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Hypothesis Testing and Power Calculations for
Taxonomic-Based Human Microbiome Data
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Erica Sodergren3, George Weinstock3, William D. Shannon1*

1 Division of General Medical Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America, 2 Department of

Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States of America, 3 The Genome Institute, Washington

University School of Medicine, St. Louis, Missouri, United States of America

Abstract

This paper presents new biostatistical methods for the analysis of microbiome data based on a fully parametric approach
using all the data. The Dirichlet-multinomial distribution allows the analyst to calculate power and sample sizes for
experimental design, perform tests of hypotheses (e.g., compare microbiomes across groups), and to estimate parameters
describing microbiome properties. The use of a fully parametric model for these data has the benefit over alternative non-
parametric approaches such as bootstrapping and permutation testing, in that this model is able to retain more information
contained in the data. This paper details the statistical approaches for several tests of hypothesis and power/sample size
calculations, and applies them for illustration to taxonomic abundance distribution and rank abundance distribution data
using HMP Jumpstart data on 24 subjects for saliva, subgingival, and supragingival samples. Software for running these
analyses is available.
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Introduction

The NIH Human Microbiome Project (HMP) [1] aims at

characterizing, using next generation sequencing technology, the

genetic diversity of microbial populations living in and on humans,

and at investigating their roles in the functioning of the human

body, such as their effects in nutrition and susceptibility to disease

[2]. In just a few years, much work has been done to optimize the

processes for collecting microbiome samples, processing the DNA,

running the sequencing technology, and generating taxonomies/

phylogenies from these sequences [3]. These developments will

facilitate access to microbiome technology for laboratories of all

sizes, enabling application in varied fields of biology, from

agriculture to human disease research. However, the biostatistical

analysis of metagenomic data is still being developed. Several

methods to analyze metagenomic data have been proposed based

on exploratory cluster analysis, bootstrap or resampling methods,

and application of univariate and non-parametric statistics to

subsets of the data [4–12]. However, these methods require a

significant reduction of information, such as Unifrac [7] which

reduces sequence data to pairwise distances, or ignoring correla-

tions and the multivariate structure inherent in microbiome data,

such as Metastats [12] which does univariate ‘one-taxa-at-a-time’

analyses.

Given the multivariate nature of the metagenomic data, having

multivariate analysis tools is becoming important in the micro-

biome research community. Microbiome researchers are interest-

ed in testing multivariate hypotheses concerning the effects of

treatments or experimental factors on whole assemblages of

bacterial taxa, and in estimating sample sizes for such experiments.

These types of analyses are useful for studies aiming at assessing

the impact of microbiota on human health and on characterizing

the microbial diversity in general. Statistical methods to design and

analyze such studies will contribute to the translation of

microbiome research from technical (bench) development to

clinical (bedside) application.

The focus of this work is to develop multivariate methods to test

for differences in bacterial taxa composition between groups of

metagenomic samples. Multivariate non-parametric methods

based on permutation test such as Mantel test [13,14], Analysis

of Similarity (ANOSIM) [15], and NP-Manova [16] are widely

used among community ecologists for this purpose. However,

although these three methods are attractive when a parametric

distribution of the data is unknown, we believe they are not always

appropriate for analyzing microbiome data. First, although a

hypothesis of group difference can be tested, the results of these

tests are difficult to interpret since they cannot quantify the size of

the difference between the groups in terms of bacterial taxa

composition. Second, permutation tests work under the assump-

tion that the dispersion (variability) of samples within groups is the

same in all groups [16], a strong assumption which when violated

can lead to inflation of type I error. Third, non-parametric

methods are usually less powerful than parametric methods, so
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when a parametric alternative is available it should be the

preferred method to model metagenomic data.

In this paper, we present biostatistical methods for the analysis

of microbiome data based on a fully multivariate parametric

approach. In particular, the parametric model used in this paper is

the Dirichlet-Multinomial distribution which has been shown

recently to model metagenomic data well. In [17] the authors

apply the Dirichlet-multinomial mixture for the probabilistic

modeling of microbial metagenomics data, which was used to

successfully cluster communities into groups with a similar

composition. However, a multivariate hypothesis testing frame-

work to compare populations using this model was not derived. In

this work, we apply a different parameterization of Dirichlet-

multinomial model to the one presented in [17], which is suitable

to perform hypothesis testing across groups based on difference

between location (mean comparison) as well as scales (variance

comparison/dispersion). Using this model, we develop methods to

perform parameter estimation, multivariate hypothesis testing

power and sample size calculation. An open source R statistical

software package (‘HMP: Hypothesis Testing and Power Calcu-

lations for Comparing Metagenomic Samples from HMP’) for

fitting these models and tests is available [18].

In addition, the methods developed here are not constrained by

computational resources and work for any size microbiome dataset

(e.g., number of sequence reads and samples). These methods and

are also likely applicable to phylogenetic analysis which is

currently being investigated.

Materials and Methods

Ethics Statement
Subjects involved in the study provided written informed

consent for screening, enrollment and specimen collection. The

protocol was reviewed and approved by the Institutional Review

Board at Washington University in St. Louis. The data were

analyzed without personal identifiers. Research was conducted

according to the principles expressed in the Declaration of

Helsinki.

Human Microbiome Data
Human microbiome data analyzed in this paper are from the

subgingival, supragingival, and saliva oral sites of 24 subjects (male

and female), 18–40 years old, from two geographic regions of the

US: Houston, TX and St. Louis, MO [19]. The analyses presented

here illustrate how the Dirichlet-multinomial biostatistical analysis

is used with real data. Approximately 16105 sequences were

obtained from the V1–V3 and V3–V5 variable regions of the 16S

ribosomal RNA gene, and collapsed into a single sample. The

sequencing was performed at one of four genome sequencing

centers (J. Craig Venter Institute, Broad Institute, Human

Genome Sequencing Center at Baylor, and Genome Sequencing

Center at Washington University in St. Louis). Sequence reads

were assigned to bacterial taxa using the Ribosomal Database

Project (RDP) classifier [20], which provides a confidence score for

each taxonomic classification. Only taxa labels with a confidence

score . = 80% were retained in this analysis, and taxa labels

below this threshold were relabeled as unknown. Although the

choice of an 80% threshold on the confidence score is arbitrary, in

[21] it was shown that threshold ranging between 50% to 90%

provided an average classification performance of between 77% at

the genus level up to 97% at the phylum level.

Statistical Model for HMP Data
Dirichlet-multinomial model. Consider a set of micro-

biome samples measured on P subjects with K distinct taxa at an

arbitrary level (e.g., phylum, class, etc.) identified across all

samples. Not all taxa need to be found in all samples. Let

xik, i~1, . . . , P; k~1, . . . , K be the number of reads in subject i

for taxon k, and let be the taxa count vector obtained from sample

i. Note that xik is 0 when taxon k is not in sample i. Let

Ni:~
PK

k~1

xik be the total number of sequence reads in sample i,

N:k~
XP

i~1

xik be the total number of sequence reads for taxon k

across all samples, and be the total number of sequences over all

samples and taxa. Table 1 shows the format of an RDP-mapped

microbiome data set.

Count data such as this is routinely analyzed using a

multinomial distribution which is appropriate when the true

frequency of each category (e.g., each taxon in microbiome data) is

the same across all samples. This implies that as the number of

sample points increases (i.e., number of reads) within each sample,

taxa frequencies in all samples converge to the same value (e.g., all

samples converge onto 40% taxa A, 25% taxa B,…) with no

variability between samples. When the data exhibit overdispersion

this convergence result does not occur (i.e., taxa frequencies in all

samples do not converge to the same values), and the multinomial

model is incorrect [22]. Hypothesis testing based on the

multinomial model in the presence of overdispersion can result

in an increased Type I Error (i.e., saying the microbiome samples

are different when they are not) [23].

The Dirichlet-multinomial distribution prevents Type I Error

inflation by taking into account the overdispersion in count data in

the form displayed in Table 1. It can be characterized by the

following two set of parameters [24]:

p~ pj , j~1,:::,K
� �

, 0ƒpjƒ1,
P

pj~1 which is a vector

of the expected taxa frequencies, and h§0 which is a number

indicating the amount of overdispersion. Using this parameteri-

zation, the Dirichlet-multinomial distribution is defined as [24]:

P X i~xi; p,hð Þ~

Ni:!

xi1! . . . xiK !

PK
j~1 P

xij
r~1 pj 1{hð Þz r{1ð Þh
� �

P
Ni:
r~1 1{hð Þz r{1ð Þh

:
ð1Þ

Table 1. Format of a microbiome data set for P subjects and
K distinct taxa at an arbitrary level (e.g., Phylum, Class, etc.).

Taxa

Sample 1 2 … K Total

1 X11 X12 … X1 K N1*

2 X21 X22 … X2 K N2*

..

. ..
. ..

. P ..
. ..

.

P XP1 XP2 … XPK NP*

Total N*1 N*2 … N*K N**

doi:10.1371/journal.pone.0052078.t001

Hypothesis Testing and Power Analysis for HMP Data
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Figure 1. Description of Dirichlet-multinomial parameters. Intuitive description of the meaning of the overdispersion parameter h. The four
plots show the taxa frequencies p̂pik for each of the five hypothetical samples (dashed lines) with 12 taxa in each sample, and the corresponding
weighted average across the five samples given by the vector of taxa frequencies p (solid line). The plots on the left show the taxa frequencies of
samples drawn from a Multinomial distribution (h~0) and the plots on the right show taxa frequencies of five samples drawn from a Dirichlet
Multinomial(hw0). The top row of plots is for samples with a smaller number of sequence reads, while the bottom row of plots is for samples with a
larger number of sequence reads. As the number of reads increases for the multinomial distribution increases each samples taxa frequencies
converge onto the mean, while for the Dirichlet-multinomial an increased number of reads is still associated with the same variability between the
individual samples.
doi:10.1371/journal.pone.0052078.g001

Figure 2. Definition of effect size. Illustration of a small and a large effect size when comparing two groups.
doi:10.1371/journal.pone.0052078.g002

Hypothesis Testing and Power Analysis for HMP Data
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The above parameterization of the Dirichlet-multinomial

distribution is suitable to perform hypothesis testing across groups

based on difference between locations (comparisons of p vectors)

as well as scales (comparison of h values). Other parameterizations

of the Dirichlet-multinomial distribution can be found in [23,25].

Note that the Dirichlet-multinomial distribution is a generalization

of the multinomial model, which results when h~0. When hw0
the data variability is larger than what is expected from the

multinomial distribution, and the Dirichlet-multinomial distribu-

tion provides a better fit to the data.

On a side note, if the elements of the taxa count vector, xi,
obtained from a sample are ranked (i.e., xi1§xi2§ � � �§xiK ),

then the Dirichlet-multinomial can be used to model the rank

abundance distributions (RAD) vector across samples. This is

useful if the analyst is interested in comparing community

structure and complexity across microbiome samples and body

sites, but not interested in the names of the community members

[26–28]. If the elements of the taxa count vector, xi, obtained

from a sample are not ranked (i.e., xik has the same taxa label

across all samples), then we are modeling the abundance of species

keeping their labels. This type of analysis is useful to compare

community composition across microbiome samples and body

sites, and it is usually referred to as analysis of species composition

data [29]. Since we are interested in analyzing different taxonomic

levels, we will refer to this as analysis of taxa composition data.

The interested reader is referred to [26–29] and references therein

for more details on the importance and applications of taxa

composition data and RAD data analyses to study biodiversity.

Estimating p and h. Referring to the data structure in

Table 1 on a set of P samples with counts on K taxa, we compute

the frequency of taxon k in sample i as the percentage of reads

within that sample that belong to that taxa (i.e., p̂pik~
xik

Ni:
). The

elements of the parameter p are then computed as the weighted

average of the taxa frequency from each sample (i.e., p̂pik) with

weights given by proportion of the number of reads in sample i

with respect to the total number of sequence reads (i.e., wi~
Ni:

N::
).

To understand the overdispersion parameter h a graphical

example is shown. In Figure 1 we have four plots showing the taxa

frequencies p̂pik for each of the five hypothetical samples (dashed

lines) with 12 taxa in each sample, and the vector of taxa

frequencies p (solid line). The plots on the left correspond to taxa

frequencies of five samples drawn from a multinomial distribution

(h~0) and the plots on the right correspond to taxa frequencies of

five samples drawn from a Dirichlet-multinomial (hw0). The top

row of plots is for samples with a smaller number of sequence

reads, while the bottom row of plots is for samples with a larger

number of sequence reads. As the number of sequence reads

increases the multinomial samples get closer and closer to the p,

while the Dirichlet-multinomial samples continue to show

variability and no convergence onto p. This pattern will hold

true in the Dirichlet-multinomial distribution no matter how large

the number of sequence reads becomes.

Given taxa counts vectors xi~ xi1, . . . ,xiK½ � for P subjects,

denoted in vector form as x1, . . . , xPf g (see Table 1), the set of

parameters pk, k~1, . . . , Kf g and h can be estimated using

either the method of moments [24,25,30] or maximum likelihood

estimation (MLE) [24] computational procedures. The method of

moments estimators of pkf g are [25]

p̂pk~
Xp

i~1

Ni

N::

� �
p̂pik~

Pp
i~1 xij

N::
~

Nk

N::
,k~1:::,k, ð2Þ

and of h is [24,30]

ĥh~
XK

j~1

Sj{GjPK
j~1 (Sjz Nc{1ð ÞGj)

, ð3Þ

where Nc~ P{1ð Þ{1
N::{ N::ð Þ{1PP

i~1

Ni:
2

� �
, and

Sj~
1

P{1

XP

i~1

Ni: p̂pij{p̂pj

� �2
, and

Gj~
1PP

i~1
Ni:{1ð Þ

PP
i~1

Ni:p̂pij 1{p̂pij

� �
with p̂pij~

xij
Ni:

. Alternatively,

the MLEs p̂pj

� �
and ĥh are given by

p̂pj

� �
,ĥh

� 	
~ arg max L pj

� �
,h; x1,:::,xP

� �
, ð4Þ

where L pj

� �
, h; x1, . . . , xP

� �
~P

P

i~1

P Xi~xi ; pj

� �
, h

� �
is the

Dirichlet-multinomial likelihood function. The method of mo-

ments and MLE estimation procedures perform equally well in

terms of statistical properties (e.g., bias, variance) for the number

of subjects and reads we routinely encounter in our microbiome

studies. These results are available from the authors as a Technical

Report.

Multinomial versus Dirichlet-multinomial test. Since the

presence of overdispersion increases the Type 1 Error if not

controlled for, it is good to test if overdispersion is present in a set

of microbiome samples. This can be done by formally testing the

null hypothesis Ho : h~0 (implying no overdispersion) versus the

alternative hypothesis HA : hw0 (implying overdispersion is

present). An optimal test-statistic calculated from the raw

metagenomic data (see Table 1) for this hypothesis is the following

[31]:

T~
XK

k~1

XP

i~1

1

N:k
xik{

Ni:N:k

N::

� �2

, ð5Þ

which approaches a Chi-square distribution with P{1ð Þ|(K{1)
degrees of freedom when the number of sequence reads is large

and the same in all samples. In the case that the number of reads

varies across samples (such as in microbiomes samples) the test

statistics converges to a weighted Chi-square with a modified

degree of freedom (see [31] for more details). This is a more

complicated formulation and is not presented here, but an

approximate solution presented in [31] has been included in the

R HMP Package. Note that this hypothesis test establishes that the

data are better represented by a Dirichlet-multinomial than a

multinomial. However, it does not affirm than Dirichlet-multino-

mial fits the data best. A goodness-of-fit test statistic for doing this

is currently being derived.

Hypothesis Testing
Comparing p to a previously specified microbiome

population. Consider the problem of comparing microbiome

samples to a vector of taxa frequencies po gathered in an earlier

study or hypothesized by the investigator. This might be done to

test if new samples come from e the same or different population

from earlier samples, such as comparing a population to the HMP

healthy controls. This test is analogous to a one sample t-test in

classical statistics, which, in our case, corresponds to assessing

Hypothesis Testing and Power Analysis for HMP Data
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whether the vector of taxa frequencies p for the new samples,

estimated using method of moments or MLE, are equal to the taxa

frequencies vector p0 from the previously studied population.

The following statistic formally tests the hypothesis Ho : p~po

versus the alternative that HA : p=po: [32]

Figure 3. Comparison of two metagenomic groups using a taxa composition data analysis approach. Taxa frequency means at Class
level obtained from subgingival plaque samples (blue curve) and from supragingival plaques samples (red curve): a) The mean of all taxa frequencies
found in each group, b) The mean of taxa frequencies whose weighted average across both groups is larger than 1%. The remaining taxa are pooled
into an additional taxon labeled as ‘Pooled taxa’.
doi:10.1371/journal.pone.0052078.g003

Hypothesis Testing and Power Analysis for HMP Data
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X1 sample test~ p̂p{poð ÞT V po,ĥh,Ng

� 	� 	{

p̂p{poð Þ, ð6Þ

which is a generalized Wald test statistic where p̂p is an unbiased

estimator of p, :ð Þ{ is the Moore-Penrose generalized inverse, and

V po, ĥh, N::

� 	
~N::

{2 C ĥh,N::

� 	
D poð Þ{popo

T
� �

with D poð Þ a

diagonal matrix with diagonal elements given by po and

C ĥh,N::

� 	
~ĥh

PP
i~1

N2
i:{N::

� �
zN::, and where N:: is the total

number of reads in the samples. The asymptotic null distribution

of X1 sample test is a Chi-square with degrees of freedom equal to the

rank of the matrix D poð Þ{popo
Tð Þ{, from which the statistical

significance (P value) is calculated for the test.

Comparing p from two sample sets. Consider the

problem of comparing microbiome samples between two groups

of subjects (e.g., healthy versus diseased), or two body sites (e.g.,

oral versus skin). This can be done to test if two sets of microbiome

samples are the same or different, such as is in a case-control study.

This test is analogous to a two sample t-test in classical statistics,

which, in our case, corresponds to evaluate whether the taxa

frequencies observed in both groups of metagenomic samples,

denoted by p1 and p2, are equal.

The following statistic formally tests the hypothesis Ho : p1~p2

versus the alternative thatHA : p1=p2 [32,33]

X2 sample test~ p̂p1{p̂p2ð ÞT Sð Þ{1 p̂p1{p̂p2ð Þ, ð7Þ

which is a generalized Wald-type test statistics where p̂p1 and p̂p2 are

the method of moments estimates, required for Wald-type

statistics, of p1 and p2, and S is a diagonal matrix given by

S~
X2

m~1

N::m
2 C ĥhm,N::m

� 	{1

1{$mð Þ2

 � !{1

D pp

� �
, ð8Þ

where N::m is the total number of reads in group m, ĥhm is the

method of moments estimates of the overdispersion parameter of

group m, D pp

� �
is a diagonal matrix with diagonal elements given

by pp~
P2

m~1

$mp̂pm, a weighted average of estimated group means

where $m~N2
::m C hm, N::mð Þ{1 PJ

r~1

N2
::r C hr, N::rð Þ{1

� �{1

,

C hm,N::mð Þ~hm

PPm

j~1

N2
j:{N::m

 !
zN::m, and Pm is the number

of subjects in group m. The asymptotic null distribution of

X2 sample test is Chi-square with degrees of freedom equal to

K{1ð Þ, where K is the number of taxa, from which the statistical

significance (P value) is calculated for the test.

Comparing p from more than two groups. Consider the

problem of comparing microbiome populations between more

than two groups of subjects (e.g., healthy, moderately sick, severely

sick), or several body sites (e.g., saliva, subgingival and supragin-

gival). This can be done to test if multiple sets of metagenomic

samples are the same or different. This test is analogous to an

analysis-of-variance test in classical statistics, which in our case

corresponds to inquiry whether the taxa frequencies observed in

multiple groups of microbiome samples, denoted by

p1, p2, � � � , pJ , are equal.

The following statistic formally tests the hypothesis

Ho : p1~p2~ � � �~pJ versus the alternative thatHA : pm=pn

for at least one pair of groups [32,33]

Xseveral sample test~
XJ

i~1

p̂pi{pPð ÞT �SSi

� �{1
p̂pi{pPð Þ, ð9Þ

which is a generalized Wald-type test statistics given by the

weighted difference between each estimated group mean,

pp~
PJ

m~1

$mp̂pm, a weighted average of the J estimated group

means, with weights

$m~N::m
2 C hm, N::mð Þ{1 PJ

r~1

N::r
2 C hr, N::rð Þ{1

� �{1

, and �SSi

a diagonal matrix given by

Table 2. Power calculation as a function of number of sequence reads and sample size for the comparison of p from the
subgingiva and supragingiva populations, using as a reference the taxa frequencies obtained from the 24 samples, and 1% and 5%
significant levels.

Alpha = 1% Reads

Subjects 500 1,000 2,500 5,000 10,000 20,000 50,000 1,000,000

10 28.67% 29.45% 29.46% 29.83% 29.89% 30.00% 29.80% 29.95%

15 54.25% 55.26% 55.50% 56.16% 56.16% 56.12% 56.57% 56.53%

25 88.48% 89.44% 89.76% 90.03% 90.00% 90.11% 90.06% 90.04%

50 99.95% 99.96% 99.97% 99.98% 99.96% 99.97% 99.97% 99.97%

Alpha = 5% Reads

Subjects 500 1,000 2,500 5,000 10,000 20,000 50,000 1,000,000

10 51.96% 52.79% 53.14% 52.91% 53.20% 53.57% 53.16% 53.34%

15 76.01% 77.10% 77.90% 77.88% 77.98% 78.00% 77.92% 78.09%

25 96.50% 96.80% 97.02% 97.02% 97.13% 97.17% 97.09% 97.10%

50 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

doi:10.1371/journal.pone.0052078.t002
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Figure 4. Comparison of three metagenomic groups using a taxa composition data analysis approach. Taxa frequencies at class level
obtained from saliva (black line), subgingival plaque (blue line), and from supragingival plaques samples (red line): a) The mean of all taxa frequencies
found in each group, b) the mean of taxa frequencies whose weighted average across both groups is larger than 1%. The remaining taxa are pooled
into an additional taxon labeled as ‘Pooled taxa’.
doi:10.1371/journal.pone.0052078.g004
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The asymptotic null distribution of Xseveral sample test is Chi-square

with degrees of freedom equal to J{1ð Þ K{1ð Þ, where J is the

number of groups and K is the number of taxa, from which the

statistical significance (P value) is calculated for the test. Note that

there does not yet exist a multiple comparisons test analogous to

Tukey’s Least Significance Difference or Duncan’s Range Test

[34] routinely used in ANOVA to determine which groups are

different when the omnibus rejects the null hypothesis, and is a

focus of ongoing work in our lab.

Power and Sample Size
When designing an experiment the goal is to simultaneously

reduce the probability of deciding that the groups are different

when they are not (Type I Error), and reduce the probability of

deciding the groups are not different when in fact they are (Type II

Error). From convention we often set the Type I Error = 0.05

(significance or P value) and the Type II Error = 0.2 resulting in

power = 0.8, or 80% (power = 1– Type II error). The sample size

needed to achieve these error rates depend on the probability

model parameters, the hypothesis being tested, and the effect size

indicating how different the groups are.

Power can be calculated in the R package for each of the four

hypothesis tests discussed above, but for clarity we will only discuss

comparison of p across two groups. Assume that the model

parameters p and h are known for each group, and we are

interested in formally testing the hypothesis Ho : p1~p2 versus

the alternative thatHA : p1=p2. Intuitively, the effect size is

defined by how far apart the vector of taxa frequencies p1 and p2

are from each other. There are several ways to quantify this. For

example, a modified Cramer’s Q criterion can be used which

ranges from 0, denoting the taxa frequencies are the same in both

groups, to 1, denoting the taxa frequencies are maximally different

(see Appendix S1 for more details). In Figure 2 we show examples

of hypothetical data where the effect size is small (Q = 0.07) and

large (Q = 0.65) across two groups. It would be expected that more

samples will be needed to test the 2 group comparison hypotheses

for the small effect size than it would be for the large effect size

parameters.

Power and sample size calculations are part of the R HMP

package for the hypotheses presented in this paper [18]. The

technical details of the mathematics for doing this are beyond the

scope of this paper. We therefore have included for interested

readers the mathematics for power and sample estimation in the

Technical Report available from the authors.

Performance Properties of these Tests
Statistical methods need to be tested for their performance to

ensure the Type I and II error, P values, power and sample size

calculations, and other results from their application are correct.

This can be done analytically and proven mathematically, as well

as through comprehensive Monte Carlo simulation studies. We

chose the latter approach to confirm that these statistics behave as

expected and present the results in the Technical Report available

from the authors. We elected not to include these results in detail

in this paper since it would detract from the primary goal of

presenting statistical methods for applied analysis of metagenomic

data. However, we briefly discuss those results which showed

uniformly that these methods and software are valid.

We simulated Dirichlet-multinomial data for a variety of sample

sizes, number of taxa, overdispersion, and effect size, and ran

hypothesis tests for one sample, two sample and multiple sample

comparisons. These simulations showed the Type I and II Error

rates were as expected.

We performed simulated power and sample size calculations

and obtained the correct results and show, as expected, the effect

size, overdispersion, and sample size influence power. As the effect

size increases, overdispersion decreases, or sample size increases,

the power goes up. Of particular interest is that in some examples

the number of reads also impacts power, with power increasing as

the number of reads increases, holding effect size, overdispersion,

and sample size constant. This appears to be related to the value of

the overdispersion parameter, where for smaller overdispersion the

number of reads has the greatest impact on power. Recall that as

overdispersion goes to 0, the data converge to a multinomial

distribution where the number of reads is known to have

significant impact on power.

The Technical Report also presents several other tests of

hypothesis that we did not include here since they seem less likely

relevant to researchers. This includes comparing the overdisper-

sion parameter across groups, and comparing distributions defined

simultaneously by both p and h.

Results of Taxa Composition Data Analysis
In this section, we present results of analyses of metagenomic

data from the 24 samples described above for saliva, subgingival

and supragingival plaques analyzing the data at the class level. In

our experience with metagenomic data analysis two types of

analyses are routinely done. When the investigator is interested in

community composition (what bacteria are there) the analysis

proceeds with taxa labels preserved. In ecology this is usually

known as analysis of species composition data [29], and here we

will refer to this as taxa-composition data analysis. Alternatively,

when the investigator is interested in community structure (what

are the high level descriptions of the samples such as richness and

diversity) the analysis proceeds without the taxa labels. In ecology

this is called as analysis of rank abundance distribution (RAD) data

[26–28]. The methods presented in this paper can be applied to

both of these situations as illustrated below. In this section the

samples are analyzed using a taxa-composition data analysis

approach, and in the following section the same analyses are

applied using a RAD data analysis approach. It should be noted

that for these examples, when the taxa labels are ignored there is a

loss of information in the data and the subsequent test of

hypotheses show a decrease in power.

One technical issue for the applied data analysis involves the

presence of rare taxa. The test statistics proposed are based on the

Chi-square distribution and the calculation of the P value is more

precise when there are not many rare taxa. This is related to the

technical issue of the convergence rate of the test statistic onto its

Table 3. Unadjusted and Bonferroni adjusted p-values for all
pairwise comparisons between saliva, supragingiva and
subgingiva samples.

Supraginigiva Subgingiva

Saliva P,0.00001 (unadjusted) P,0.00001 (unadjusted)

P,0.00003 (Bonferroni) P,0.00003 (Bonferroni)

Supragingiva P = 0.0007 (unadjusted)

P = 0.0021 (Bonferroni)

doi:10.1371/journal.pone.0052078.t003
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Chi-square distribution. To improve the convergence rates of

these test statistics all taxa frequencies whose weighted average

across all groups is smaller than 1% are combined into a single

taxon labeled as ‘Pooled taxa’. An illustration of the taxa

composition data to be analyzed is shown in Figure 3 a) where

we see that taxa from Mollicutes to Deinococci have low

prevalence and found that their weighted average across both

groups was less than 1%. In Figure 3 b) the same data are shown

Figure 5. Comparison of two metagenomic groups using rank abundance distribution data. Ranked taxa frequencies mean at class level
obtained from subgingival plaque samples (blue curve) and from supragingival plaques samples (red curve): a) The means of all ranked taxa
frequencies found in each group; b) The mean of ranked taxa frequencies whose weighted average across both groups is larger than 1%. The
remaining taxa are pooled into an additional taxon labeled as ‘Pooled taxa’.
doi:10.1371/journal.pone.0052078.g005

Hypothesis Testing and Power Analysis for HMP Data
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where these rare taxa are pooled, which are the data analyzed in

the rest of this section. An alternative approach would be to drop

the rare taxa.

Multinomial versus Dirichlet-multinomial Test
Since overdispersion increases the Type 1 Error it is important

to test if overdispersion is present in a set of microbiome samples.

To do this we use Equation 5 to formally test the null hypothesis

Ho : h~0 (implying no overdispersion) versus the alternative

hypothesis HA : hw0 (implying overdispersion is present). In both

subgingival and supragingival plaque samples, the null hypothesis

that the data come from a multinomial distribution was rejected in

favor of the Dirichlet-multinomial alternative. The overdispersion

parameters, using method of moments (see Equation 2), are

estimated to be greater than 0 and equal 0.047 for subgingival

(T = 18,968; df = 11; P,0.00001), and 0.054 for supragingival

(T = 18,953; df = 11; P,0.00001).

Comparing p from Two Sample Sets
Consider the problem of comparing microbiome samples

between the subgingival and supragingival samples to test if two

sets of microbiome samples are different, such as is done in a case-

control study. The application of Equation 7 hypothesis test to

compare taxa frequencies (see Figure 3 b) p1 versus p2

corresponding to subgingiva and supragingiva is significant

(X2 sample test = 25.64; df = 11; P = 0.007). From this it is concluded

that the null hypothesis that both taxa frequencies are the same is

rejected in favor of the alternative that they are different.

Power and Sample Size Calculation
Table 2 shows a power analysis to compare the taxa frequencies

of the subgingival plaque versus the supragingival plaque

populations from Figure 3b (effect size Qm~0:16) using 1% and

5% significance levels. To calculate power requires the Dirichlet-

multinomial parameters, significance level, and specified number

of subjects and reads to be defined. In this example the Dirichlet-

multinomial parameters are obtained from the subgingival and

supragingival 24 sample dataset, the significance levels based on

conventional P-values, and a range of subject numbers and reads

that could reasonably be obtained in the typical experimental

setting.

Table 2 entries are the power achieved for the specified

significance level, number of subjects, and number of reads. For

example, for significance level = 1%, number of subjects = 15, and

number of reads per subject = 10,000, the study has 56% power to

detect the effect size observed in the data.

Note that the power is not impacted by increasing the number

of reads. In this paper we show the results out to 1,000,000

expected reads per sample, but have conducted experiments

running the number of reads out to 10,000,000 and reached the

same conclusion. The likely cause of this is that increasing the

number of reads does not impact the standard error around p,

while increasing the number of subjects does. However, in

experiments based on unlabeled taxa (i.e., rank abundance

distributions) the number of reads does impact power.

Comparing p from Three Sample Sets
It may be of interest to an investigator to compare three or more

groups. Here, for purpose of illustration, we compare the saliva,

subgingival and supragingival plaque populations from our 24

subjects. Figure 4 a) shows the taxa frequency to be analyzed

where we see that taxa including Deinococci up to Planctomyce-

tacia have very low prevalence. Following the same rationale as for

the two sample comparison above, rare taxa were pooled, and the

data analyzed is presented in Figure 4 b). It can be seen that the

taxa here are the same as used in the comparison of subgingival

versus supragingival plaque samples alone. To test if the saliva

samples also are better fit to a Dirichlet-multinomial versus

multinomial distribution we tested the hypothesis Ho : h~0 versus

HA : hw0 and conclude that in fact the Dirichlet-multinomial is

the better distribution (P,0.00001).

The application of Equation 9 hypothesis test to compare taxa

frequencies (see Figure 4) p1 versus p2 versus p3 corresponding to

subgingiva, supragingiva, and saliva is significant

(Xseveral sample test = 258.158; df = 22; P,0.00001). From this it is

concluded that the null hypothesis that taxa frequencies across the

three groups are the same is rejected in favor of the alternative that

they are different.

Table 4. Power calculation as a function of number of sequence reads and sample size for the comparison of ranked p from the
subgingiva and supragingiva populations, using as a reference the taxa frequencies obtained from the 24 samples, and 1% and 5%
significant levels.

Alpha = 1% Reads

Subjects 500 1000 2500 5000 10000 20000 50000 1000000

10 8.57% 9.56% 10.06% 10.98% 10.51% 10.50% 10.62% 10.17%

15 15.88% 17.42% 18.91% 19.55% 19.85% 19.29% 19.32% 20.10%

25 36.36% 38.81% 41.65% 41.65% 42.91% 42.93% 42.66% 43.54%

50 81.81% 85.60% 87.38% 88.16% 87.50% 87.98% 88.30% 88.59%

Alpha = 5% Reads

Subjects 500 1000 2500 5000 10000 20000 50000 1000000

10 23.60% 24.60% 26.30% 22.80% 24.50% 28.20% 25.50% 25.70%

15 32.90% 38.70% 38.60% 40.10% 40.00% 39.10% 37.90% 43.00%

25 61.40% 63.50% 63.90% 65.60% 66.40% 64.90% 66.90% 67.10%

50 93.20% 94.80% 96.50% 95.30% 96.50% 95.40% 96.60% 97.40%

doi:10.1371/journal.pone.0052078.t004
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The next step in this approach to hypothesis testing is to

determine which of the groups are different. In the analysis-of-

variance literature this is known as multiple comparisons. A simple

approach calculates all pairwise P values and adjusts for the

number of tests using a Bonferroni adjustment. In Table 3, we

show the p-values (unadjusted and adjusted using Bonferroni) for

all pairwise comparisons between saliva, supragingiva and

Figure 6. Comparison of three metagenomic groups using rank abundance distribution data. Ranked taxa frequencies mean at class
level obtained from subgingival plaque samples (blue curve) and from supragingival plaques samples (red curve): a) The means of all ranked taxa
frequencies found in each group; b) The mean of ranked taxa frequencies whose weighted average across both groups is larger than 1%. The
remaining taxa are pooled into an additional taxon labeled as ‘Pooled taxa’.
doi:10.1371/journal.pone.0052078.g006
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subgingiva samples. This suggests that all three sample sets are

statistically different.

Result of Rank Abundance Distributions Data Analysis
Here we present the same analyses as in the previous example

except using rank abundance distributions (RAD) which is of

interest when the focus is on community structure (e.g., richness

and diversity). Many analysts reduce each sample to a single

measure of richness or diversity and then compare these values

across groups. However, this results in a significant loss of

information which should be avoided when analyzing data. The

analyses presented here preserve most of the information (except

taxa labels) which should prove to be more valuable for many

situations. To illustrate, the RAD data to be analyzed in the

following is shown in Figure 5 a) where we see that ranked taxa

from 11th to 19th have low prevalence. In Figure 5 b) the same

data is shown where these rare ranked taxa are pooled, which are

the data analyzed in the rest of this section.

Multinomial versus Dirichlet-multinomial Test
In both subgingival and supragingival plaque samples, the null

hypothesis that the data come from a multinomial distribution was

rejected in favor of the Dirichlet-multinomial alternative. The

overdispersion parameters, using method of moments (Equation

2), are estimated to be greater than 0 and equal 0.008 for

subgingival (T normalized = 69945; df = 215; P,0.00001), and

0.02 for supragingival (T normalized = 141301; df = 216;

P,0.00001). Note that this hypothesis test establishes that the

data are better represented by a Dirichlet-multinomial than a

multinomial.

Comparing p from Two Sample Sets
The application of the hypothesis test to compare ranked taxa

frequencies (see Figure 5 b) p1 versus p2 corresponding to

subgingiva and supragingiva is not significant (X2 sample test = 11.08;

df = 10; P = 0.29). From this it is concluded that there is not

enough evidence to reject the null hypothesis that ranked taxa

frequencies are the same.

Power and Sample Size Calculation
Table 4 shows a power analysis to compare the taxa frequencies

of the subgingival plaque versus the supragingival plaque

populations from Figure 5 b) (effect size Qm~0:07) using 1%

and 5% significant levels, respectively. To calculate power requires

the DM parameters, significance level, and specified number of

subjects and reads be defined. In this example the Dirichlet-

multinomial parameters are obtained from the subgingival and

supragingival 24 sample dataset, the significance levels set based

on conventional P-values, and a range of subject number and

reads that could reasonably be obtained in the typical experimen-

tal setting. The table entries are the power achieved for the

specified significance level, number of subjects, and number of

reads. For example, for significance level = 5%, number of

subjects = 15, and number of reads = 10,000, the study has 40%

power to detect the effect size observed in the data. Note that

compared to the power calculations for the taxa composition data

analysis (Table 2) the power is lower for the RAD comparison due

to the smaller effect size observed in the data with this analysis.

Comparing p from Three Sample Sets
Figure 6 a) shows the ranked taxa frequency to be analyzed

where we see that ranked taxa between the 11th to the 22nd most

abundant taxa have very low prevalence. Following the same

rationale as for the two sample comparison above, ranked rare

taxa were pooled, and the data analyzed is presented in Figure 6

b). It can be seen that the taxa here are the same as used in the

comparison of subgingival vs supragingival plaque samples alone.

To test if the saliva samples also are better fit to a Dirichlet-

multinomial versus multinomial distribution we tested the

hypothesis Ho : h~0 versus HA : hw0 and conclude that in fact

the Dirichlet-multinomial is the better distribution (P,0.00001).

The application of Equation 9 hypothesis test to compare taxa

frequencies (see Figure 6 b)) p1 versus p2 versus p3 corresponding

to subgingiva, supragingiva, and saliva is not significant

( Xseveral sample test~28:048; df~20; P~0:10
� �

. From this we

concluded that there is not enough evidence to reject the null

hypothesis that ranked taxa frequencies across the three groups are

the same. Since the test of the three groups does not reject the null

hypothesis the multiple comparison tests is not applicable.

Discussion

The major contribution of this work is to begin formulating a

biostatistical foundation for the analysis of metagenomic data. The

Dirichlet-multinomial model is designed for count data and

accounts for over dispersion, which if not adjusted for will result in

increased Type I Error. The model gives rise to a broad class of

statistical methods, including one sample and multi-sample tests of

hypothesis, as well as calculating sample size and power estimates

for experimental design. It also provides a set of parameters that

can be interpreted analogous to the mean and variance of the

bacterial diversity in a population. Computationally this model

can accommodate large datasets consisting of multiple samples

and essentially unlimited number of reads. For illustration of these

methods we presented results of analyses and sample size/power

calculations for three body sites for normal healthy individuals

collected through the Human Microbiome Project.

Several issues that were referred to in the paper are discussed

here. First, the performance of statistical tests depends on their

behaving as predicted by statistical theory. For example, a test

statistic under the null hypothesis should result in 5% of the tests

being significant at the P, = 0.05 level. This and other measures

of statistical performance have been confirmed through extensive

simulation studies and are in a Technical Report available from

the authors.

Second, the Dirichlet-multinomial model can be applied to taxa

labeled and unlabeled data corresponding to Taxa composition

and Rank Abundance Distribution (RAD) data analyses. In

ecology this represents two alternative strategies focused on

comparing individual species or diversity (RAD) across commu-

nities. The tools proposed here have general use in ecology, but we

focused only on metagenomics in this paper. We leave it for others

with in- depth experience in ecology to explain how these analyses

can best be used in that field [26–29].

Third, in statistics a parametric model is usually preferred over

a non-parametric models (e.g., permutation, bootstrapping) when

available. In almost all cases parametric models are more efficient

and require less data to achieve a given level of power. They also

retain more information contained in the data (see the Introduc-

tion Section for a detailed discussion). Also, unlike non-parametric

methods, our test statistics are appropriate when comparing

groups that do not have the same within group variability, a

common occurrence in microbiome data.

One of the potential limitations of our method is the

incorporation of the rare taxa in the analysis. The performance

of the test statistics proposed depends on their convergence to the

Chi-square distribution which requires that on having rare taxa

Hypothesis Testing and Power Analysis for HMP Data
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with a minimum frequency across subjects. Though, the proposed

approached of ‘pooling rare taxa’ can be seen as loss of

information, it currently stands as a practical approach which

avoids giving importance to artificial rare taxa due to the effect of

noise in the data. The analysis of rare taxa in metagenomic data is

an ongoing topic of discussion and study; it is difficult to identify

rare taxa from noise due to sequencing and classification errors,

which is not the focus of these methods.

Several methods will be developed extending the Dirichlet-

multinomial model for more complex metagenomic research

designs and datasets. First, when parameters p are shown to be

different across groups, it is important to determine which taxa or

ranked taxa are causing this difference. To avoid multiple testing

problems from doing all univariate comparisons, methods

analogous to linear contrasts from analysis-of-variance are being

investigated. Second, application of the Dirichlet-multinomial to

repeated measures, or mixed models analysis, can be used to

monitor changes in the microbiome over time. Third, regression

analysis adjusting for covariates can model changes in the

microbiome such as how diet, age, or gender affects the stool

microbiome. The three topics are current areas of research by the

authors.
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