in Ana and Syn, two organisms for which
microarray data is available (data not shown).

Foreign proteins would also be expected in general to
show greater similarity to proteins of distantly related organ-
isms than would native proteins. To assess whether the pro-
teins identified by CGS scores had this property, we counted
the numbers and sources of similar proteins according to
Blast, a crude measure but one that could be practically ap-
plied to all proteins in an organism. Figure 10 shows how
the number of proteins in syn vary according to their CGS
scores when classified by their evolutionary context. In brief,
the context of a protein was termed cyanobacterial when
matches were primarily to cyanobacterial proteins, recent
when there were few matches but they were to proteins of

Zh-934 0.2  7  84  20
Zh-388 0.4  1  75  74
Zh-162 1    2  99  53
Zh-388 1    3  86  85 
Zh-840 2    8  65  77    
Zh-893 2   81  78   2
Zh-300 3   19  96  38 
Zh-162 3    4  92   4 
Zh-920 4    3  19  87
Zh-297 5   20  91  74

Tel Lyn/Ter
AnaNpu/LynTer

PmfPmat/Sy
CG    W8    CB   GCMar/Syn

Pmf/Pmt
Syd/Sye

Syg

Zh-840 6   20  33  40
Zh-672 9   35  16  59
Zh-173 13 61  98  24
Zh-312 15   48  41   0.4
Zh-893 23   21  73  18
Zh-934 26   31  86  16
Zh-1102 26   87  90   2
Zh-920 29   35  23  46
Zh-934 29   16  68  21
Zh-1102 30   53  93  70
Zh-920 37   29  20  81
Zh-173 38   84  90  19
Zh-1102 40   35  nd  51
Zh-662 41   47  nd  44
Zh-934 42   21  50  36
Zh-986 42   42  nd  62
Zh-934 46    8  69  43
Zh-297 52   75  nd  63
Zh-986 53   44  nd  38
Zh-986 55   11  40  94
Zh-388 67   77  nd  41
Zh-925 72   79  nd  66
Zh-632 76   71  72  41
Zh-632 84    1  63  25
Zh-300 86   59  95  78

Amar
Syf/PmSy

Ana/Npu

CwatCyr/MarSyn

Syp Pm/PmfPmtSy

Pmz

Pmi/Pmm

Pmn/PmiPmm

Cwat/Cyr

Syx

Figure 8 Predicted time ranges of horizontal transfer events. Evolutionary time ranges symbolized by horizontal lines are shown during
which horizontal gene transfer events may have occurred to explain the phylogenetic trees provided in Additional file 10. Each line is associated
with a set of proteins reported by Zhaxybayeva et al. [42] to contain at least one conflict with the 16 S rRNA gene tree. The termini of the time
ranges are defined by evolutionary events deduced from the 16 S rRNA gene tree (Figure 1), either the divergence of a single organism
(represented by the symbol of that organism) from many or the divergence of one or two organisms from one or two other organisms
(represented by the diverging organisms symbols separated by a slash). Evolutionary time proceeds left to right, roughly proportional to the
number of mutations that have accumulated in ribosomal DNA. The scores of the gene or genes (averaged) predicted to have resulted from
horizontal gene transfer are given at the right, according to the four methods considered. Green lines indicate time periods that are at least
partially as recent as the divergence of Pmf/Pmt from Synechococcus.
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closely related cyanobacteria, non-cyanobacterial when
matches were primarily to proteins from outside the cyano-
bacteria, and solitary when the only match was to the
protein itself (see Methods for precise definitions).
Chromosomal Syn proteins that gave low CGS scores

were much less likely than those with high CGS scores to
have a cyanobacterial context (Figure 10A). Furthermore,
the low CGS proteins were much more likely to be of ap-
parently recent origin. Plasmids are generally transient
components of a genome, and this is reflected in the greater
fraction of their proteins with non-cyanobacterial contexts
and those that are solitary (Figure 10B and Additional file 12).
This is especially evident in proteins with CGS scores
< 0.05, where 72% of the proteins are in these two categories.

Discussion
There is great appeal to the idea of identifying genes of
foreign origin as easily as one identifies the genes them-
selves, through information obtained directly from the
genome, possibly supplemented by readily available out-
side resources. The analysis of compositional features of
genes offers that prospect, but the operational simplicity
comes at a cost: a layer of abstraction between the meas-
ure and the phenomenon. Very little is understood as to
why compositional features are conserved amongst like
organisms, and so caution must be exercised in employing
such features as surrogate measures of horizontal genetic
transfer. We have attempted to identify parameters of
oligomer frequency analysis important in identifying genes
of foreign origin and propose a method that may often per-
form better than existing surrogate methods.
The proposed CGS method performed better than GC

fraction, codon bias, or W8 in the great majority of trials ar-
tificially introducing foreign genes into genomes (Figures 5
and 6), overwhelmingly so when discrimination between

foreign and core genes was high (i.e. when one method or
the other could distinguish with confidence foreign from
native genes). The tests attempted to simulate the acquisi-
tion of foreign genes in the recent past, before sufficient
time has elapsed for the genome-specific composition fea-
tures to fade [12]. One might argue that these seeding
experiments are too unnatural to be fully convincing. We
therefore sought tests of the methods using extant genes
that are plausibly of foreign origin. The CGS method was
considerably more effective than any of the other methods
tested in flagging resident transposase genes as foreign
(Figure 7). It was also clearly superior to either W8 or GC
in finding genes within genome islands (Table 1).
What is the basis of the superior performance of the

Core Gene Similarity method? As the name suggests, a
distinctive feature of the method is its reliance on well
conserved core genes, to define the training set without
contamination by foreign genes that may be present in
the genome. Calculating the training set using all genes
rather than core genes drastically degraded performance
when the genome was artificially seeded with foreign
genes at a level of 20% (Figure 3), a reasonable value for
natural genomes ([2] and Additional file 9). Conversely,
the conceptual removal of foreign genes from the train-
ing set greatly improved the performance of the W8
method (compare Figure 6B with Figure 6C).
A second distinctive feature of the method is that it limits

the training set of oligomers. We initially considered that
confining the training set to underrepresented octamers
would increase the method’s ability to detect genes of for-
eign origin. This second hypothesis turned out not to be
true, since for most simulations, there was little difference in
discrimination when using only underrepresented octamers
as compared to including the middle range of octamers
(Figure 4). On the other hand, the inclusion of

Figure 9 Function of genes identified as putative foreign. The distribution of genes in seven representative cyanobacteria is shown, in each
case dividing the genes into two classes: those with CGS scores < 5 (top row) and those with scores≥ 5 (bottom row). The circle represents all
genes of the class.

Elhai et al. BMC Genomics 2012, 13:245 Page 11 of 17
http://www.biomedcentral.com/1471-2164/13/245



overrepresented octamers caused in most simulations a
sharp drop in performance (Figure 4 and Table 1), corre-
lated with the presence of high frequency HIP1 sites in
contaminating genomes. Two of the most striking obser-
vations shown in Table 1 are readily explained. First, if
high frequency HIP1 sites are retained in the training set,
along with high frequency sequences one nucleotide
removed from HIP1 (J. Elhai, unpublished results), then
their presence in foreign genes would present a strong but
misleading signal of the origin of that gene. Second, ignor-
ing high frequency oligomers reduces the ability of the
method to discern foreign genes, when those genes come
from high GC organisms with high frequency oligomers
differing from those in the target genome (Table 1). Em-
pirically, the optimal general solution seems to be to con-
struct a training set from the 80% least frequent octamers,
a practice that retains the benefit described in the first case
and excludes almost all the injury described in the second
case. Understanding why this is would require insight into
the nature and spectrum of repeated sequences in bacter-
ial genomes, a goal we are pursuing.

Some of the limitations of compositional methods to de-
tect horizontal transfer are well known. The sequence sig-
nature of the originating genome must lessen with time
[12]. Events occurring in the distant past may be invisible
to compositional methods, and Figure 8 provides evidence
for this, just as recent events may prove difficult for phylo-
genetic methods to detect [45]. Compositional methods
may also founder because of failure of the basic assumption
that the measured feature is constant over the genome, ex-
cept at locations of horizontal transfer. It has been reported
that G +C in the third codon position varies along the
length of the E. coli genome [46], and strand-specific devia-
tions from randomness in the location of oligomers are
well known [47]. Combinations of methods may be more
effective in detecting instances of horizontal transfer [7].
The current work makes clear that changing the para-
meters of even a single method may be important in opti-
mizing the detection of certain combinations of source and
target genomes.
It must also be noted that the method described here is

not capable of detecting horizontal transfer of genes in the

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

Chromosome Plasmids

CGS score ranking CGS score ranking

F
ra

ct
io

n 
of

 g
en

es
 in

 e
ac

h 
cl

as
s

F
ra

ct
io

n 
of

 g
en

es
 in

 e
ac

h 
cl

as
s

A B

Figure 10 Evolutionary context of genes as related to CGS scores. The proteins encoded by the chromosome (A) or five plasmids (B) of
Synechocystis PCC 6803 were ordered by their CGS scores and divided into four categories: cyanobacterial, non-cyanobacterial, recent origin, and
solitary, as described in the text and Methods. Each point on the graph is a frequency based on 50 proteins centered around the CGS ranking.
The blue shaded areas indicate genes with CGS scores < 0.05.
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reference set. However, this restriction is easily sidestepped
by running the algorithm twice with nonoverlapping sets,
at the minor cost of doubling the execution time.
The most significant limitation of this work is that it fo-

cuses on a single class of organisms, the cyanobacteria,
most of which are known to possess high frequency HIP1
sites (Figure 1). While very few bacterial genome possess
octomers as frequent as HIP1 sites (J. Elhai, unpublished),
many have other significantly repeated sequences, such as
recombinogenic chi sites [48] and transformation uptake
signals [49], which may also affect the performance of sur-
rogate methods in a similar fashion as HIP1 sites.

Conclusions
CGS scores provide a means by which thousands of genes
can be evaluated for horizontal gene transfer in a few min-
utes of computer execution time. The use of the test-
native gene set as an internal control enables the user to
adjust parameters in a rational fashion to allow greater
sensitivity at the expense of accuracy or vice versa. It is
important to note that the method does not require any
prior knowledge of species related to the target organism
(s), as the reference and test-native sets are derived using
genes that are common to all eubacteria.

Methods
Genomes and general analytical methods
The genomes used in this study and their sources are
listed in Figure 1. Over 3400 computational experiments
and counting of octamers were performed within the
integrated knowledge/programming environment of the
CyanoBIKE instance of BioBIKE [26]. The numeric results
of those experiments described in this article are given in
Additional file 2, and the code is available on request. HIP1
sites were counted using BioBIKE's COUNT-OF function.

Phylogenetic trees
Phylogenetic trees were inferred using a Bayesian approach
or maximum likelihood, as indicated, based on alignments
obtained using MAFFT [50] (in the of case 16 S rRNA gene
trees) or with guidance from the corresponding protein
sequences, using PAL2NAL [51] (in the case of other gene
trees) provided with protein sequences aligned with MAFFT
[51], using the E-INSI method and default parameters. Posi-
tions that can be reliably used in phylogenetic analysis were
extracted with Gblocks [52].
Bayesian trees were constructed using BEAST 1.6.1 [53],

based on a GTR + I + G model with 4 categories of substi-
tution rate. The Bayesian Monte Carlo Markov chain re-
construction was run for 50 millions generations and trees
were sampled every 1000 steps, with the first 10 thousand
trees discarded. The maximum clade credibility tree was
obtained with TreeAnnotator 1.6.1. Bayesian posterior

probabilities greater than 0.5 are indicated at the nodes
(0.8 in the case of the 16 S rRNA gene tree).
Maximum likelihood trees were constructed using

PHYML [54] based on a GTR + I +G model using 4 cat-
egories of substitution rate and a Gamma distribution par-
ameter estimated by PHYML from the data set. The GTR
+ I +G model determined to be the most appropriate to
our data set according to the Perl script MrAIC1.4.3 [55].
The evolutionary distance between two sequences was

obtained by adding the lengths of the horizontal branches
connecting them, where the full horizontal length shown
is 0.1 mutation per position.

Core gene similarity (CGS) method
Overview of steps
To predict genes that came to the genome under consid-
eration (the target genome) by horizontal gene transfer
(putative foreign genes), a set of reference genes within the
genome was selected, consisting of core genes with ortho-
logs in a set fraction of eubacterial genomes. From these, a
set of reference oligonucleotides was calculated using the
least frequent oligomers in the genome. A second set of
genes, the test-native genes, was determined as those with
orthologs in a representative set of reference organisms.
The frequencies of these reference oligonucleotides were
calculated in all protein-encoding genes of the genome
and compared with the frequencies of the core genes, to
produce a value of merit. A threshold value was deter-
mined as that which all but 5% test-native genes were
excluded. Genes that have values beyond this threshold
were predicted to be of foreign origin. The method was
evaluated in part by seeding the genome with a set of test-
foreign genes taken from different genomes. Each of these
steps is described below in more detail.

Determination of the set of core genes
Genes from Syn with orthologs in the genomes of 13 di-
verse cyanobacteria (see below) were used to scan for
orthologs in the 717 eubacterial genomes in KEGG [56]
as of October 20, 2008. Orthologs were defined using
the KEGG best-best option (bidirectional best hit), with
a Smith-Waterman scores of at least 100. The greatest
number of orthologs for a given gene was 702. In the
standard method, those Syn genes that found orthologs
in more than 90% of this maximum (i.e., in more than
631 eubacterial genomes) were used to find orthologs in
the target genome. These orthologs were collected as
the core genes. Typically, a cyanobacterium had about
217 core genes determined in this way.

Determination of the sets of reference oligonucleotides and
reference frequencies
The frequency of each octamer in the core genes was
determined as the sum of the counts of the 8-mer in
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each core gene divided by the sum of their effective
lengths (the length of each gene minus 7). The octamer-
frequency pair was sorted by frequency and the 20%
with the lowest frequencies were collected and called the
reference oligonucleotides. In many cases, more than
20% of the octamers produced no counts. In such cases,
the reference oligonucleotides included all octamers that
produced no counts.

Determination of the set of test-native genes
The set of test-native genes could have been obtained in
the same manner as described above for set of core
genes, simply by reserving part of the core genes for
testing. However, we actually obtained the set in the way
described below, made trivial by the built-in capabilities
of BioBIKE. In fact, the two sets substantially overlap.
A set of genes in the target genome with orthologs in

all of a representative subset of cyanobacteria (Ana Ava
Cwat Gvi Npu Pma Pmm Pmt Sef Syn Syw Tel Ter) was
determined, using the COMMON-ORTHOLOGS-OF
function of BioBIKE. Orthologs were defined as bidirec-
tional best hits per Blast [57], with E-values better than
10-10. Those genes in this set were called the test-native
set. Genes in the core gene set were excluded from the
test-native set so as not to give an unfair advantage to
the CGS method, which uses the core gene set to calcu-
late the reference frequencies.

Determination of the set of test-foreign genes
All protein-encoding genes from an organism distinct
from the target organism were placed in a random order
and saved in a file. For a computational experiment, a spe-
cified number of genes were taken from the file and called
the test-foreign set. In this way, each experiment using a
given number of genes used the same genes. The number
was determined as a given fraction of the final artificially
seeded genome. For example, the number of foreign genes
to seed a genome to a level of 3% was determined as F in
the equation F/(F +N) = 3%, where N is the number of
protein-encoding genes in the target genome.

Calculation of value of merit
The frequency of each oligonucleotide in the oligo-
nucleotide reference set was calculated for each protein-
encoding gene of the target organism (and in some tests
of the method, for each gene in the set of test-foreign
genes). These frequencies were compared to the set of
reference frequencies by means of a covariance test:

raw� CGSg ¼ 1
n

Xn

k¼1

fg
�fR

Where fg and fR are the frequencies for a given category
within the gene and the core genes, respectively, and the

sum is taken over n categories. The categories consisted of
each oligonucleotide of the set of reference oligonucleo-
tides plus an extra category consisting of all other oligonu-
cleotides combined. Taken in this way, raw-CGSg is higher
for genes whose frequencies are similar to those of the
reference set and lower for genes whose frequencies are
dissimilar. The final CGSg score of a gene is calculated by
determining the fraction of test-native genes with raw-
CGSg scores less than the raw-CGSg score of the gene.

Determination of threshold CGS value
The 5% threshold was determined by finding a score that
divides the values of merit of the set of test-native genes
into two groups: 5% below the threshold and 95% above.
In many tests, a different threshold was determined, one
that maximized the difference between presumed true
positives (test-foreigns scoring below the threshold) and
false positives (test-native genes scoring below the thresh-
old). This was done by sorting the calculated values of
merit and testing each as a possible threshold until the
conditions were met.

Existing methods
To implement the GC method, the counts of G +C
nucleotides in each gene was compared by means of a χ2

test to the counts expected in the gene based on the
frequency of G +C over all protein-encoding genes. This
procedure differs from that used by Lawrence and Ochman
[12] and others, measuring differences in G +C in the third
position of codons.
The Codon Bias (CB) method was implemented essen-

tially as described by Mrázek et al. [11]. The lists of refer-
ence genes (translation processing factors, chaperones, and
ribosomal proteins) were obtained for each genome by
searching its gene annotations for relevant terms, using
BioBIKE's GENES-DESCRIBED-BY function. The param-
eter M used by Mrázek et al was considered to be adjust-
able. To achieve discrimination at a level of 5%, M was set
so that 5% of test-native genes were predicted to be foreign
(or PA in the language of Mrázek et al.). This procedure
differs from the Codon Adaptive Index [58] used by some.
The W8 method was implemented according to Tsirigos

and Rigoutsos [16]. Covariance was calculated as described
above for CGS. In most tests, the set of reference frequen-
cies was calculated using all octamers, as described by Tsir-
igos and Rigoutsos, but in some tests a subset of octamers
were used, determined as described above. When foreign
genes were artificially seeded in the genome, the octamer
frequencies were calculated over all genes in the target gen-
ome, including the foreign genes. In some tests the method
was modified so that the frequencies were calculated ex-
cluding the foreign genes.
For most experiments, the threshold was determined as

described above for the CGS method. In cases noted in the
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text, however, the threshold was determined essentially as
described by Tsirigos and Rigoutsos. Specifically, we
smoothed the curve of W8 scores (sorted by value) by aver-
aging over a moving window of 100 points. Then the
derivative calculated at each point was compared to the
derivative averaged over the central 80% of the curve
(the constant region). The lowest value with a derivative
greater than the average derivative was defined as the
threshold.

Calculation of expected foreign genes in the reference set
Zhaxybayeva et al [42] examined 1128 sets of orthologous
genes from 11 cyanobacteria and found that 443 (39%) had
no conflict with the consensus organismal tree. Tree ana-
lyses for 131 of the remaining gene sets were reported, and
within them, 135 pairs of genes were connected in a way
discordant with the consensus organismal tree (127 of the
gene sets exhibited a single discordance and 4 exhibited
two). Since the 131 gene sets contained 1355 genes (9 to 11
genes per set), 10% of the genes in these gene sets are ap-
parently discordant. If these gene sets are representative of
all the gene sets with discordances, then overall, 6% (10% *
685/1128) of genes in the orthologous sets show evidence
of horizontal transfer.

Evolutionary context
With the goal of assessing whether proteins are most simi-
lar obtaining a crude assessment of the number of proteins
All matches had E-values greater than 0.001, and only
those matches were considered that were better than the
last best match to any member of Group I cyanobacteria
(see Figure 1).
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