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Mixed Boundary Solutions of Two-Dimensional

Navier Equation in a Rectangular Region

Abstract

An analytical solution of elastostatic problem in two-dimensional rectangular
region is derived in the case of an mixed boundary condition. The stress destri-
bution which arises on the surface, on which the displacement is fixed, is illustr-

ated explicitly.

One of the most powerful approach to two-dimensional elasto-static problem
seems the method of complex potential ¥?, developed by Kolosov, Muskhelishvili
and Stevenson. The essentials of their arguments are as follows;

Let us introduce the complex &-plane, {=&+in, which represents the indivi-
dual point inside the elastic body, instead of orthogonal coordinates (&, ). The
stress component ¢, Ten, Ty, and the components ue, uy of the displacement vector

are written as

2ulue + iy ) = 6@ () — Lo * (&%) —y*(¢*) (1a)
Oee+a,,=2L (L) +o™(¢*)] (1b)
Oee = Ogy + 210, = —2[C@ "*({*) +y*(¢™)] (1o

where @ and ¢ are analytic function in the {-plane, and u is shear modulus of
the elastic body. « is given by

£=3-4v , (2)
where v denotes Poisson’s ratio of our elastic body™®.

In effect, Egs. (1) have satisfied the equations of equilibrium or Navier equ-
ation, the two-dimensional elastostatic problem is reduced to find analytic functions
which satisfy certain condition on the boundaries of the elastic body.

For the application of this representation, Muskhelishelishvili? have yielded
the expressions for the stress and displacement in an orthogonal coordinate system

z=x+1iy, which we take to be defined by the conformal transformation {=¢ (z2).

*) In this paper, we write down the formulae for a state of plane strain. They
are true for a state of plane stress if, instead of v, a “modified Poisson’s ratio”
vi=y/(1+v) is substituted ®.
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That is
-1
2u(us+iuy)= Zi ‘(%f:—) {epl¢(2)]—¢(2) « ™[ {(2)*]
A TIOMINE (32)
osxtayy,=—2{0[¢(D]+O*[{(D*]} , (3w

0ue =035~ 210z, = -2 (S ) L (0D + PLE@D (B0

where @ (&) and ¥ (&) denote @' ({) and ¢' (£), respectively.

Here, we suppose that the elastic body occupies the half-plane Im (&)=<0, i.e.,
lower half-plane, in which the complex potentials are defined. In this case, Mus-
khelishvili provided a beautiful method for the analytic continuation of the complex
potential function onto the upper half-plane, through the unloaded part of the bou-

ndary (real axis). His method leads us to the following forms for the complex
potential ¥ (&):
V()= -0()-0*(H)-¢- 0 () in all-plane. (4)

Then from Egs. (1), we get a perspicuous expressions of the displacement and the
stress components in terms of the single function @ (&) as follows:

2p e (e +iu, ) =ep(L)+ () - (¢ - %O (5a)
oee top,=2[0(L)+0*(¢*)] (5b)
Oee — Opy — 260, =200 () +O* (O + (¢~ %) O'(O)] (5¢)

In the result, the two-dimensional elastostatic problem is reduced to find the
sectionally holomorphic function which satisfies certain conditions on the boundaries.

Now, in this paper, we intend to derive an analytical solution inside the rect-
angular body in the case of mixed boundary conditions. The problem tackled
here is illustrated in Fig. 1.  Attach the upper surface OA of 2ax2b rectangular
elastic body OABC to a perfectly rigid body, then the displacement of the surface
of our elastic body is zero. An external concentrated load acts vertically at a
point D on the lower surface BC. The stress and strain arise inside the rectangle
OABC. Particularly, in this paper, we intend to give a full account of the normal
and shear stresses which appear on a rigidly fixed surface OA.

< 2a ot

0 A

D
Fig. 1 2ax2b rectangular elastic body.
The surface OA is rigidly fixed.
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The essential idea of the method of finding the solution, which we adopt here,
is to transform the known solution of a simple region but with mixed boundaries
into our region OABC. Such being the case, we consider a body occupying the
lower half-plane, Im (£)=<00, illustrated in Fig. 2A. The elastostatic solution we
should obtain obeys the following boundary conditions:

20 » (ue +iuy ) =0 for £<Ca’ (6a)
Opptice,=—F «86(E~¢p') for €>¢4 . (6b)
This has been solved by Sakuraoka and Murata, and given as®
__F . _ 1 .4 ¢e)
OO =% "¢ XKD «n

X =[¢—¢a T eveip
where @ denotes (logk)/2x. From Egs. (1), at the boundary of the elastic body,

one can immediately write down the following relations:
S (20 +it)] | g-0-= 605 () +057(E) (8a)

Cogy =109 1| 4oo-=@o (&) — D" (&) , (8b)
where 0,"(§) [@,*(&£)] denotes the limit of the function @,(&) as ¢ tends to real
axis, =&, from the lower [upper] plane. Thus the solution (7) obviously satisfies
the boundary condition (6).

Next we introduce the conformal transformation which carries the lower half-
plane in which the complex potential is known, onto the actual region in which
we are to get the solution.  That is, we take the Schwarz-Christoffel transformat-
ion which maps the lower half of the {-plane on to the interior of the rectangular
region OABC of the complex z-plane®. 1t is illustrated in Fig. 2 in the case of
a=2 and b=1. The differential equation for the mapping function £=¢ (z) and

its solution are

d¢/dz= 2+ 2 (¢~ (¢~ ) (¢~ LN IV? (9)
and
((2)=-9(z;4a,4bi) (10)
Yt
A & -PLANE z-PLANE
A’ B’ D’ c’ 5> 2'0 L}.O N
0 3 of ~ " 7 A x
_2_0 A A 1
CA) C (B) B

Fig. 2 Schwarz-Christoffe]l transformation between ¢ and =z.
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where @ (z; 4a, 4bi) is the Weierstrass elliptic function having dual periodicity
equal to 4a and 44i, The explicit expression for ® (z; 4a, 4bi) is

P (z;4a, 4bi) = ‘Z+2' [(z—4am—4bni) 2~ (4am+4bni)~%] (10)

myn

where X3 denotes omission of the term m=n=0 from the double summations over

n,m

m and n. As shown in Fig. 2, the three corners A, B, and C of the rectangle
are mapped points from the points A’, B, and C’, respectively. The original point
O of the z-plane comes from the infinity of the ¢-plane. Considering the fact that
the mapping (10) transforms a line-element d ¢ in original {-plane to d = which is
1/1d &/d z| times as long as |d |, we arrive at following form for the complex pot-
ential @ [¢(2)]) for the inside of our rectangular region:
0L(2)1=(d{/d)Do[{(2)] . (11)

Now, substituting Eqs. (4) and (11) to Egs. (5), we can immediately write
down the stresses in our rectangular region OABC. Tt is shown that this solution
satisfies the boundary condition as follows;

1) on the segnient OA:
a¢
dz

_:x— (2uCus+i2iy) I yao-=
2) on the segment AB:
axz+iaxy| e-2a-0=LD(L) —0({*)]-0-=0
3) on the segment BC:
Oyy ~ ia,,| y~—2b+0:[®(c) - @((*)J | 70—
=-—ld¢/dz| « [O(L) ~@o({*) T 5o
=F«ld¢/dz|+0(E-(0)=F+ 0(x—xp0) ,
and the proofs on the segment CO are the same on the segment AB. The explict

« (k@) +OL*)}] 5=0-=0

expressions of the normal and shear stress, oy and oy, which appear on a rigidly
fixed surface OA are
0yy/F=[2coshnf/x] + {({p' = CaV{s" — ()T — () IEp — ¢ (2)T22
X cos{Blog({p' —CaD /(¢4 - ()]} (12 a)
oxy/F=—[ayy/F1~ tan{f « log({p' — ¢4 )/ (4 —C(x)1} . (121b)

For nummerical calculation, we take the case of plane stress and take, for exa-
mple, a=2cm, b=1cm and »=0.393. The results are illustrated in Figs. 3-6, in
regard to some loading points of the external concentrated force F. From the
figures, we can draw an interesting conclusion concerning with two quantities.
The one is the point (x.) at which the normal stress is largest, and the other the
point (xs) at which the direction of shear stress changes. As a matter of course
they disagree with zp, in general. In Fig.7, we illustrate z. and xs as a function
of zp. From Eqgs. (12), however, it is easy to see that z. depends the Poisson’s
ratio », but zs does not. Thus z; does not depend on the properties of elastic
materials but depends only on the shape of rectangle. This fact may be a fine
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(cm-) 0}'7/,:

(cm) Yy

Fig 3 The stress destributions which arise on the rigidly
fixed surface OA.  Arrow represents the loaded
point xp, i.e, zp=0.5cm.

tcmH ny/ F
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_— 2o 4o €™

024" |-
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20 L
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Fig. 4 The same as Fig. 3 except zp=1.0cm.
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Fig. 5 The same as Fig. 3 except zp=1.5cm.
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Fig. 6 The same as Fig. 3 except p=2.0cm.
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Fig. 7 The curves of zn (A) and xs (B) as functions of
the loading point zp (the axis of abscissas).

fruit of our analytical solutions in contrast to the numerical method such as finite
element method ¥ ® 7,

The preferable features of such an analytical solution, in comparison with the
numerical calculations such as the finite element method and the method of variat-
ional principles®, may be followings:

1) A careful study of the analytical solution of this sort may give us a probe
of the intuitive conjecture for the estimated stress state with more complex boun-
daries.

2) The analytical solution may be a great help in direct examining the prin-
ciple of Saint-Venant ?.

3) When all is said and done, the numerical method can give only the appro-
ximate value to the rigorous solution after all.

Nevertheless, it is a matter of course that, it is very rarely the case that ana-
lytical solution is actually found, for elasticity the mumerical method provides as

the most powerful and practical approach as ever.
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