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A Semiclasical Treatment of Specific Heat of Solid

Abstraet:

The normal modes of phonon arised in solid are derived through regarding them
to be elastic oscillations. The specific heat of solid is computed at low temperature

and compared with data. The phonon number distribution are also derived.

§1 Introduction

A specific heat relates to the thermal vibrations in solid. In this paper, we
propose a semiclassical treatment for the thermal vibrations contained in metal.
Generally, the number of thermal vibrations in a given frequency range can be
derived as follows 177,

Consider the solid to be a crystal lattice of atoms, each atom behaving as a
harmonic oscillator.  And we consider that the crystal has A atoms per unit cell
and the unit cell is a rectangular solid of dimensions ai, az, a3, along three mutually

perpendicular axes 1, 22, 3. Then the position of any cell can be denoted by a

3
vector N=3)n;a: e, where e; denotes a unit vector along the direction of x: axis.

i=1
Since there are A atoms per cell, 34 additional coordinates must be given to desi-
gnate the position of each atom. Let a and ¢ correspond to an atom number and
a Cartesian coordinate of an atom, respectively.
If we call the displacement of « atom from equilibrium of the coordinate in

the N-th cell Zai,v, the classical Hamiltonian for a crystal can be written as?3)

1 2 1
2 a_-‘g, Zui..'r+ _éﬁE Y 1P I e Zain ij,.wu» (1)

o oy e UL

H=
and the classical equations of motion is

- M -

Zain = _.s gjcnz.m /"ﬂj..‘\f-fl ‘ (2)

When all atoms of the crystal arbitrarily displace in the identical mannor D,

the force exerts on each atom is exactly zero, i.e.,
cH D :0.
,ﬂ.%j ai, Bj J
where D; (j=1, 2, 3) are arbitraly. Then we have

%}, Cat.ps =0. (3)
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In a given mode of oscillations, since one cell of the crystal is vibrating in a cert-
ain manner, all cells are vibrating the same way but with different phases. So

we can write
Zan =0y (K)exp i (K-N-wt), (4)

where K denotes the relative phase between cells. Moreover, K; is written as

- 1
K =_2mn
i

integer number #; runs from —Li/a; to Li/ay,

where L: is the total length of crystal in x; direction. When we now want to
find the normal modes of oscillations, we must solve the characteristic equation of
a 34 by 34 matrix derived from substituting Eq. (4) to Eq. (2). The characte-
ristic equation is

F (02, K)=det (3} Cli g+ "™ =2 8,48,)=0. (5)

Eq. (5) yields the 34 different normal modes of oscillations together with their
dispersion relations.  Among these 34 modes, there are three normal modes those
frequencies tend to zero in propotional to |K| as K| goes to zero, i.e. phonon
modes. The proof is as follows:

When K=0, Eq. (5) is written as

de[ (? C:-ﬁi) — w2 § det (§ C::‘ﬂ.f)r*

+ aw! § § det(§ Ci g, u+O (wB)=0, (6)

where (Du CX g+ denotes the (3A—1) by (34 —1) matrix obtained from the
matrix >,,: C::':N by removing the 7 A-th row and 7 %-th column, and so on. From
Eq. (3), we can easily shown that

det(}; C:.m)zdet(g cy Jf),1r=dv.=:r.(§} Ct.p)rts 1=0. (7)
Then we have known that when K is zero, there are three zero-frequency modes.
Next, for sufficiently low frequnecy, by expanding the left hand side of Eq. (5) in

Taylor series with respect to w and K, and neglecting the higher order terms in
w? and | K|, we obtain

w2=lzi BU'K: Kj;
Bj_f: —%(@F/B KiaKj).z-xao/(aF/aﬂ)z)uz-x-u- (SJ

If one diagonalizes the 3 by 3 matrix B through rotating the coordinate axes, one
can get three independent linear dispersion relations between @ and K. These are

the phonon modes of oscillations in crystal.
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§ 2 Derivation and quantization of normal modes
in isotropic body

In preceeding section, we see that there are three low frequency modes in the
crystal, i.e., three phonon modes. It is well known that they are acoustic oscil-
lations at least in low wave number K. Then it has a significant physical mea-
ning that we derivate the phonon modes by considering them to be elastic oscil-
lations in solid.

Let us take a rectangular parallelepiped with sides a1, a2, @3, and assume that
the faces which are situated at x:=0, a; are constrained by the following boundary
conditions :

£i=0, oi;=0 (i%)), (9)
where & and oi; denotes displacement and stress tensor, respectively. It is neces-
sary to note that the oscillations possible under these conditions are executed wit-
hout any exchange of energy with the surroundings. The boundary condition (9)
does not modify the macroscopic properties of the system from proper oscillation.

Hooke’s low and Lagrangian of the system is

ci; =N 8y 2 O Ev+p (8 E;+0,E0), (10)
L=fd3x—é~ [p éz~—é—§(6;’§;+0ﬂ§¢}-m;]. (11)

where we approximate that the solid is isotropic. (X, u) and p denote the Lamdé’s
moduli, and the density of our solid, respectively  The minimum action prin-
ciple on Lagrangian (11) gives the equations of motion of solid :

pRE G120 5iy/0 x=0. (12)
The solution of Eq. (12) compatible with the boundary condition (9) is written

asﬁ}

Ei(K; x,t) = —A":‘égk")*..j?.&xp KB za)

+(1=28mt) exp (—i Kn am) ) e RH, (13)
where
N, T
K_i%' o ai ' (14)

and the #n: are non-negative integers. On substituting the expression (13) in (12),
we take the 3-by-3 characteristic equation :
det {8 p/p* K2—(A+p) KiK;/p—w (K)2 8,}=0.

*) Strictly speaking, a crystal is in no way isotropic. In general, however, whether
the solid is single crystal or not, it gives rise to no significant defference in
thermodynamic property.
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Since Eg. (15) yields the frequency values @) (K)=w2 (K)=yv"pu/p |K| and w3
(K)=v"(n+2pn)/p |KI|, we can write the general motion of oscillation arises in

solid as follows:

£ (%)= 33 C (K) £ (Ksx,0), (15)
] EP (K x,0) =3 ALK+ 1T Cexp (i Kn om)
+(1-28m1) exp (—i Knaw)Jexp [—iwi (K) ¢], (16)
where we normalized the vector A“MK)Z? e:-A(:)(K) as
AO(K) AD(K) =81, (17)

and the C(K) are arbitrary constants. E&(O(K ;x,¢)(i=1,2, 3) denote the three
normal modes of vibrations of solid for a given wave vector K, and correspond to
the three phonon modes of crystal stated in Sec. 1.

Next we write

(K %)= B B x,1) exp G o (K) ), (18)
ay az ag
QO (K)=yf L4885 CO(R) exp (—i i (K) ). (19)

a’(K; x) and Q¥ (K) denote the vector of the eigenoscillation and the correspon-
ding generalized coordinate, respectively. From Egs. (15)—(18), it follows that

£ (50 = 3 3 e (G%) QUG 0),

Sv ddxaW(K;x)a P (K';x)=81"8xx ,

and the Lagrangian for our system is

L=3} 5 -1 (00 (K; 12— w0 (K)2Q (K; 1)2). (20)

i=]1 K

Thus it is shown that all sort of the internal motions of elastic solid can be des-
cribed as certain sums of mutually independent harmonic oscillations which have

frequencies w; (K), i.e. normal modes.

Next we perform to quantize the internal motion by introducing the canonical
momentum, PW(K;¢), which is conjugate with Q™ (K;¢), and imposing the cano-
nical commutation relations on P(K;¢) and Q°(K;¢). The P(K;t) is

POK;1)=0L/00 (K;t)=0 (K;2), (21)
then from Egs. (20) and (21) the Hamiltonian of our system is written as

H=3} 5 - (PO 2+ 0K 2 QO (K3 1)), (22)

The canonical commutation relations are
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{ CPO(K;e), PO(K',;1))=(QW(K;t), Q¥ (K';¢))=0,

(POCK;t), QP(K" t))=—ih 8 Sax . (23)
Eq. (23) yields the following form for our Hamiltonian (22):
3
: 1
H=3} 33 [m (i, K)+ 3] h o (K), (24)

where m (i, K) denotes nonnegative integer.
Then the states of internal motions of our solid can be adequately described
by the set of the quantum numbers m (i, K). It is a matter of course that this

is true only when we regard the solid as an elastic continuous medium.
§ 8 Specific heat and frequency distribution in solid

In low temperature, the internal motion arised in solid contains only vibrations
of phonon modes, which have linear dispersion relations. These are acoustic oscil-
lations, and then we can treat them as elastic vibrations in solid, of which we gave

a detailed account in preceding section. The energy of the system is
3
H=3 m(i,K) & o (K), (25)
(¥}

where we neglect the zero-point energies. In other words, the energy levels of
the system have a structure represented in Eq. (25).

Now, we consider a quantum state of the solid with N atoms as follows: The
system consists of N pieces of fictitious particles, and the individual harmonic oscil-
lator with frequency ¢ (K) provides the fictitious particle with one-particle energy
levels :

E(, K;m)=mi» h wi (K). (26)
The N particles are distributed among these one-particle levels in a certain manner.
Since it is reasonable to consider that the fictitious particles are mutually indepen-
dent and correspond with the thermal excitations of solid, they are ideal bosons.
As a result, we can derive the thermodynamic quantities of a solid by studying
the ideal Bose gas in the level structure of Eq. (25), at least in low temperature.

It is well known that the Bose-Einstein condensation takes place for a Bose gas
at sufficiently low temperature. In our fictitious Bose gas, the critical temperature
T. for the Bose condensation is

' 2 1/3
="l \erd

where v and & (#) denote

R )
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The values of T are 138 K for aluminum and 120 K for tungsten. For T'<T.,
where our approaches make sense, the density of particles included in the energy

levels belonging to the frequency range from @ to w+dw is

dN(0)=—5 5 3} w2 Cexp (m ho/kT)~1)"1 do, (28)
where V represents the volume of the solid, V=Lj*Ls+L3. And the energy of the
system is

. 3:31-[&(4)2
;o= dN 1 V.
E=[hodN(w)=32LE0F Gy,
Then the specific heat is given by
36[;'(4)}r 2T \3 , kT \
Co= ( w) k=4.273- V(= 72) k. (29)

In Fig. 1 we compare Eq. (29) with the experimental data® for <60 K on tung-
sten. The Debye curve 191D with the theoretical charasteristic temperature #p=
355K is also compared. Our theoretical values are slightly better agreement with
data than those of Debye, which are just small as is commonly known.

Next we derive the phonon number arised in our solid. If a mode excited to
the m th level, that is, if (i, K;m)=m hw:(K), one says that there are m phonons
with energy hwi(K). From Eq. (28), we can immediatly write down the pho-

non number density ¢n for the frequency range from o to w+dw as

__ 3V & L 7Y — 1771
dn = 5o 03 mz-'i ma2-Lexp (mo h /kT)—=1]"1d w. (30)
(cal /mol)
2.0
Cv
1.0
0 50 (K)
T
Fig. 1 Comparison between theory and the experimental data for
tungsten. The solid curve of Cyv are calculated from

Eq. (29) by making use of the values p=1.323x10" N/m?
and 1=1.80% 102 N/m%  The dotted curve represents the
theoretical curve of Debye.
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(X10™ sec/mol)
1.O

L l

0 5 (X10" sec 10 W

Fig. 2 The phonon spectra arised in one mol of tungsten at
T=20K. Ny denotes Avogadro's number.

In Fig. 2, the phonon number distribution for tungsten at T'=20K are plotted
versus @. It is well known that the phonons arised in metal at low temperature
have a significant meang in connection with superconductivity. Some time later,
we will give an account of the superconductor within the framwork of the present

model.
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