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Abstract

Many features of dimensional reduction schemes are determined by the breaking of
higher dimensional general covariance associated with the selection of a particular
subset of coordinates. By investigating residual covariance we introduce lower di-
mensional tensors, that successfully generalize to one side Kaluza-Klein gauge fields
and to the other side extrinsic curvature and torsion of embedded spaces, thus fully
characterizing the geometry of dimensional reduction. We obtain general formulas
for the reduction of the main tensors and operators of Riemannian geometry. In par-
ticular, we provide what is probably the maximal possible generalization of Gauss,
Codazzi and Ricci equations and various other standard formulas in Kaluza-Klein
and embedded spacetimes theories. After general covariance breaking, part of the
residual covariance is perceived by effective lower dimensional observers as an infi-
nite dimensional gauge group. This reduces to finite dimensions in Kaluza-Klein and
other few remarkable backgrounds, all characterized by the vanishing of appropriate
lower dimensional tensors.

Key words: Dimensional reduction, Kaluza-Klein theories, embedded spaces.
PACS: 02.40.-k, 04.50.+h

1 Introduction

In many different situations, ranging from low to high energy physics, we are
interested in –or have access to– only a part of the coordinates describing a
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given physical system. The problem is finding the effective dynamics that drive
the interesting variables by reducing the uninteresting ones or, vice versa, given
the effective dynamics of accessible variables, introducing extra coordinates
that simplify the overall dynamical picture. Dimensional reduction may be in-
duced by a number of very different mechanisms which in general leave a track
in the lower dimensional dynamics. Typical examples are Kaluza-Klein and
brane-world reduction in high energy physics, quantum dots/lines/surfaces in
semiconductor physics, magnetic confinement in plasma physics and so on.
However, there are features that only depend on the selection of the ‘inter-
esting’ coordinates and not on the specific mechanism under consideration.
In this paper we focus on these universal features that depend on the se-
lection of a subset of coordinates and not on specific reduction schemes. It
should be stressed, that even if in certain cases –like brane-worlds and quan-
tum lines/surfaces– the effective lower dimensional configuration space can
be identified with a regularly embedded metric submanifold, this is not the
general situation. A classical example is provided by Kaluza-Klein theories
where the physical spacetime is obtained by identifying higher dimensional
points connected by a special class of diffeomorphisms that will eventually
be identified with gauge transformations. The resulting quotient space can
not be given the structure of metric submanifold. The classical theory of em-
beddings [1,2] is not enough for describing the general situation. In this paper
we further investigate the geometry of coordinate separation with emphasis on
residual general covariance and provide a unifying framework that successfully
generalizes the theory of metric submanifolds.

The paper is organized as follows. In Section 2 we find that dimensional reduc-
tion is completely characterized by lower dimensional tensors, generalizing, on
the one hand, Kaluza-Klein gauge fields [3,4,5] and, on the other, extrinsic cur-
vature and torsion –i.e. second and normal fundamental forms– of embedded
spaces [1,2]. In terms of these we obtain in Section 3 general reduction formu-
las for the Riemann tensor, Ricci tensor, scalar curvature, geodesics equations,
Laplace and Dirac operators, providing what is probably the maximal possi-
ble generalization of Gauss, Codazzi, Ricci equations [6] and various other
standard identities in embeddings and Kaluza-Klein theories. These equations
also represent the natural starting point to investigate higher dimensional
unification scenarios in which physics is allowed to fully depend on all the in-
troduced coordinates. In Section 4 special attention is given to induced gauge
structures. We show how residual general covariance in the reduced variables
always emerges in the effective dynamics as gauge covariance. The induced
gauge group is in general infinite dimensional and reduces to finite dimensions
in Kaluza-Klein and a few other remarkable backgrounds, all characterized by
the vanishing of appropriate lower dimensional tensors. Finally, in Section 5
a discussion of the findings is presented and concluding remarks are made.

For the shake of concreteness we tackle the problem from the viewpoint of
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higher dimensional unification. We consider a higher dimensional (HD) space-
time MD parameterized by D continuous coordinates xI , I = 0, 1, ..., D − 1,
endowed with a pseudo-Riemannian metric gIJ . In addition to the coordi-
nate system, we set up reference frames at each spacetime point r I

A (x), A =
0, 1, ..., D − 1, r I

A r J
B gIJ = ηAB. Physical laws are assumed to be covariant

under general coordinates transformations and local redefinitions of reference
frames [7]

xI → x′I(x), r I
A → Λ B

A (x)r I
B (1)

At low energies the spacetime Md (e.g. d = 4) is parameterized by d contin-
uous coordinates xµ, µ = 0, 1, ..., d − 1, and reference frames are made up of
d reference vectors r µ

α , α = 0, 1, ..., d − 1. Physical laws are covariant under
(electroweak and strong) gauge transformations, other than general coordi-
nates transformations xµ → x′µ(x) and local redefinitions of reference frames
r µ
α → Λ β

α (x)r µ
β . The original motivation for considering higher dimensional

unification is the hope that HD covariance can account for lower dimensional
(LD) gauge symmetries other than LD spacetime covariance. To make contact
with LD physics, we split HD coordinates in two groups xI = (xµ, yi) with
µ = 0, 1, ..., d− 1, i = 1, 2, ..., c ≡ D− d. We refer to xµ and yi as external and
internal coordinates, respectively. Consequently, reference frames split in four
blocks r µ

α ≡ r µ
α , ..., r i+d−1

a+d−1 ≡ ρ i
a with α = 0, 1, ..., d− 1, a = 1, 2, ..., c. As we

are willing to make no a priori hypothesis on specific reduction mechanisms,
we proceed by noticing that the minimal assumption that drives us to recover
the desired LD spacetime covariance is that the HD transformation group (1)
is effectively broken down to











xµ → x′µ(x)

yi → y′i(x, y)



























r µ
α → Λ β

α (x)r µ
β

...

ρ i
a → Λ b

a (x, y)ρ i
b

(2)

We take this as a characterization of dimensional reduction. In working out
the consequences that it implies, as a check of our results and to make contact
with the most important applications, we constantly specialize in appropri-
ate subsections to Kaluza-Klein theories [3,4,5] and spacetimes embedded in
a flat 1 higher dimensional space [2]. While in the former case the topology
reduces to that of a direct product and in the latter the system is localized on
a submanifold, in the general case the structure of the HD spacetime is more
complex. In correspondence to every choice of external coordinates xµ, the
internal coordinates yi span a c-dimensional internal spacetime Mx

c regularly

1 The assumption of flatness is clearly not necessary and is made because it is
common in applications and to keep our explanatory formulas as simple as possible.
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embedded in MD. Every internal spacetime Mx
c has to be identified with a

point of the d-dimensional external spacetime Md and may posses a geometry
–and even a topology– that vary from point to point. Strictly speaking, Md

can not be identified with the effective spacetime before internal coordinates
have been completely removed. In spite of this we will talk about LD exter-
nal metric, curvature or general tensors, with the bona fide assumption that
internal coordinate dependence will be eventually removed from the effective
theory. Clearly, any realistic reduction mechanism will eventually involve such
a removal. However we will not address this issue in this paper.

2 The Geometry of Dimensional Reduction

The HD spacetime MD is endowed with standard pseudo-Riemannian geom-
etry.

2.1 Tensors

HD tensors t ...J...
...I... transform according to

t ...J...
...I... → ... J K

I ... t ...L...
...K... ... J−1 J

L ...

with J J
I = ∂x

J

∂x
′I the Jacobian matrix associated with the transformation of

HD coordinates.

LD external tensors t ...ν...
...µ... and LD internal tensors t ...j...

...i... , respectively carrying
external and internal indices, transform according to

t ...ν...
...µ... → ... J κ

µ ... t ...λ...
...κ... ... J−1 ν

λ ...

t ...j...
...i... → ... J k

i ... t ...l...
...k... ... J−1 j

l ...

with J ν
µ = ∂xν

∂x′µ and J j
i = ∂yj

∂y′i the Jacobian matrices associated with the

transformations of xµ and yi respectively. LD hybrid tensors t ...ν...j...
...µ...i... , carrying

internal and external indices that transform with J ν
µ and J j

i , respectively,
will also be considered.
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When HD covariance is broken from (1) to (2), J J
I takes the block non-

diagonal form

J J
I (x′) =







J ν
µ (x′) ∂yj

∂x′µ (x′, y′)

0 J j
i (x′, y′)





 (3)

The off-diagonal block makes covariant external t...µ..., contravariant internal
t...i... and analogous hybrid components t ...j...

...µ... of HD tensors, in non-covariant
LD objects. On the other hand, contravariant external t...µ..., covariant internal
t...i... and analogous hybrid components t ...ν...

...i... of HD tensors, transform like
LD tensors. As an explicit example, external and internal components of a HD
covariant vector vI transform like

vµ → J κ
µ vκ +

∂yk

∂x′µ
vk and vi → J k

i vk

so that vµ can not be identified with an external vector, while vi ≡ vi trans-
forms like a LD internal vector. External and internal components of a HD
contravariant vector vI transform according to

vµ → vκJ−1 µ
κ and vi → vκ ∂y′i

∂xκ
+ vkJ−1 i

k

so that vµ ≡ vµ can be identified with a LD contravariant external vector,
while vi is not a LD vector.
When constructed from HD tensors, LD tensors are in general functions of
external and internal coordinates. In internal directions the xµ dependence
just labels the internal space Mx

c under consideration. In external directions
the yi dependence will be eventually removed.

2.2 Metric

The most general parameterization of the HD spacetime metric gIJ covariant
under (2) reads

gIJ =







gµν + hkla
k
µa

l
ν ak

µhkj

hila
l
ν hij





 (4)

with gµν(x, y), hij(x, y) and ai
µ(x, y) functions of external and internal coordi-

nates that transform according to
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gµν → J κ
µ J λ

ν gκλ (5)

hij → J k
i J l

j hkl (6)

ai
µ → J κ

µ

(

ak
κJ

−1 i
k − ∂κy

′i
)

(7)

The square matrices gµν and hij respectively transform like LD external and
internal tensors and can be identified with metrics on Md (after yi removal)
and Mx

c . The rectangular matrix ai
µ transforms like a LD hybrid tensor up to an

inhomogeneous term reminding the transformation rule of a gauge potential.
By means of ai

µ it is also possible to construct a genuine LD hybrid tensor

f i
µν = ∂µa

i
ν − ∂νa

i
µ − aj

µ∂ja
i
ν + aj

ν∂ja
i
µ (8)

appearing as the associated gauge curvature 2 . It is well known, that this is
more than a similarity in Kaluza-Klein [3,4,5] and embedded spacetime [8]
theories, where (7) precisely corresponds to the transformation rule of a GKK

or SO(c) gauge potential. On the other hand, apparently unnoticed is the fact
that (7) always corresponds to the transformation rule of a vector potential.
To see this explicitly, we read x-dependent internal coordinate transformations
(2) as the actions of the internal diffeomorphism group Diff c on Mx

c

yi → exp{ξk(x, y)∂k}y
i (9)

with ξk(x, y) an appropriate internal vector. By introducing the operator-
valued external covariant vector

aµ = −iai
µ∂i (10)

and denoting by T = exp{−ξk(x, y)∂k} the inverse of the operator generating
the transformation, it is straightforward to check that (7) can be rewritten in
the familiar gauge transformation form

aµ → TaµT
−1 + iT (∂µT

−1) (11)

The off-diagonal term of the HD metric has to be identified with a vector
potential taking values in the internal diffeomorphism algebra of diff c. The
associated curvature fµν = ∂µaν − ∂νaµ − i[aµ, aν ] corresponds to the operator
associated to f i

µν

fµν = −if i
µν∂i (12)

2 The vanishing of f i
µν implies the existence of an internal coordinate transforma-

tion setting ai
µ = 0. In general relativity –identifying space-like coordinates with

external variables and time with the internal coordinate– the vanishing of f i
µν char-

acterizes static gravitational fields.

6



and transforms in the adjoint representation

fµν → TfµνT
−1 (13)

General coordinate transformations do not preserve lengths and angles, so
that the operator T is in general not unitary. The vanishing of the divergence
of ξi makes T formally unitary, a condition always met in Kaluza-Klein and
embedded spacetime theories.

Kaluza-Klein: The HD spacetime MD = Md × Kc is the product manifold of a
Lorentz space Md and the internal space Kc admitting an isometry group GKK. The
metric ansatz reads

gIJ =





gµν + Aa
µAb

νK
k
aK

l
b
κkl Aa

µKk
aκkj

κilA
a
νK

l
a κij



 (14)

with gµν(x) a metric on Md, κij(y) a metric on Kc, Kk
a(y) Killing vector fields on Kc

and Aa
µ(x) identified with the gauge potential taking values in the algebra of GKK.

By assumption LKa
κ = 0, equivalently (∂iK

k
a)κkj + (∂jK

k
a)κik + Kk

a∂kκij = 0 or
∇iKaj + ∇jKai = 0. Allowed internal coordinate transformations are generated by
Killing vector fields ξk(x, y) = ǫa(x)Kk

a(y). Because of the above identity, ∇iK
i
a = 0,

so that T is unitary. The transformation rule (11) yields for Aa
µ the GKK gauge

potential transformation rule, which infinitesimally takes the standard form

Aa

µ → Aa

µ + Ab

µǫcca

bc − ∂µǫa (15)

The corresponding curvature is related to (8) by

f i
µν =

(

∂µAc

ν − ∂νA
c

µ − cc

abA
a

µAb

ν

)

Ki
c = Fc

µνK
i
c (16)

Embedded spacetime: The HD spacetime MD ≡ R
D is reduced to a Lorentz

space Md. Denoting be xµ the coordinates on Md, by tµ the associated tangent
vectors and by ni(x) a smooth assignment of c orthonormal vectors, ni ·nj = 0,
ni ·tµ = 0, coordinates are adapted by parameterizing internal directions by the
distances yi along the geodesics leaving Md with velocity ni. In adapted coordinates
the flat HD metric reads

gIJ =





gµν + A k
µm A l

µn ymynηkl A k
µm ymηkj

ηilA
l

µn yn ηij



 (17)

where gµν = gµν + 2IIkµνy
k + IIkµκII κ

lν ykyl with gµν(x) = tµ·tν the induced metric
and IIiµν(x) = tµ ·∂νni the extrinsic curvature (or second fundamental form) of
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the embedding; ηij is a (pseudo-)Euclidean metric in extra directions; Aµij(x) =
ni·∂µnj is the extrinsic torsion (or normal fundamental form) of the embedding [1].
The off-diagonal blocks of (17) are proportional to the Killing vectors generating
(pseudo-)rotations around the point yi = 0 in the flat internal space. However, the
metric is not Kaluza-Klein because of terms that make gµν explicitly dependant
on yi. Allowed internal coordinate transformations correspond to the x-dependent
(pseudo-)rotation ni → Λ j

i (x)nj and are generated by the Killing vector fields
ξk(x, y) = ylω k

l (x) with ωkl = −ωlk. ∇ky
lω k

l = ω k
k = 0 so that T is unitary. Under

(2) A j
µi transform like a SO(c) gauge potential

A j
µi → Λ k

i A l
µkΛ−1 j

l − Λ k
i ∂µΛ−1 j

k (18)

The associated curvature is related to (8) by

f i
µν =

(

∂µA i
νj − ∂νA

i
µj − [Aµ, Aν ]

i
j

)

yj = F i
µνj yj (19)

Denoting by g the HD metric determinant and by g and h the LD metric
determinants, we have that g = gh. The HD volume element factorizes in the
product of LD volume elements |g|1/2 = |g|1/2|h|1/2. The HD inverse metric
gIJ can be evaluated in general terms as

gIJ =







gµν −gµκaj
κ

−ai
λg

λν hij + ai
κa

j
λg

κλ







with gµν and hij the inverses of the LD metrics.
The parameterization (4) is particularly convenient in connecting HD with LD
geometrical quantities. It generalizes the Kaluza-Klein and embedded space-
time metric ansätze, to the case where no a priori symmetries or special sub-
manifold have been introduced.

2.3 Connections and Curvature Tensors

The HD covariant derivative induced by gIJ is denoted by ∇I and acts on
tensors as

∇It
...

...J... = ∂It
...

...J... + ... − Γ K
IJ t ...

...K... + ...

where Γ K
IJ = 1

2
gKL (∂IgLJ + ∂JgIL − ∂LgIJ) are the intrinsic connection co-

efficients; by definition ∇KgIJ = 0 and ∇K |g|1/2 = 0. The commutator of
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two covariant derivatives

[∇I ,∇J ] t ...
...K... = ... − R L

IJK t ...
...L... + ...

defines the intrinsic curvature tensor

R L
IJK = ∂IΓ

L
JK − ∂JΓ

L
IK − Γ H

IK Γ L
JH + Γ H

JK Γ L
IH (20)

We also denote the Ricci tensor by RIJ = R K
IKJ and the scalar curvature

by R = gIJRIJ . The covariant derivative ∇I and the associated curvature
tensor R L

IJK completely characterize the geometry of the HD spacetime MD.
We now consider analogous quantities for the LD internal spaces Mx

c and
external space Md.

2.3.1 Internal connection and curvatures

The LD internal covariant derivative ∇i induced by the metric tensor hij

∇it
...

...j... = ∂it
...

...j... + ... − Γ k
ij t ...

...k... + ... (21)

with internal intrinsic connection coefficients

Γ k
ij =

1

2
hkl(∂ihlj + ∂jhil − ∂lhij) (22)

is covariant under (2) when acting either on LD internal, external or hybrid
tensors. As a consequence, new LD tensors can be generated by the action of
∇i. The commutator

[∇i,∇j] t
...

...k... = ... − R l
ijk t ...

...l... + ...

defines the internal intrinsic curvature

R l
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik − Γ m

ik Γ l
jm + Γ m

jk Γ l
im (23)

Internal Ricci tensor and scalar curvature are defined like in higher dimen-
sions. The internal metric hij and the internal volume element |h|1/2 are par-
allel transported ∇khij = 0, ∇k|h|

1/2 = 0. The internal covariant derivative,
however, is not compatible with the external metric structure as ∇igµν 6= 0.
External indices can not be raised, lowered or contracted regardless to the po-
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sition of ∇i. To overcome the problem we extend the action of ∇i to external
indices. We define an internal total covariant derivative ∇tot

i by

∇tot
i t ...

...µ...j... = ∇it
...

...µ...j... + ... − Ê ν
iµ t ...

...ν...j...... (24)

with internal extrinsic connection coefficients Ê ν
iµ chosen so that ∇tot

k gµν = 0

(also implying ∇tot
k |g|1/2 = 0). This requirement fixes the symmetric part of

the extrinsic connection to Êi(µν) = 1
2
∂igµν , living the antisymmetric part

completely arbitrary. It is possible and even natural to include in Êiµν a term
proportional to the hybrid tensor fiµν . Different choices correspond to different
internal extrinsic geometries. In Section 3, equation (76), we will see that
the internal extrinsic connection induced by HD geometry corresponds to the
choice Êi[µν] = 1

2
fiµν . We therefore set

Ê ν
iµ =

1

2
(∂igµκ + fiµκ) gκν (25)

Under coordinate redefinitions (2), Ê ν
iµ transforms like a genuine LD hybrid

tensor

Ê ν
iµ → J j

i J κ
µ Ê λ

jκ J−1 ν
λ (26)

Kaluza-Klein: The symmetric part of the internal extrinsic connection vanishes
identically; the antisymmetric part reduces to the gauge curvature

Êiµν =
1

2
Fc

µνKci (27)

Embedded spacetime: The internal extrinsic connection equals the second fun-
damental form IIiµν of Md plus a term linear in yi

Êiµν = IIiµν +
1

2

(

IIiµκII κ
jν + IIiνκII κ

jµ − Fµνij

)

yj (28)

On Md the linear term vanishes and Êiµν coincides with the second fundamental

form Êiµν |y=0 ≡ IIiµν .

The hybrid tensor Êiµν reduces to the gauge curvature of the external space in
Kaluza-Klein backgrounds and to the extrinsic curvature –second fundamen-
tal form– of the external spacetime in embedded spacetime models. In Section
3 we will see that Êiµν enters the general equations of Subsection 3.2 relating
higher and lower dimensional curvatures in the very same way as the second
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fundamental form enters Gauss, Codazzi and Ricci equations. For these rea-
sons we will also refer to Êiµν as to the external fundamental form. The ‘hat’
is introduced to remind us that Md is not in general an embedded object and
Êiµν is not a fundamental form in the standard sense of embedding theory.
The commutator of two total internal covariant derivatives

[

∇tot
i ,∇tot

j

]

t...µ...k... = ... − R l
ijk t...µ...l...... − F ν

ijµ t...ν...k... + ...

defines the internal extrinsic curvature

F ν
ijµ = ∂iÊ

ν
jµ − ∂jÊ

ν
iµ − Ê κ

iµ Ê ν
jκ + Ê κ

jµ Ê ν
iκ (29)

carrying two internal and two external indices. A direct computation allows
to rewrite Fijµν as

Fijµν =
1

2
∂ifjµν −

1

2
∂jfiµν + Ê κ

iµ Êjνκ − Ê κ
jµ Êiνκ (30)

2.3.2 External connection and curvatures

The definition of a covariant differentiation along external direction is less
straightforward. The derivative ∇µ associated with the external metric gµν

is not a covariant LD object. Difficulties already emerge at the scalar level.
The allowed external coordinate dependence of internal coordinate redefini-
tions produces an inhomogeneous term in the transformation rule of partial
derivatives

∂µ → ∂′

µ = J ν
µ

(

∂ν +
∂yi

∂xν
∂i

)

(31)

The problem can be resolved by adding a counter term proportional to ai
µ

which also transform inhomogeneously. The derivative operator

∂̂µ = ∂µ − iaµ (32)

transforms like a genuine LD external vector when acting on scalars

∂̂µ → ∂̂′

µ = J ν
µ ∂̂ν (33)

On the other hand, the commutator of two hatted derivatives is no longer
vanishing

[

∂̂µ, ∂̂ν

]

= −ifµν
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Differentiation is extended to LD external tensors by introducing the general-
ized Christoffel symbols

Γ̂ κ
µν =

1

2
gκλ(∂̂µgλν + ∂̂νgµλ − ∂̂λgµν) (34)

where ordinary derivatives are replaced by hatted ones in the standard defin-
ition. Generalized Christoffel symbols transform like proper connection sym-
bols. The external covariant derivative ∇̂µ

∇̂µt
...

...ν... = ∂̂µt
...

...ν... + ... − Γ̂ κ
µν t ...

...κ... (35)

is covariant under (2) when acting on LD external tensors. New LD tensors
can be generated by the action of ∇̂µ on external tensors. The commutator

[

∇̂µ, ∇̂ν

]

t ...
...κ... = ... − R̂ λ

µνκ t ...
...λ... + ... − f i

µν∇
tot
i t ...

...κ...

defines a genuine external intrinsic curvature tensor as

R̂ λ
µνκ = ∂̂µΓ̂

λ
νκ − ∂̂νΓ̂

λ
µκ − Γ̂ ρ

µκ Γ̂ λ
νρ + Γ̂ ρ

νκ Γ̂ λ
µρ + f i

µνÊ
λ

iκ (36)

External Ricci and scalar curvatures are defined as usual by contraction R̂µν =

R̂ κ
µκν and R̂ = gµνR̂µν . It is worth noticing that R̂ λ

µνκ , R̂µν and R̂ are reducible
tensors.

Kaluza-Klein: In Kaluza-Klein theories R̂ does not correspond with the scalar
curvature R associate with the four dimensional metric gµν(x). Equation (36) yields

R̂ = R + Fa

µνF
aµν/2 (37)

with gauge indices contracted with the group metric.

Embedded spacetime: The corresponding equation in embedded spacetime the-
ories is more complicated involving, apart from the gauge field F j

µνi , the external

fundamental forms Êiµν . Specializing to yi = 0 we obtain

R̂ = R + O(y) (38)

with R the intrinsic curvature associated with the metric induced on the submani-

fold.
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The external metric gµν and the external volume element |g|1/2 are parallel

transported ∇̂κgµν = 0, ∇̂κ|g|
1/2 = 0. On the other hand, it is not even pos-

sible to ask wether the external derivative is compatible with internal metric
structures, because ∇̂µ is not covariant when acting on internal and hybrid

tensors. Both problems can be resolved by extending the action of ∇̂µ to

internal indices. We define the external total covariant derivative ∇̂tot
µ by

∇̂tot
µ t...κ...k... = ∇̂µt...κ...k... + ... − Ĉ l

µk t...κ...l... + ... (39)

where the external extrinsic connection coefficients Ĉ l
µk are determined by the

requirement of covariance and by the compatibility condition ∇̂tot
µ hij = 0 (also

implying ∇̂tot
µ |h|1/2 = 0). We obtain

Ĉ l
µk = ∂ka

l
µ + Eµkmhml (40)

where

Eµij =
1

2
[∂̂µhij − (∂ia

k
µ)hkj − (∂ja

k
µ)hik] (41)

transforms like a genuine LD hybrid tensor. At any given external point Eµij|x
corresponds to the standard second fundamental form describing the embed-
ding of Mx

c in MD. Eµij generalizes the notion of second fundamental form to
the whole foliation of the HD spacetime in internal spaces. For this reason we
refer to Eµij as the internal fundamental form. For later use we also rewrite
Eµij as

Eµij =
1

2
(∂µhij −∇iaµj −∇jaµi) (42)

and note that the following identity holds

∇̂tot
µ Eνij − ∇̂tot

ν Eµij =
1

2
(∇ifjνµ + ∇jfiνµ) (43)

Under the residual general covariance group (2) external extrinsic connection
coefficients transform like a genuine GL(c) connection

Ĉ l
µk → J ν

µ (J m
k Ĉ n

νm J−1 l
n − J m

k ∂̂νJ
−1 l

m) (44)

13



Kaluza-Klein: By virtue of the identity (∂iK
k
a)κkj + (∂jK

k
a)κik + Kk

a∂kκij = 0 the
internal fundamental form vanishes identically

Eµij = 0 (45)

The embedding of each Kc is totally geodesic [1]. The external extrinsic connection
coefficients only depends on off-diagonal blocks of the metric

Ĉ l
µk = Aa

µ(∂kK
l
a) (46)

Embedded spacetime: Since the internal metric ηij does not depend on coor-
dinates and Aµkl are antisymmetric in internal indices the embedding of internal
spaces is again totally geodesic

Eµij = 0 (47)

The external extrinsic connection reduces to the normal fundamental form of the
embedding

Ĉ l
µk = A l

µk (48)

The commutator of two external total covariant derivatives yields the associ-
ated curvature forms

[

∇̂tot
µ , ∇̂tot

ν

]

t...κ...k... = ... − R̂ λ
µνκ t...λ...k... +

+... − F̂ l
µνk t...κ...l... + ... − f i

µν∇
tot
i t...κ...k...

where the external extrinsic curvature tensor, carrying two external and two
internal indices, is defined as

F̂ l
µνk = ∂̂µĈ

l
νk − ∂̂νĈ

l
µk − Ĉ m

µk Ĉ l
νm + Ĉ m

νk Ĉ l
µm + f i

µνΓ
l

ik (49)

With the help of (43) a straightforward computation allows to evaluate F̂ l
µνk

directly in terms of f i
µν and Eµij as

F̂µνkl =
1

2
∂kflµν −

1

2
∂lfkµν + E i

µk Eνli − E i
νk Eµli (50)

a formula that closely resembles (30).
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2.3.3 Hybrid curvatures

The commutator of external and internal total covariant derivatives defines
one more curvature tensor that describes the tangling of Md and Mx

c in MD

[

∇̂tot
µ ,∇tot

i

]

t...κ...k... = ... − Ĥ λ
µiκ t...λ...k... + ... − H l

µik t...κ...l... +

+... + Ê ν
iµ ∇̂tot

ν t...κ...k... − E j
µi ∇

tot
j t...κ...k...

where the two hybrid curvature tensors Ĥ λ
µiκ and H l

µik have the form

Ĥ λ
µiκ = ∂̂µÊ

λ
iκ − ∂iΓ̂

λ
µκ − Γ̂ ν

µκ Ê λ
iν + Ê ν

iκ Γ̂ λ
µν − (∂ia

j
µ)Ê λ

jκ (51)

and

H l
µik = ∂̂µΓ

l
ik − ∂iĈ

l
µk − Ĉ j

µk Γ l
ij + Γ j

ik Ĉ l
µj − (∂ia

j
µ)Γ l

jk (52)

A direct computation allows to reexpress the hybrid curvatures in terms of
the sole fundamental forms Êiµν and Eµij as

Ĥµiκλ = ∇̂tot
λ Êiκµ − ∇̂tot

κ Êiλµ + E k
λi Êkµκ + E k

κk Êkµλ + f j
κλEµik (53)

Hµikl = ∇tot
k Eµli −∇tot

l Eµki + Ê ν
kµ Eνli − Ê ν

lµ Eνki (54)

Therefore, the four LD tensors R̂ λ
µνκ , R l

ijk , Eµij, Êiµν give a complete char-
acterization of the intrinsic and extrinsic geometry of external and internal
spaces. Note that fiµν is the antisymmetric part of Êiµν and ai

µ is related to it
by (8). It is curious that in spite of the different role played by external and
internal coordinates the formalism is symmetric under their interchange. The
symmetry is substantial only when f i

µν ≡ 0 and MD double foliates in internal
and external directions.

2.4 Reference Frames

Besides standard tensor calculus in holonomic coordinates, there is a sec-
ond formalism that allows to successfully deal with geometrical problems: the
tetrad (in four dimensions) or reference frame formalism. Among other things,
it allows to clarify the role of gauge invariance for the gravitational field [9]
and is indispensable to deal with general relativistic interactions of spinors.
In this section we show that the reference frame formalism is also the natural
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language to deal with dimensional reduction problems.
In the HD spacetime, we consider pseudo-orthogonal covariant and contravari-
ant reference frames r A

I and r I
A , decomposing the metric and its inverse as

gIJ = r A
I r B

J ηAB, gIJ = r I
A r J

B ηAB. In terms of the metric parametrization (4)

r A
I =







r α
µ ak

µρ
a

k

0 ρ a
i





 , r I
A =







r µ
α −r κ

α ai
κ

0 ρ i
a





 (55)

with r α
µ , r µ

α and ρ a
i , ρ i

a decomposing the LD metrics, r α
µ r β

ν ηαβ = gµν ,
ρ a

i ρ b
j ηab = hij etc. Reference vectors are determined up to point dependent

pseudo-rotations expressing observer’s freedom of arbitrarily choosing the ref-
erence frame. Hence, reference frames transform as holonomic vectors under
general coordinate transformations and like pseudo-Euclidean vectors under
pseudo-rotations. The theory is covariant under

r I
A → r J

A J−1 I
J , r I

A → Λ B
A r I

B

with Λ B
A (x) any point dependent, pseudo-orthogonal matrix, Λ C

A Λ D
B ηCD =

ηAB. When coordinate invariance is broken, local pseudo-orthogonal transfor-
mations get restricted to the block diagonal form

Λ B
A (x) =







Λ β
α (x) 0

0 Λ b
a (x, y)





 (56)

with Λ β
α (x) and Λ b

a (x, y) lower dimensional pseudo-orthogonal matrices sat-
isfying Λ γ

α Λ δ
α ηγδ = ηαβ and Λ c

a Λ d
b ηcd = ηab. The LD vectors r µ

α and ρ i
a

correctly transform as LD reference frames

r µ
α → r κ

α J−1 µ
κ , r µ

α → Λ β
α r µ

β , ρ i
a → ρ k

a J−1 i
k , ρ i

a → Λ b
a ρ i

b

We fix the following notation for Kaluza-Klein and embedded spacetime mod-
els

Kaluza-Klein: LD reference frames are denoted by

r α
µ = r α

µ (x), ρ a
i = k a

i (y) (57)

with gµν = r α
µ r β

ν ηαβ and κij = k a
i k b

j ηab.

Embedded spacetime: LD reference frames are chosen as

r α
µ = (δκ

µ + yiII κ
iµ )t α

κ (x), ρ a
i = n a

i (x) (58)

16



with gµν = t α
µ t β

ν ηαβ and ηij = n a
i n b

j ηab.

2.5 More on Tensors

Instead of specifying HD tensors by giving their components with respect to
the holonomic coordinate system, we can specify them by giving their projec-
tions on the reference frame

t...B...
...A... = ...r I

A ... t...J...
...I... ...r B

J ...

These quantities are invariant under general coordinate transformations and
transform like pseudo-Euclidean tensor components under point dependent
reference frame redefinition

t...B...
...A... → ...Λ C

A ... t...D...
...C... ...Λ−1 B

D ...

LD external, internal and hybrid tensor components t...β...
...α..., t...b......a... and t...β...b...

...α...a...

are introduced with analogous conventions and transformation properties

t...β...
...α...→...Λ γ

α ... t...δ......γ... ...Λ−1 β
δ ...

t...b......a...→...Λ c
a ... t...d...

...c... ...Λ−1 b
d ...

t...β...b...
...α...a...→...Λ γ

α ...Λ c
a ... t...δ...d...

...γ...c...... Λ−1 β
δ ...Λ−1 b

d ...

It is readily checked that, when HD covariance is broken pseudo-orthogonal
components of HD tensors transform like (pseudo-)orthogonal components of
LD tensors. For example, external and internal components of a HD covariant
vector vA = r I

A vI transform like

vα → Λ β
α vβ and va → Λ b

a vb

so that vα ≡ vα and va ≡ va may be identified with the components of two LD
external and internal vectors. A HD rank-two covariant tensor bAB produces
an external bαβ ≡ bαβ, an internal bab ≡ bab and two hybrid bαb ≡ bαb, b′αb ≡
bbα LD rank-two covariant tensors. This makes the use of pseudo-orthogonal
reference frames particularly convenient in investigating dimensional reduction
problems.
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2.6 More on Connections and Curvature Tensors

The whole machinery of calculus on manifolds is readily transposed in the
reference frame formalism by defining a covariant derivative acting on both,
curved and flat spacetime indices

DIt...A... = ∇It...A... + ... − Ω B
I,A t...B... + ... (59)

with connection coefficients ΩI,AB = (∇Ir
K

A )r L
B gKL. With these conventions

DIr
J

A ≡ 0. The commutator of two covariant derivatives yields the intrinsic
curvature tensor

RIJAB = ∂IΩJ,AB − ∂JΩI,AB − Ω C
I,A ΩJ,CB + Ω C

J,A ΩI,CB (60)

which is related to (20) by contraction with reference frames given by RIJKL =
RIJABr A

K r B
L . In LD internal and external spaces we proceed along the very

same lines.

2.6.1 Internal connection and curvatures

On internal spaces, we define an internal total covariant derivative Dtot
i as

Dtot
i t...α...a... =∇tot

i t...α...a... + ...−Ω b
i,a t...α...b... + +...−A β

i,α t...β...a... +... (61)

with connection coefficients Ωi,ab = (∇tot
i ρ k

a )ρ l
b hkl and Ai,αβ = (∇tot

i r κ
α )r λ

β gκλ.
Under coordinate redefinitions Ωi,ab and Ai,αβ transform like genuine internal
tensors. Under local (pseudo-)rotations of reference frames, Ωi,ab transforms
like an SO(c) gauge connection while Ai,αβ behave like a tensor

Ω b
i,a →Λ c

a Ω d
i,c Λ b

d − Λ c
a (∂iΛ

b
c ) (62)

A β
i,α →Λ γ

α A δ
i,γ Λ β

δ (63)

With these conventions Dtot
i ρ j

a = 0 and Dtot
i r µ

α = 0. The commutator of two
total internal covariant derivatives yields the intrinsic and extrinsic curvature
tensors

Rijab = ∂iΩj,ab − ∂jΩi,ab − Ω c
i,a Ωj,cb + Ω c

j,a Ωi,cb (64)

and

Fijαβ = ∂iAj,αβ − ∂jAi,αβ − A γ
i,α Aj,γβ + A γ

j,α Ai,γβ (65)
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which are related to (23) and (29) by contraction with LD reference frames,
Rijkl = Rijabρ

a
k ρ b

l and Fijκλ = Fijαβr α
κ r β

λ .

2.6.2 External connection and curvatures

On the external space, we define an external total covariant derivative D̂tot
µ as

D̂tot
µ t...α...a... =∇̂tot

µ t...α...a... + ...−Ω̂ β
µ,α t...β...a... + ...−Â b

µ,a t...α...b... + ... (66)

with connection coefficients Ω̂µ,αβ = (∇̂tot
µ r κ

α )r λ
β gκλ and Âµ,ab = (∇̂tot

µ ρ k
a )ρ l

b hkl.

Under coordinate transformations Ω̂µ,αβ and Âµ,ab behaves like genuine ex-

ternal tensors. Under local redefinition of reference frames Ω̂µ,αβ and Âµ,ab

transform as SO(d) and SO(c) connections respectively

Ω̂ β
µ,α →Λ γ

α Ω̂ δ
µ,γ Λ β

δ − Λ γ
α (∂̂µΛ β

γ ) (67)

Â b
µ,a →Λ c

a Â d
µ,c Λ b

d − Λ c
a (∂̂µΛ b

c ) (68)

As above ∇̂tot
µ r ν

α = 0 and ∇̂tot
µ ρ i

a = 0. The commutator of two external total
covariant derivative again yields the intrinsic and extrinsic curvature tensors

R̂µναβ = ∂̂µΩ̂ν,αβ − ∂̂νΩ̂µ,αβ − Ω̂ γ
µ,α Ω̂ν,γβ + Ω̂ γ

ν,α Ω̂µ,γβ + f i
µνAi,αβ (69)

and

F̂µνab = ∂̂µÂν,ab − ∂̂νÂµ,ab − Â c
µ,a Âν,cb + Â c

ν,a Âµ,cb + f i
µνΩi,ab (70)

again related to (36) and (49) by contraction with LD reference frames, R̂µνκλ =

R̂µναβr α
κ r β

λ and F̂µνkl = F̂µνabρ
a

k ρ b
l .

2.6.3 Hybrid curvatures

The commutator of total external and internal derivative yields the hybrid
curvatures

Ĥµiαβ = ∂̂µAi,αβ − ∂iΩ̂µ,αβ − Ω̂ γ
µ,α Ai,γβ + A γ

i,α Ω̂µ,γβ − (∂ia
j
µ)Aj,αβ (71)

and

Hµiab = ∂̂µΩi,ab − ∂iÂµ,ab − Â c
µ,a Ωi,cb + Ω c

i,a Âµ,cb − (∂ia
j
µ)Ωj,ab (72)
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related to (51) and (52) by contraction with LD reference frames and that can
be rewritten in terms of the pseudo-orthogonal components of fundamental
forms

Eγab = r κ
γ ρ i

a ρ j
b Eκij, Êcαβ = ρ k

c r µ
α r ν

β Êkµν (73)

Nothing has really changed; the pseudo-Euclidean tensors R̂αβγδ, Rabcd, Eγab

and Êcαβ completely characterize the geometry of dimensional reduction.

3 Reducing Geometry

We are now in position to write down general equations that relate the higher
and lower dimensional geometries. In holonomic coordinates this task requires
very long and tedious calculations with results that are not always transparent.
Instead, within the reference frames formalism, it is almost straightforward to
establish the desired relations. The formulas obtained in this section extend
and unify well known identities of Kaluza-Klein and submanifold theories.

3.1 Connection coefficients

In the reference frames formalism, HD connection coefficients directly relate
to LD intrinsic connection coefficients, fundamental forms and extrinsic con-
nection coefficients in the following way

r I
γ ΩI,αβ = r µ

γ Ω̂µ,αβ (74)

r I
c ΩI,ab = ρ i

c Ωi,ab (75)

r I
γ ΩI,aβ = Êaγβ (76)

r I
c ΩI,αb = Eαcb (77)

r I
γ ΩI,ab = r µ

γ Âµ,ab (78)

r I
c ΩI,αβ = ρ i

c Ai,αβ (79)

Analogous equations connecting HD Christoffel symbols with LD quantities
are much more complicated. By means of relations (74)-(79) it is straight-
forward to relate HD to LD curvatures, geodesic equations and geometric
operators.
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3.2 Riemann Curvatures: extension of Gauss, Codazzi and Ricci equations

Gauss, Codazzi and Ricci equations give relations between HD curvature and
LD curvatures, second and normal fundamental forms of a submanifold and
provide, at the same time, integrability conditions for a subspace to be em-
beddable in a HD spacetime [1]. They are important in a variety of physical
applications, especially in general relativity. Recently, they have been extended
to foliations and applied to the analysis of embedded spacetimes [6]. Equations
of an apparently different nature relating HD curvature to LD curvatures and
gauge fields are also the key ingredient of Kaluza-Klein unification schemes
[3,4,5]. Both set of equations are special cases of the general equations relat-
ing the HD Riemann tensor RABCD to LD Riemann tensors R̂αβγδ, Rabcd and

fundamental forms Eγab, Êcαβ. The symmetries of the Riemann tensor allow
only six independent projections on external/internal directions.

3.2.1 Gauss type equations

The external components of the HD Riemann tensor are related to the external
intrinsic curvature and fundamental forms by an equation which is formally
identical to the Gauss equation for an embedded space

Rαβγδ = R̂αβγδ + ÊaαγÊ
a
βδ − ÊaβγÊ

a
αδ (80)

In spite of this analogy it is worth remarking that the external space Md is
not an embedded object, R̂αβγδ is not a standard Riemannian curvature ten-

sor and Êcαβ has an antisymmetric part keeping truck of the gauge field f i
µν .

The internal components of the HD Riemann tensor are related to the inter-
nal intrinsic curvature and the fundamental forms yielding again an equation
formally identical to the Gauss equation for an embedded space

Rabcd = Rabcd + EαacE
α
bd − EαbcE

α
ad (81)

This time the analogy is more than formal. For every given value xµ of the
external coordinates the internal space Mx

c is an embedded object in MD.
In this case, Rabcd|x is the relative Riemann tensor and Eγab|x is the second
fundamental form so that (81) correspond to a genuine Gauss equation for the
embedding.

3.2.2 Codazzi type equations

HD Riemann tensor components with three indices of one sort and one index
of the other, are related to the LD hybrid curvatures and the fundamental
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forms. These terms yield the generalization of the Codazzi equation for the
external space Md

Rαbγδ = Ĥαbγδ + E a
γb Êaαδ − E a

δb Êaαγ (82)

and for the foliation of MD in the internal spaces Mx
c

Rαbcd = Hαbcd − Ê α
cα Eαbd + Ê α

dα Eαbc (83)

The explicit appearance of the hybrid curvatures Ĥαbγδ and Hαbcd can be
eliminated by means of (53) and (54), giving the Codazzi equations in their
more familiar form

Rαbγδ = D̂tot
δ Êbγα − D̂tot

γ Êbδα + f i
γδEαib (84)

Rαbcd = Dtot
c Eαdb − Dtot

d Eαcb (85)

The interpretation of these equations requires the same caution used for gen-
eralized Gauss equations. While (85) are genuine Codazzi equations for the
embedded spaces Mx

c , (84) correspond to standard Codazzi equations only
when f i

µν = 0 and the external space Md reduce to an embedded object.

3.2.3 Ricci type equations

HD Riemann tensor components with the first two indices of one sort and the
last two indices of the other, relate the LD extrinsic curvatures (49), (29) to
the hybrid tensor (8), yielding a single equation

Rαβcd = F̂αβcd + Fcdαβ −
1

2
r µ
α r ν

β ρ k
c ρ l

d (∂kflµν − ∂lfkµν) (86)

This generalizes the Ricci equation for both, the external space Md and the
foliation in internal subspaces Mx

c . The explicit appearance of the external
extrinsic curvature F̂αβcd or of the internal extrinsic curvature Fcdαβ (or of
both of them), can be removed by means of (50) and (30). It respectively
yields the standard form of the Ricci equation for the external space Md

Rαβcd = F̂αβcd + Ê γ
cα Êdβγ − Ê γ

cβ Êdαγ (87)

and for the foliation in internal spaces Mx
c

Rαβcd = Fcdαβ + E a
αc Eβda − E a

βc Eαda (88)
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Once again, a little caution in the interpretation of (86), or (87), or (88), is
necessary.

3.2.4 The sixth equation

The remaining group of HD Riemann tensor components relates the funda-
mental forms to their total covariant derivatives, yielding an equation that
has no equivalent in the theory of embedding

Rαbγd = D̂tot
α Eγbd + Dtot

b Êdαγ + E a
αb Eγad + Ê β

bα Êdβγ (89)

This equation appears as a further integrability condition for the tangling of
Md and Mx

c in MD and consists a new result obtained by this approach.

3.3 Ricci curvatures

By contracting the generalized Gauss, Codazzi, Ricci equations and (89) we
easily obtain the external

Rαβ = R̂αβ + D̂tot
α E c

βc + EαcdE
dc

β + Dtot
c Êc

αβ + ÊcαβÊc γ
γ (90)

hybrid

Rαb = D̂tot
α Ê γ

bγ − D̂tot
γ Ê γ

bα − f c
αγÊ

γ
cb + Dtot

b E c
αc − Dtot

c E c
αb (91)

and internal

Rab = Rab + D̂tot
γ Eγ

ab + EγabE
γ c
c + Dtot

a Ê γ
bγ + ÊaγδÊ

δγ
b (92)

components of the HD Ricci tensor. From the viewpoint of pure higher di-
mensional gravity these equations display the most general kind of LD matter
that can be obtained in induced-matter theories [10].

3.4 Scalar curvatures

The eventual contraction of equations (90), (91), (92) yields the identity con-
necting the HD scalar curvature with LD intrinsic and extrinsic curvatures,
lying at the heart of Lagrangian reduction of HD Einstein gravity. We display
it in standard tensor formalism
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R = R̂ + 2∇iÊ
i µ
µ + Ê µ

iµ Êi ν
ν + ÊiµνÊ

iνµ +

+R + 2∇̂µE
µ i
i + E i

µi Eµ j
j + EµijE

µji (93)

This equation generalizes well known relations holding in Kaluza-Klein and
submanifold theories.

Kaluza-Klein: In virtue of (27), (37) and (45) equation (93) reduces to

R = R + R +
1

4
Fa

µνF
aµν (94)

with R the standard scalar curvature associated with the four dimensional metric

gµν(x).

Embedded spacetime: By recalling (28), (38), (47) and the fact that we are
considering spacetimes embedded in flat HD spacetime equation (93) evaluated at
yi = 0 reproduces the well known identity

R + II µ
iµ IIi ν

ν − IIiµνII
iµν = 0 (95)

that relates intrinsic and extrinsic curvature scalars for a submanifold embedded in

a HD flat space.

By means of equations (93), (90), (91), (92) and the equations in Subsection
3.2 it is also possible to obtain general reduction formulas for the conformal
Weyl tensor, which also plays an important role in the analysis of dimensional
reduction [11].

3.5 Geodesic motion

Free motion in HD spacetime is described by geodesic equations

ẍK + ΓK
IJ ẋ

I ẋJ = 0 (96)

where ẋI = dxI/dτ is the HD velocity vector. As discussed in Subsection 2.1
external contravariant components of HD vectors behave like LD vectors, so
that ẋµ = ẋµ is identified with the LD external velocity. On the other hand
internal contravariant components do not, so that ẋi = ẏi is not a LD object.
The definition of a LD vector once again involves ai

µ

ˆ̇y
i
= ẏi + ai

µẋ
µ
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HD geodesic equations split in two groups that separately transform under
the residual covariance group (2). The first group describes a no longer free
motion in external directions and its coupling to internal variables through
the fundamental forms, is given by

ẍκ + Γ̂κ
µν ẋ

µẋν + 2Ê κ
i µ

ˆ̇y
i
ẋµ − Eκ

ij
ˆ̇y

iˆ̇y
j
= 0 (97)

The second group takes in to account internal motion and its dynamical in-
teraction with external variables

˙̂̇y
k

+ Γk
ij
ˆ̇y

iˆ̇y
j
+ (∂ia

k
µ)ẋµˆ̇y

i
+ 2E k

µ iẋ
µˆ̇y

i
− Êk

µν ẋ
µẋν = 0 (98)

(the first three terms of the left hand side can be recast in the LD covariant

expression ẋµ∇̂tot
µ

ˆ̇y
k

+ ˆ̇y
i
∇tot

i
ˆ̇y

k
− E k

µ i
ˆ̇y

i
ẋµ). The interaction between internal

and external motion vanishes if and only if the fundamental forms identically
vanish, Êiµν = 0 and Eµij = 0. Specializing to Kaluza-Klein and embedded
spacetime models we obtain:

Kaluza-Klein: Taking into account (27), (45) equations (97), (98) reduce to

ẍκ + Γκ
µν ẋ

µẋν + qaF
a κ
µ ẋµ = 0, q̇a − cc

ab
ẋµAb

µqc = 0 (99)

where qa = Kai(y)ˆ̇y
i
. The first equation describes the external motion of a particle of

vector charge qa in the possibly non-Abelian gauge field Fa
µν . The second equation

describes the rotation of the charge-vector in the group space. In the case of a one

dimensional Abelian group q1 is constant in time and the first equation reduces

to the classical Lorentz equation of a charged particle moving on a manifold in an

electromagnetic field.

Embedded spacetime: In a neighborhood of radius ǫ of a submanifold the equa-
tions (28), (47) allow to rewrite (97), (98) in the form

ẍκ + Γκ
µν ẋ

µẋν + 1
2LijF

κij
µ ẋµ + 2ˆ̇y

i
II κ

iµ ẋµ + O(ǫ) = 0

L̇ij − ẋµA i
µ kL

kj + ẋµA j
µ kL

ki + O(ǫ) = 0
(100)

where Lij = yiˆ̇y
j
−yj ˆ̇y

i
is the angular momentum in internal directions and IIiµν(x)

the second fundamental form of the embedding. Higher order terms in ǫ can be

neglected only if some physical mechanism constrains the system in a sufficiently

small neighborhood of the submanifold. As in standard Kaluza-Klein theories the

first equation describes the external motion of a particle of charge 1
2Lij in the gauge

field F ij
µν ; the non-trivial dependence of external metric on internal coordinates
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produces the extra term 2ˆ̇y
i
II κ

iµ ẋµ making geodesics to drift away from the subman-

ifold. The second equation describes the precession of internal angular momentum

produced by the extrinsic torsion of the embedding.

Equations (97), (98) can also be obtained from the Lagrangian

L =
1

2
gµν ẋ

µẋν +
1

2
hij

(

ẏi + ai
µẋ

µ
) (

ẏj + aj
ν ẋ

ν
)

(101)

For later considerations it is also useful to write the corresponding Hamiltonian

H =
1

2
gµν

(

pµ − ai
µπi

) (

pν − aj
νπj

)

+
1

2
hijπiπj (102)

with pµ = ∂L/∂ẋµ, πi = ∂L/∂ẏi the momenta conjugated to external and
internal coordinates respectively. Internal momenta πi correctly transform as
LD vectors, while LD external covariant momenta have to be defined as p̂µ ≡
pµ − ai

µπi.

3.6 Geometric operators

We now consider the dimensional reduction of Laplace and Dirac operators.

3.6.1 Laplace operator

In every local coordinate frame the HD scalar Laplace operator ∆ takes the
form

∆ = |g|−1/2∂Ig
IJ |g|1/2∂J (103)

∆ is Hermitian with respect to the standard scalar product constructed by
means of the HD covariant measure |g|1/2dx = |g|1/2|h|1/2dxdy. By rewriting
the operator in terms of covariant derivatives, recalling the inverse metric
decomposition and the relations (74)-(79) between HD and LD connection
coefficients, we obtain the most general decomposition covariant under (2)

∆ = |g|−1/2
(

∂̂µ+
1

2
E i

µi

)

gµν |g|1/2
(

∂̂ν +
1

2
E i

νi

)

+

+|h|−1/2
(

∂i+
1

2
Ê µ

iµ

)

hij|h|1/2
(

∂j+
1

2
Ê µ

jµ

)

+

−
1

2
∇̂µE

µ i
i −

1

4
E i

µi Eµ j
j −

1

2
∇iÊ

i µ
µ −

1

4
Ê µ

iµ Êi ν
ν (104)
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The first righthand side term of this equation corresponds to the LD external
Laplace operator

∆ext = |g|−1/2∂µg
µν |g|1/2∂ν (105)

(Hermitian with respect to the external scalar product constructed by means
of the LD volume element |g|1/2dx) with partial derivatives ∂µ replaced by the
HD Hermitian operators

∂̂µ +
1

2
E i

µi = ∂µ +
(

∂µ ln |h|1/4
)

− iaµ −
1

2
∇ia

i
µ

The total derivative ∂µ ln |h|1/4 takes into account the different normalization
of HD and LD states. It amounts to the rescaling ∆ext → |h|−1/4∆ext|h|1/4.
The Hermitian internal operator aµ −

i
2
∇ia

i
µ enters the expression as a gauge

potential. The second righthand term of (104) corresponds to the LD internal
Laplace operator

∆int = |h|−1/2∂ih
ij|h|1/2∂j (106)

(Hermitian with respect to the internal scalar product constructed by means
of the LD volume element |h|1/2dy) with partial derivatives ∂i replaced by

∂i +
1

2
Ê µ

iµ = ∂i +
(

∂i ln |g|1/4
)

As above, the total derivative amounts to the rescaling ∆int → |g|−1/4∆int|g|1/4,
necessary to correct the different normalization of HD and LD states. The re-
maining terms in the righthand side of (104) are identified with a scalar poten-
tial induced by dimensional reduction. They are know to produce observable
effects in low energy physics [8]. Specializing to Kaluza-Klein and embedded
spacetime models we obtain:

Kaluza-Klein: By recalling (14), (27), (37), (45), the fact that ∇iK
i
a = 0 and as-

suming that the external metric only depends on external coordinates, (104) reduces
to the well known expression

∆KK = |g|−1/2
(

∂µ − iAa
µK̂a

)

gµν |g|1/2
(

∂ν − iAa
νK̂a

)

+ |κ|−1/2∂iκ
ij |κ|1/2∂j (107)

where K̂a = −iKi
a∂i are infinite dimensional Hermitian generators of the isometry

algebra.
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Embedded spacetime: By recalling (17), (28), (38), (47), the fact that ∇iA
i

j yj =

A i
i = 0 and after rescaling fields and operators by

Ψ → |g|1/4|g|−1/4Ψ

∆ → |g|1/4|g|−1/4∆ |g|−1/4|g|1/4
(108)

in a neighborhood of radius ǫ of Md (104) reduces to

∆emb = |g|−1/2
(

∂µ − i
2A ij

µ Lij

)

gµν |g|1/2
(

∂ν − i
2A kl

µ Lkl

)

+

+1
2 IIiµνII

iµν − 1
4 II µ

iµ IIi ν
ν + ∂i∂i + O(ǫ)

(109)

where Lij = −i(yi∂j − yj∂i) are orbital angular momentum operators in internal

directions.

3.6.2 Dirac operator

The HD Dirac operator D/ acts on 2[D/2]-dimensional Dirac fermions. In every
local coordinate frame D/ is written in terms of HD gamma matrices γA, ref-
erence frames, partial derivatives, pseudo-orthogonal connection coefficients
and spin pseudo-orthogonal generators ΣAB = − i

4
[γA,γB] as

D/ = γCr I
C

(

∂I −
i

2
ΩI,ABΣAB

)

(110)

D/ is Hermitian with respect to the measure constructed by means of Dirac
adjoint and HD covariant volume element |g|1/2dx. HD gamma matrices γA

can be decomposed in terms of LD external γα and internal γa gamma matrices
as

γα = γα ⊗ 1int , γa = γext ⊗ γa

where here and in what follows, 1ext, γext and 1int, γint denote identity and
chiral matrices in external and internal spin spaces, respectively. Correspond-
ingly, the HD spin generators ΣAB decompose in terms of LD external Σαβ =
− i

4
[γα, γβ] and internal Σab = − i

4
[γa, γb] ones as

Σαβ = Σαβ ⊗ 1int, Σαb =
i

2
γextγα ⊗ γb, Σab = 1ext ⊗ Σab

By recalling the reference frames decomposition (55), the relation between HD
and LD connection coefficients (74)-(79), suppressing –as customary– tensor
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product symbols and spin identity matrices, we obtain the most general LD
decomposition covariant under (2)

D/ = γγr µ
γ

(

∂̂µ+
1

2
E i

µi −
i

2
Âµ,abΣ

ab−
i

2
Ω̂µ,αβΣαβ

)

+

+γextγcρ i
c

(

∂i+
1

2
Ê µ

iµ −
i

2
Ai,αβΣαβ−

i

2
Ωi,abΣ

ab
)

+

+
i

2
γextγcfcαβΣαβ (111)

The first righthand side term reproduces the four dimensional Dirac operator

D/ ext = γγr µ
γ

(

∂µ −
i

2
Ωµ,αβΣαβ

)

(112)

with connection coefficients replaced by hatted ones and partial derivatives ∂µ

replaced by

∂̂µ +
1

2
E i

µi −
i

2
Âµ,abΣ

ab

As in the scalar case, the total derivative hidden in the trace of the second
fundamental form 1

2
E i

µi corrects the different HD and LD normalization, while

the operator gauge potential aµ−
i
2
∇ia

i
µ is now supplemented by the Hermitian

internal spin matrix 1
2
Âµ,abΣ

ab. The second righthand side term corresponds
to γext times the internal Dirac operator

D/ int = γcρ i
c

(

∂i −
i

2
Ωi,abΣ

ab
)

(113)

with partial derivatives replaced by

∂i +
1

2
Ê µ

iµ −
i

2
Ai,αβΣαβ

Once again 1
2
Ê µ

iµ remedies the different states normalization, while the Her-
mitian external spin matrix 1

2
Ai,αβΣαβ enters the expression as a gauge po-

tential. The third righthand term i
2
γextγcfcαβΣαβ is an induced Pauli term.

Specializing to Kaluza-Klein and embedded spacetime models we obtain:

Kaluza-Klein By recalling (57), (27), (37), (45), we have ∇iK
i
a = 0 and assuming

that the external metric only depends on external coordinates, (111) reduces to the
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well known Kaluza-Klein decomposition of the Dirac operator

D/KK = γαr µ
α

(

∂µ − iAa
µK̂a −

i
2Ωµ,αβΣαβ

)

+

+γextγak i
a

(

∂i −
i
2Ωi,abΣ

ab
)

+ i
2γextγiFa

αβKaiΣ
αβ

(114)

where

K̂a = −iKi
a∂i +

1

2

[

k i
a (∂iK

j
a)kbj − Ki

a(∂ik
j

a )kbj

]

Σab (115)

are infinite dimensional Hermitian generators of the isometry group algebra.

Embedded spacetime By recalling (58), (28), (38), (47), that ∇iA
i

j yj = 0 and
by rescaling fields and operators by

Ψ → |g|1/4|g|−1/4Ψ

D/ → |g|1/4|g|−1/4
D/ |g|−1/4|g|1/4

(116)

we obtain the following expression for the Dirac operator in neighborhood of radius
ǫ of Md

D/ emb = γαt µ
α

(

∂µ − i
2A ij

µ Jij −
i
2Ωµ,αβΣαβ

)

+ γextγi∂i + O(ǫ) (117)

with Jij = Lij + Σij the total angular momentum in internal directions.

3.6.3 Higher spin operators

HD higher spin operators decompose in the very same way as the sum of LD
spin operators, with partial derivatives replaced by ‘gauge covariant’ ones and
the possible addition of scalar potential terms. In particular, external partial
derivatives ∂µ are replaced by

∂̂µ +
1

2
E i

µi −
i

2
Âµ,abS

ab (118)

with Sab appropriate internal spin generators.

4 Gauge Symmetries from Higher Dimensional Covariance

One of the most interesting features of dimensional reduction is the possibil-
ity of geometrically inducing gauge structures in the effective LD dynamics.
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In this section we see that, after general covariance breaking, residual inter-
nal coordinates and reference frame transformations are always perceived by
effective LD observers as gauge transformations. We also discuss conditions
for the induced gauge group to be finite dimensional, providing a covariant
characterization of Kaluza-Klein and other few remarkable backgrounds.
Gauge fields are identified by their coupling to matter and by their transforma-
tion rules. From the point of view of classical equation of motion, a quick look
to (102) shows that ai

µπi enters the Hamiltonian as a gauge potential. To make
the gauge structure explicit we may rewrite the interaction term as tr(qaµ)
with q = iyjπj a suitable charge operator and aµ = −iai

µ∂i the gauge connec-
tion introduced in Subsection 2.2. The corresponding curvature fµν = −if i

µν∂i

enters the third term of equation (97). From the operatorial/quantum view-
point, after adapting the state measure to the external spacetime by the scale
transformation

Ψ → |h|1/4Ψ and ∆ → |h|1/4∆|h|−1/4, D/ → |h|1/4
D/|h|−1/4 ... (119)

expressions (104), (111) and (118) taken by Laplace, Dirac and higher spin
operators show that

Aµ = −iai
µ

(

∂i −
i

2
Ωi,abS

ab
)

−
i

2
∇ia

i
µ +

1

2
(∂µρ

k
a )ρbkS

ab (120)

couples to effective LD degrees of freedom as a gauge potential. Under the
residual covariance group Aµ transforms like a gauge potential:

– internal diffeomorphisms

yi → exp{ξk(x, y)∂k}y
i (121)

make ai
µ and hence Aµ to transform like

Aµ → TAµT
−1 + iT (∂µT

−1) (122)

with T = exp{−ξk∂k}
– internal reference frame redefinitions

ρ i
a → Λ b

a (x, y)ρ i
b (123)

make (∂µρ
k

a )ρbk and hence Aµ to transform like

Aµ → ΛAµΛ
−1 + iΛ(∂µΛ

−1) (124)

with Λ = exp{ i
2
ΛabS

ab}

The commutator of two gauge covariant derivatives defines the operator Fµν =
∂µAν − ∂νAµ − i[Aµ,Aν ]. A direct computation yields

31



Fµν =−if i
µν

(

∂i−
i

2
Ωi,abS

ab
)

−
i

2
∇if

i
µν+

1

2
(∇afbµν)S

ab+E c
µa EνbcS

ab (125)

Under internal diffeomorphisms and reference frames redefinitions Fµν cor-
rectly transforms like a gauge curvature

Fµν → TFµνT
−1 and Fµν → ΛFµνΛ

−1 (126)

Aµ and Fµν are Hermitian operators –i.e. infinite dimensional matrices– acting
on internal tensors/spinors. After HD covariance braking, residual internal
covariance is perceived by effective LD observers as an infinite dimensional
gauge group, with internal coordinate and spin playing the role of –one of
the many possible choices of– gauge indices. The gauge curvature Fµν receives
contributions from two independent LD tensors: f i

µν and Eµij. In general, the
two contributions are simultaneously active producing an effective infinite-
dimensional gauge group. In some special backgrounds the gauge group may
reduce to finite dimensions.

4.1 Eµij = 0: gauge structures related to the isometric structure of internal
spaces

Let us first consider the case where the internal fundamental form Eµij van-
ishes identically while f i

µν is arbitrary. This requirement is equivalent to the
statement that the induced gauge structure is of the Kaluza-Klein type. We
have already seen in Subsection 2.3.2, equations (45) and (47), that gauge
structures of the Kaluza-Klein type imply Eµij = 0. To prove the inverse,
we note that under the vanishing of the internal second fundamental form
equation (43) implies that

∇ifjµν + ∇jfiµν = 0 (127)

In every internal space the vector f i
µν is Killing. In principle the Killing struc-

ture of Mx
c can depend on the external point x. However, the fact that f i

µν

belongs to the Killing algebra also implies that ai
µ takes values on the same

algebra up to a pure gauge term. It is therefore possible to choose internal
coordinates in which ai

µ is Killing, ∇iaµj + ∇jaµi = 0. In such adapted co-
ordinate frames equation (42) implies ∂µhij = 0, that is hij(x, y) = κij(y).
Thus, the intrinsic geometry of internal spaces does not depend on the ex-
ternal spacetime point. Having the same intrinsic and extrinsic geometry, all
internal spaces are isomorphic: Mx

c ≡ Kc. By choosing a Killing vector basis
Ki

a
(y), a = 1, ..., n, for the isometry algebra iso(Kc) ≡ gKK, [Ka, Kb]

i = k c

ab
Ki

c
,

the off-diagonal metric term ai
µ and the antisymmetric hybrid tensor f i

µν can
be expanded as in (16) or (19) by
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ai
µ(x, y) = Aa

µ(x)Ki
a
(y), f i

µν(x, y) = Fa

µν(x)Ki
a
(y)

with Fc

µν = ∂µAc

ν −∂νA
c

µ − k c

ab
Aa

µAb

ν . The gauge potential (120) and the gauge
field (125) acting on spin-s matter take then the standard Kaluza-Klein form

Aµ = Aa

µ(x)K̂a (128)

Fµν = Fa

µν(x)K̂a (129)

with

K̂a =Ki
a

(

−i∂i−
1

2
Ωi,abS

ab
)

+
1

2
(∇aKab)S

ab

spin-s valued Hermitian differential operators closing the finite-dimensional
algebra iso(Kc), [K̂a, K̂b] = −ik c

ab
K̂c.

The theory is still covariant under the whole residual covariance group (2).
However, a generic diffeomorphism T = exp{−ξi(x, y)∂i} will bring ai

µ outside
iso(Kc). To keep the group structure of the background explicit it is necessary
to work in adapted coordinates. This is achieved by restricting the allowed
covariance group to Killing transformations, that is, by restricting attention
to ξi(x, y) = ǫa(x)Ki

a
(y) as standard in Kaluza-Klein theories. In arbitrary

coordinate frames, Kaluza-Klein gauge structures are completely characterized
by the LD covariant condition

Eµij = 0 (130)

Kaluza-Klein backgrounds, in the strict sense, further require the indepen-
dence of the induced external metric on internal coordinates, a condition en-
forced by the vanishing of the symmetric part of the external fundamental
form Êi(µν) = 0. By contrast, with diffeomorphisms, the Killing algebra of
a manifold is always finite-dimensional having dimension at most c(c + 1)/2
[12]. As a consequence, in the Kaluza-Klein context, at least two internal
dimensions are necessary to produce non-Abelian gauge structures. Thus, a
minimum of seven extra-dimensions is required to realize the Standard Model
group U(1) × SU(2) × SU(3) [13].

4.2 Eµij −
1
c
E k

µk hij = 0: gauge structures related to the conformal structure
of internal spaces

Let us now weaken the Kaluza-Klein condition by requiring the proportion-
ality of the internal fundamental form Eµij to the internal metric hij, Eµij =
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1
c
E k

µk hij (this condition is trivial in c = 1). Assuming this, equation (43)
implies that

∇ifjµν + ∇jfiµν =
2

c
(∇kf

k
µν)hij (131)

In every internal space the internal vector f i
µν belongs to the conformal algebra

of the manifold. As above, the fact that f i
µν belongs to an algebra implies

that also ai
µ belongs to the same algebra up to a pure gauge term. It is then

possible to adapt internal coordinates in such a way that ∇iaµj + ∇jaµi =
2
c
(∇ka

k
µ)hij. Equation (42) implies that |h|1/c∂µ|h|

−1/chij = 0. Hence, in the
adapted coordinate system hij(x, y) = λ(x)cij(y) for some conformal factor
λ(x) and some internal metric cij(y). All internal spaces are conformal to
a given manifold Cc. Choosing a basis Ci

a
(y), a = 1, ..., n for the conformal

algebra conf(Cc), [Ca, Cb]
i = c c

ab
Ci

c
, ai

µ and f i
µν can be expanded as

ai
µ(x, y) = Aa

µ(x)Ci
a
(y), f i

µν(x, y) = Fa

µν(x)Ci
a
(y)

where again Fc

µν = ∂µAc

ν − ∂νA
c

µ − c c

ab
Aa

µAb

ν . Also (120) and (125) take the
standard gauge potential and gauge curvature form

Aµ = Aa

µ(x)Ĉa (132)

Fµν = Fa

µν(x)Ĉa (133)

where the spin-s valued Hermitian operators Ĉa take now the slightly more
complicated form

Ĉa =Ci
a

(

−i∂i−
1

2
Ωi,abS

ab
)

+
1

2
(∇aCab)S

ab−
i

2
∇iC

i
a

(134)

It is readily checked that the Ĉa do not depend on external coordinates and
close conf(Cc), [Ĉa, Ĉb] = −ic c

ab
Ĉc.

As in the previous case, gauge invariance is only explicit when the allowed co-
variance group is restricted to conformal transformations ξi(x, y) = ǫa(x)Ci

a
(y),

while in arbitrary coordinates the background is completely characterized by
the LD covariant condition

Eµij −
1

c
E k

µk hij = 0 (135)

The conformal algebra of a manifold contains the isometry algebra as subalge-
bra and is always finite dimensional with maximal dimension (c+1)(c+2)/2.
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As a consequence non-Abelian gauge fields may be induced even with a single
internal dimension.

Example: To check this explicitly we consider a one-dimensional internal space
with topology of a circle parameterized by the internal coordinate θ ∈ [−π, π]. The
corresponding conformal algebra so(2, 1) is generated by the vector fields Cθ

1
= 1,

Cθ
2

= sin θ and Cθ
3

= cos θ. Assuming the off-diagonal term of the HD metric to be
of the form

aθ
µ(x, θ) = A1

µ(x) + A2
µ(x) sin θ + A3

µ(x) cos θ (136)

the vector field (125) rewrites like in (133) with

Ĉ1 = −i
∂

∂θ
, Ĉ2 = −i sin θ

∂

∂θ
−

i

2
cos θ, Ĉ3 = −i cos θ

∂

∂θ
+

i

2
sin θ

which are easily checked to close the so(2, 1) algebra

[Ĉ1, Ĉ2] = iĈ3, [Ĉ2, Ĉ3] = −iĈ1, [Ĉ3, Ĉ1] = iĈ2

We should remark, however, that so(2, 1) is the only non-Abelian Lie algebra that

can be embedded in diff(M1).

4.3 f i
µν = 0: gauge structures related to the local freedom of choosing internal

reference frames

Eventually, we consider the case where the antisymmetric hybrid tensor f i
µν

vanishes identically while Eµij is arbitrary. Under these circumstances it is
always possible to choose internal coordinates in such a way that the off-
diagonal block of the HD metric vanishes identically ai

µ = 0. In such adapted
coordinate systems the internal fundamental form reduces to the external
derivative of the internal metric

Eµij =
1

2
∂µhij (137)

The gauge potential (120) and the gauge curvature (125) acting on spin-s mat-
ter take the form of standard (pseudo-)orthogonal gauge fields, with internal
spin generators Sab playing the role of gauge algebra generators

Aµ =
1

2
(∂µρ

k
a )ρbkS

ab (138)

Fµν =
1

4
ρ i

a ρ j
b (∂µhik)h

kl(∂µhjl)S
ab (139)
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We see that LD gauge structures can be induced even when the off-diagonal
block of the HD metric vanishes identically, but they only act on matter carry-
ing spin. As in the previous cases, the theory is still covariant under the whole
residual covariance group. The gauge structure emerges explicitly only when
adapted coordinates are introduced and the covariance group is restricted to
(pseudo-)rotations of internal reference frames. In generic coordinate systems
the background is fully characterized by the LD covariant condition

f i
µν = 0 (140)

Under these circumstances a minimum of three internal dimensions is required
to generate non-Abelian gauge structures, while ten extra dimensions natu-
rally provide the background for SO(10) grand unification [14]. Internal gauge
indices like isospin and color can be nicely understood as internal spin in-
dices and a complete matter unification can be achieved in terms of a single
fourteen-dimensional spinor [15].

5 Discussion and Conclusion

The selection of a subset of coordinates –with the relative general covariance
breaking– does not imply in itself neither the selection of a reduced space nor a
dimensional reduction procedure. However, it determines the geometrical fea-
tures of all reduction schemes leading to that subset of coordinates as residual
coordinates. By investigating invariant/covariant quantities under the residual
transformation group we constructed LD tensors that fully characterize the
geometry of the coordinate choice and hence of the associated dimensional
reduction schemes. These allow to see in the same light reduction procedures
that seems otherwise totally unrelated, like Kaluza-Klein models –where the
system is totally delocalized in internal directions– and embedded spacetimes
–where, on the contrary, the system gets localized at an internal space point.
Most of the formulas of Kaluza-Klein and embedded spacetime theories do
not depend on the averaging procedure employed, but only on the geometry
of the coordinate choice. In this paper we presented general formulas for the
reduction of the main tensors and operators of Riemannian geometry. In par-
ticular, the reduction of the HD Riemann tensor provides what is probably
the maximal possible generalization of Gauss, Codazzi and Ricci equations.
Our work also sheds some new light on the nature of geometrically induced
gauge structures, tracing their origin to residual general covariance in internal
directions.
We conclude by remarking that –from the separation of radial and angular
coordinates in the two-body problem to the latest theories of everything–
adapting, selecting an appropriate subset and exactly or effectively separating
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coordinates is such a basic procedure in solving physical problems, that it
is unthinkable to compile even a partial list of the papers where particular
adapted/reduced expressions of geometric tensors, equations and operators
have been obtained. Our hope is that the formulas presented in this paper
may be of help and save some tedious computational work to all researcher
working on some adapting coordinates problem.
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