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Abstract

Self-assembled quantum dots in Si-Ge-Sn system attract research attention as possible direct

band gap materials, compatible with Si-based technology, with potential applications in opto-

electronics. In this work, the electronic structure near the Γ-point and interband optical matrix

elements of strained Sn and SnGe quantum dots in Si or Ge matrix are calculated using the eight-

band k ·p method, and the competing L-valley conduction band states were found by the effective

mass method. The strain distribution in the dots was found with the continuum mechanical model.

The parameters required for the k ·p or effective mass calculation for Sn were extracted by fitting

to the energy band structure calculated by the nonlocal empirical pseudopotential method (EPM).

The calculations show that the self-assembled Sn/Si dots, sized between 4 nm and 12 nm, have

indirect interband transition energies between 0.8 to 0.4 eV and direct interband transitions be-

tween 2.5 to 2.0 eV. In particular, the actually grown, approximately cylindrical Sn dots in Si with

a diameter and height of about 5 nm are calculated to have an indirect transition (to the L valley)

of about 0.7 eV, which agrees very well with experimental results. Similar good agreement with

experiment was also found for SnGe dots grown on Si. However, neither of these are predicted to

be direct band gap materials, in contrast to some earlier expectations.

PACS numbers: 73.21.La, 78.67.Hc, 71.15.Dx

∗ e-mail: eenpm@leeds.ac.uk
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I. INTRODUCTION

The Si-Ge-Sn alloys are considered as an interesting material for future optoelectronic

semiconductor devices, despite the difficulties in their growth which stem from the large dif-

ference of the lattice constants of the constituents, particularly that of Sn. These alloys are

generally compatible with silicon technology and offer many options to engineer the optical

properties by using different growth patterns. For example, the devices can be designed

based either on layer structures, such as single or multiple quantum wells, or based on nan-

ocluster (quantum dot) structures. The control of their properties can be done by varying

the composition of the alloys, such as Si1−xGex, Ge1−xSnx, Si1−xSnx and Ge1−x−ySixSny,

as described in experimental and theoretical investigations1–5, which indicated a wide tun-

ability of the band gap of these alloys. For instance, the GeSn alloys can be engineered

to cover the wavelength range form 1.5 to 8 µm for interband transitions, and from 8 to

200 µm for conduction- or valence-intersubband transitions6, indicating a huge potential for

optoelectronic applications – as laser diodes, photodetectors, and electro-optical modulators.

Self-assembled Sn quantum dots embedded in Si have been successfully grown in recent

years, and it was anticipated that these would also be important nanostructures for op-

toelectronic devices, because of their potential for synthesis of a Si-based direct bandgap

semiconductor, a property not found in the more conventional Ge and SiGe quantum dots.

Although bulk Sn is a direct zero band gap semiconductor, the gap at the Γ point is expected

to increase, as a combined result of quantum confinement and strain. Growth of Sn/Si dots

by temperature modulated molecular beam epitaxy has been reported. A few nanometres

thick epitaxially-stabilized metastable SnxSi1−x alloy layer with x = 0.05 to 0.1 was first

grown on Si (001), and then annealed at temperatures between 550 and 800o C, to form

the Sn quantum dots. The process thus differs from the conventional Stranski-Krastanow

growth of III/V dots, and is based on a very small equilibrium solubility of Sn in Si (or in

Ge), which leads to clusterization of Sn atoms upon annealing the metastable alloy, leav-

ing more or less pure Si around them. Using the Z-contrast cross-sectional high-resolution

transmission electron microscopy, the sample was shown to contain dots with diameters in

the range of 5-10 nm, located mostly in what was the SnxSi1−x alloy layer, and very few

in Si spacer layer7. The shape of these dots was somewhat irregular, but generally cylin-

drical or lens-like, rather than the conventional pyramidal. However by the high-resolution
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Z-contrast tomography it was found that dots could be in either the cubic α-Sn (zero-gap

semiconductor) or the tetragonal β-Sn (metallic) phase8. The α-Sn dots transform into the

β-Sn phase, more elongated in one direction, when their diameter exceeds a critical value of

about 8 nm. In order to investigate optical properties of the Sn-in-Si dots, the luminescence

spectrum was measured by using Fourier Transform Infrared Spectroscopy. It was eluci-

dated that the absorption spectrum starts from about 0.3 eV, with the absorption strength

of 8 × 103 cm−1, which was believed to be consistent with direct interband transitions9. In

contrast, the absorption measurements by Karim et al.10 show a relatively weaker broad

spectrum at 0.7–1 eV, but no features around 0.3 eV. Similarly, the α-Sn quantum dots

embedded in Ge were realized, with a diameter of 32 nm and 10% size distribution. Fitting

the simulations to experimental transmittance spectra has lead to a conclusion that direct

interband transitions in Sn dots were indeed observed, with an energy gap of 0.45 eV and

the absorption coefficient of 3 × 103cm−1 near the bandgap edge11.

On the other hand, theoretical studies of the electronic structure of Sn-based quantum

dots, which should help in understanding the features observed in experiments, are missing.

In this work, we therefore calculate the single-particle states and interband absoprtion in

this type of dots within the framework of envelope function theory. In Sec. II.A and B

the theoretical framework is presented. Due to lack of some of material parameters for Sn,

these were extracted from empirical nonlocal pseudopotentials, as described in Sec II.C. The

results of our study are presented in Sec. III, with special attention devoted to the issue

of the nature of the band gap of quantum dot material, which is relevant for optoelectronic

devices.

II. COMPUTATIONAL METHOD

In this section we describe the theoretical model used to calculate the electronic structure

and optical properties of Sn and SnGe quantum dots. These were assumed to have cylindrical

symmetry, being either cylindrical, lens or cone shaped, with diameter (d) and height (h),

where h = d was taken for cylindrical, and h = d/2 for lens shaped (i.e. hemispherical)

dots, while h = d/2 and the base angle of 60o were taken for cone shaped dots, as shown in

Fig. 1. Although some papers report tetrakaidecahedron or truncated octahedron shapes8,

the simple cylindrically symmetric shapes should suffice in view of the irregularity present
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in all the observed dots.

A. The strain distribution

Due to a large difference in lattice constants of Sn (dots) and the matrix (Si, Ge) there is

a considerable strain built in the system, which strongly affects the electronic structure. The

strain was described within the continuum mechanical model and calculated by the finite

element method, as described in more detail in Ref. 12. The elastic energy of the classical

continuum medium is given by

W =
1

2

∑

ijkl

∫

dV λijkl

[

eij(r) − e
(0)
ij (r)

] [

ekl(r) − e
(0)
kl (r)

]

(1)

where λijkl is the elastic tensor relating the stress and strain, eij(r) are the elastic strain

tensor components, and e
(0)
ij (r) the local intrinsic strain induced by the changes in the lattice

constant

e
(0)
ij (r) =

(

a (r) − a

a

)

δij (2)

where a(r) is the unstrained lattice constant at r, and a is the substrate lattice constant. In

crystals with the zincblende lattice (we consider only the α-Sn dots) the elastic tensor is of

the form

λijkl = C12δijδkl + C44 (δikδjl + δilδjk) + Can

3
∑

p=1

δipδjpδkpδlp (3)

where C12, C44 and Can = C11 − C12 − 2C44 are the elastic constants.

In order to find the strain distribution, the finite element method is used to minimize

the total elastic energy. The continuum real space is divided into a nonuniform rectangular

grid, and the displacement components are expressed in terms of displacements at grid

points, using the first order Lagrange interpolation. The minimization was performed by

the conjugate gradient method13. The results of strain calculation for cylindrical, lens and

cone shaped Sn dots in Si are shown in Fig. 2. The calculated strain field components are

used in the eight-band k·p calculation, described in the next section.

B. The eight-band k·p model

The Γ-valley electronic structure and interband optical matrix elements of Sn quantum

dots were calculated using the eight-band k·p method. It describes simultaneously the
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conduction band Γ−
7 and the valence bands Γ+

8 (heavy hole and light hole bands) and Γ+
7

(spin-orbit split-off band), including the strain dependent coupling and shifts of these bands.

In particular, the form given by Bahder14 was employed. The Hamiltonian is given as

H = Hk + Hs, where Hs is the strain part and Hk the kinetic part (that also includes the

modulated potential V0 (r) and the spin-orbit interaction Hso).

The orthonormal wavefunction expansion method was used to find the size-quantized

states (eigenenergies and wavefunctions) in a quantum dot. Due to the cylindrical symmetry

of the dots considered here, these are taken to be embedded in an outer cylinder of radius

Rt and height Ht, with hard walls. Therefore, the envelope function corresponding to band

i was written as a linear combination of expansion basis functions

ψi (r) =
∑

nl

Ainlfnm(i) (r) gl (z) Φm (φ) , (4)

where

fnm (r) =

√
2

Rt

Jm (knmr)
∣

∣J|m|+1 (knmRt)
∣

∣

, (5)

gl (z) =
1√
Ht

exp

(

i
2πlz

Ht

)

, (6)

Φm (φ) =
1√
2π

exp (imφ) , (7)

where l and m are integers and n a positive integer, and Jm is the Bessel function of order

m and knmRt is its n-th zero. Furthermore, m (i) = mf − mj (i), where mj (i) is the z-

component of angular momentum of the Bloch function |i >, and quantum number mf is

the z-component of the total angular momentum, which is a good quantum number and is

the sum of the angular momentum of the Bloch function and that of the envelope function.

The states can therefore be labeled as nemf
(nhmf

), denoting that an electron (hole) is in

the n-th state among the states with the z-component of the total angular momentum mf .

To find the optical absorption cross section of a transition from an initial state i to a final

state f , the interaction Hamiltonian with photons is found from H ′ = H
(

k + e
~
A

)

−H (k),

where A = εA is the magnetic vector potential, considered constant in space, and where the

quadratic terms in A were neglected, ε is the radiation polarization vector15. The optical

cross section of the i → f transition, due to electromagnetic radiation of angular frequency

ω is given by12

σε
if =

2π

n̄ε0cω
|Mif |2 g (Ef − Ei − ~ω, 2σ) , (8)
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where Mif = 〈i |H ′| f〉 is the matrix element which depends on the direction of light po-

larization, n̄ is refractive index, c is speed of light in vacuum, ε0 is the vacuum dielectric

constant, and Ei and Ef are the initial and final state energies, respectively. In order to

account for the spread of sizes of self-assembled quantum dots, and various other sources of

line broadening, the lineshape function g in Eq. (8) was taken as the Gaussian distribution

function, i.e.

g (Ef − Ei − ~ω, 2σ) =
1

σ
√

2π
exp

[

−(Ef − Ei − ~ω)2

2σ2

]

, (9)

where σ is the standard deviation of the Gaussian, which typically amounts to 10% of the

transition energy for bound-to-bound transitions. The selection rules for the transitions

are |∆m| = 0 for absorption of z-polarized radiation and |∆m| = 1 for in-plane-polarized

radiation.

The k·p calculation requires the parameters describing the bulk band structure of the

constituent materials. In nonpolar (Si, Ge, Sn) zincblende crystals these are: Luttinger

parameters γ1,2,3, Kane energy Ep, band gap Eg, spin-orbit splitting ∆so, hydrostatic (ac

and av), uniaxial (b) and shear (d) deformation potentials, and A′ which describes the

remote band effects on the conduction band. For Si and Ge all these are well tabulated

in the literature, while the data for Sn are more scarce or completely missing. Therefore,

the Sn parameters were extracted from the empirical pseudopotential method (EPM), and

those of the values which have been reported previously could also be compared against the

values obtained here, for improved reliability, as described in the next section.

The highest valence band states in Sn dots (just as in almost all other semiconductors

except lead chalcogenides) are derived from the Γ point of the bulk Brillouin zone. If the

lowest conduction band state also turns out to be at Γ, the Sn dots would be a direct band

gap material. The main ‘competitor’ to these are the states derived from the conduction

band at L point, since it is much lower than the X point in Sn. The eight-band k·p method

cannot simultaneously deliver states at L (a much more elaborate, 30-band k·p method16, or

e.g. the pseudopotential calculation17, would be required for that). In this work, however,

we chose to find the L-valley size-quantized states of Sn dots in an approximate manner,

using a simple effective mass calculation. For this purpose we use the scalar, angle-averaged

effective mass of the ellipsoidal L valleys, and account for the hydrostatic strain only, while

ignoring higher order effects, like the intervalley interference18 etc., which cannot be simply

plugged into an effective mass type of calculation. While not of the same level of accuracy
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as the k·p calculation at Γ, this should still suffice for comparison of direct and indirect

gaps in Sn dots. The parameters required were also extracted from the EPM calculation

described below.

C. The nonlocal empirical pseudopotential method

The band structure of bulk α-Sn was modelled by the nonlocal empirical pseudopotential

method19. While requiring some experimental input, this method generally offers a better

accuracy for various band structure parameters than does the first-principles density func-

tional theory in the local density approximation without any additional schemes like GW

approximation or “scissors correction”, as are employed in total energy approaches (see e.g.

Ref. 20 for comparison), and it is exactly these band-structure, rather than the ground-state

parameters which are of interest in the present work. The electronic structure is found by

solving the Schorödinger equation

Heffψn,k (r) = ǫn,kψn,k (r) , (10)

in the plane wave basis

ψn,k (r) =
1√
Ω0

eik·r
∑

G

an,k (G) eiG·r, (11)

where k is the wave vector in the first Brillouin zone, G are the reciprocal lattice vectors and

Ω0 is the volume of the primitive cell. The Hamiltonian has local, non-local, and spin-orbit

interaction parts:

Heff = H loc + Hnon−loc + Hso. (12)

The local part is

H loc (G′,G) =
~

2

2m
(G + k)2 δG,G′ + V (G − G′), (13)

where

V (G − G′) =
∑

α

Sα (G − G′) Vα (G − G′) , (14)

and Vα(G − G′) and Sα(G − G′) are the pseudopotential form factor and the lattice struc-

ture factor of atom type α, respectively.

7



The nonlocal potential matrix elements relating the basis states with wavevectors K and

K′ are19

V NL
α (K,K′) =

4π

Ω0

Al (E) (2l + 1) Pl (cos (θK,K′))

×Si (K − K′) F i
l (K,K′), (15)

where

Fl(K,K′) =



















R3
s

2

[

j2
l (KRs) − jl−1 (KRs) jl+1 (KRs)

]

, K = K′

R2
s

K2−K′2





Kjl+1 (KRs) jl (K
′Rs)

−K ′jl+1 (K ′Rs) jl (KRs)



 , K 6= K′



















(16)

where K = G+k and K′ = G′+k, l is the azimuthal quantum number, cos (θK,K′) =

K · K′/ |K · K′|, Pl is the Lagrange polynomial of order l , the potential strength Al is the

depth (or height) of the nonlocal square well, Rs is its radius (characterizing the particular

atomic type), jl is the spherical Bessel function of order l, and Ω0 is the volume of the unit

cell. The parameters for Sn given in Ref. 19 were used in this work.

The spin-orbit interaction Hamiltonian, in the plane wave basis, is

Hso (K′,K) = −iλσ · (K − K′) · Si (K − K′) , (17)

where λ is the spin-orbit coupling constant, characterizing the particular atomic type, and

σ are the Pauli matrices.

For bulk bandstructure calculations one usually uses the discrete set of local pseudopo-

tential formfactors, at exactly those values of G which correspond to the equilibrium lattice

constant. To extract the deformation potentials, however, one has to consider lattices de-

formed by uniaxial, shear, or hydrostatic strain, which requires either a continuous local

pseudopotential form function Vα(q), or some means of interpolation. The same problem

arises in EPM based supercell calculations for superlattices, quantum dots, etc. For Si and

Ge, for instance, Friedel et al.21 have devised such formfunctions, of modified Falicov form

Vα(q) =
1

2

(

a1(q
2 − a2)

1 + e(a3(q2−a4))

)[

tanh

(

a5 − q2

a6

)

+ 1

]

, (18)

where q is magnitude of the wavevector, and this form, with improved parameters, has

subsequently been employed for various calculations, e.g. Refs. 22,23. We have started with

the formfactors for Sn19, and devised the corresponding formfunction for Sn that reproduces

the bandstructure data reported in this and other sources24–27. The parameters for Sn, using
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a cutoff of 8 Ry, which gives almost full convergence, are given in Table I, along with those

for Si and Ge, Ref. 22. The nonlocal and the spin-orbit parts, on the other hand, are already

given as continuous functions of the wavevector, and need no further modification for the

present purpose.

The band structure of bulk α-Sn along the L − Γ − X lines, calculated with these pa-

rameters, is given in Fig. 3. Near the Γ-point the EPM bandstructure should coincide with

that obtained by the k·p method (since it is the second order perturbation theory applied

at the Γ point), with appropriately chosen material parameters, and this can be used to

extract these parameters28. Fitting of the two band structures (including the cases with

strain) was performed here by the simulated annealing algorithm13. It should be noted that

the (almost) full congruence can be obtained only in an infinitesimally small vicinity of the

Γ-point, while a very good congruence can be achieved in a finite range of k vectors around

Γ, say 8–10% of the full span of the Brillouin zone (the range where the k·p method is

usually considered accurate), and in this work we have targeted the latter choice. The set

of parameters for Sn, obtained that way, is given in Table II, together with those for Si and

Ge (the later two adopted from Refs. 29,30). Finally, the A′ parameter values of Si and Ge

were found by using the relation for the conduction band effective mass m∗ at the Γ point

~
2

2m0

(1 + A′) =
~

2

2m∗
− P 2

0

Eg + 1
3
∆

, (19)

where P 2
0 = ~

2EP /2m0, and the values of 0.528m0 and 0.038m0 for Si and Ge, respectively29.

The Luttinger γ parameters extracted here for Sn, Table II, are considerably different

from those given in Ref. 24. However, the effective masses for heavy holes which follow from

the two sets are very similar (0.2 in the [001] direction, and 0.55–0.59 in the [111] direction).

For light electrons our parameters give the effective masses of 0.018–0.019, and those from

Ref. 24 are 0.035–0.039, i.e. differing by a factor of two. However, the experimental values

for the latter (Table V in Ref. 24) are around 0.024, which is much closer to our value (not

unexpected, since we used a more empirical-related method of band structure calculation).

Therefore, we believe that the other parameters for Sn, reported here, are also reasonably

reliable. We should also note that the conduction and valence band hydrostatic deformation

potentials, ac and av, were individually determined by setting the energy at Γ+
8 (heavy hole

and light hole band) for zero value of the hydrostatic strain, ǫ = ǫxx + ǫxx + ǫxx = 0, as the

constant reference energy, and then applying strain to find ac =
(

Γ−
7 (ǫ) − Γ−

7 (ǫ = 0)
)

/ǫ,
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and av =
(

Γ+
8 (ǫ) − Γ+

8 (ǫ = 0)
)

/ǫ.

As for the L-valley parameters, the longitudinal (ml) and transverse (mt) effective mass

are found to be 1.99m0 and 0.091m0, respectively, in good agreement with other published

values 1.35m0, 1.48m0 and 0.072m0, 0.075m0, respectively24,31, and a value of -2.24 eV was

extracted for the hydrostatic deformation potential.

The final ingredient required for the k·p calculations of heterostructures is the valence

band offset at the interface. In the absence of any more reliable experimental data, for Sn

grown on SixGeySn1−x−y we have used an expression in accordance to Jaros35, i.e. ∆Vv.b. =

1.17 · x + 0.69 · y [eV]. The band energies on the absolute energy scale are not intrinsically

contained in the pseudopotential formfactors, and therefore cannot be obtained within the

EPM.

III. RESULTS AND DISCUSSION

Using the methods and materials parameters described above, we have investigated the

electronic and optical properties of the Sn-based quantum dots, in particular Sn quantum

dots embedded in Si36, and the Ge1−xSnx alloy dots. To check the validity of the method

we have first done calculations for lens shaped Ge quantum dots in Si, with the diameter

and the height of about 100 and 15 nm, respectively. The direct interband transition onset

is about 1.3 eV, and the indirect transition (towards the L-point) onset is about 0.72 eV.

This is in good agreement with the experimental results of absorption spectrum of the self-

assembled Ge/Si quantum dots grown by a solid-source molecular beam epitaxy, in the

Stranski-Kranstanov growth mode37, where a broad peak at 0.7 to 1.0 eV was found.

A. Sn quantum dots

The electronic structure of Sn dots in Si was calculated assuming they were either cylin-

drical, lens or cone shaped. While the actually grown dots were approximately cylindrical,

it is plausible to expect that the other two shapes might be achieved starting with a graded,

rather than uniform-composition, Sn-Si alloy layer, which is then annealed. The Sn/Si in-

terface has type-I band alignment, i.e. the Sn dot is the potential well for both electrons and

holes at the Γ point. Examples of the wave functions of the lowest (topmost) three states
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in the conduction (valence) band at Γ are given in Fig. 4. The direct-transition absorption

spectrum of a couple of dot sizes, for the three shapes, is shown in Fig. 5. As expected,

the transition energy inversely depends on the dot size, and also depends on the dot shape

in the expected manner, being shifted to somewhat higher energies for lens and cone dots.

Interestingly, the dot shape determines whether the z-polarized or in-plane-polarized light

would be more strongly absorbed.

The main feature from these calculations is that the direct absorption spectrum of Sn/Si

dots peaks around 2–2.5 eV. This is larger than the indirect absorption onset in bulk Si

(matrix), at about 1.1 eV, but since this absorption is relatively weak one can still expect

that these direct transitions might be observed in very thin layers of Si containing Sn dots.

It is quite a surprising result that the direct transition energies are so large. This is because

of the very large strain in Sn, so large, in fact, that is has converted a zero-gap material into

an almost wide-bandgap semiconductor.

However, calculation of L-valley quantized states (the band alignment is here also type-I)

shows that these states are much lower in energy than the conduction band states at Γ,

as shown in Fig. 6, hence the Sn/Si quantum dots are not a direct gap material. This

is a consequence of the fact that the absolute value of L-valey hydrostatic deformation

potential is much smaller than that of the Γ valley. Therefore, the effects of strain change

the arrangement of Γ and L-valley states. The photoluminescence peak at approx. 0.7 eV,

observed in Ref. 10 in Sn dots with the diameter of about 5 nm, agrees very well with the

indirect transition energy predicted here, so we believe that it is actually this (indirect and

weak) transition that was observed. The likely mechanism for this was the photogeneration

of electrons in the X valley of the Si matrix, followed by their capture into lower lying L

states of Sn dots, and then by the indirect, phonon-assisted recombination.

B. SnxGe1−x quantum dots

Previous studies of Si-Ge-Sn bulk alloys2–7 show that a direct gap material can be obtained

in a suitable range of Ge1−xSnx alloy compositions, so we have also calculated the electronic

structure of Ge1−xSnx quantum dots embedded in Si. Clearly, such dots cannot be grown in

Si in the same way as Sn dots are, because Ge is completely soluable in Si, in contrast to Sn.

However, growth of Ge1−xSnx quantum dots on [111] oriented Si substrate, rather than in Si
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matrix, has been recently reported38,39. The dots are approximately hemispherical in shape,

they are covered by SiO2, and are asserted to have a coherent interface with the underlying

Si, and are therefore strained. It is less clear, however, what strain conditions apply towards

the ‘upper’ interface with SiO2, since it even has a different crystalline structure. The strain

conditions are important in Sn based dots, as shown above, but are difficult to resolve in

the case of Si/Ge1−xSnx/SiO2 dots. Furthermore, the different crystalline structures of Sn

and SiO2 would discourage one to use the k·p method at all, but the fact that the band

discontinuities between Sn and SiO2 are very large effectively makes it irrelevant what is on

the other side of Sn, and the k·p method can still be used to a good accuracy. Overall, we

expect that the calculation for Ge1−xSnx quantum dots fully embedded in Si, with their axis

in the [001] direction, as was performed in this work, is an approximate description of the

actual structure.

In these calculations the Luttinger parameters, deformation potentials and the spin-orbit

splitting of Ge1−xSnx were estimated using Vegard’s law, while the direct band gap and lat-

tice constant were calculated by using the quadratic interpolation, with bowing parameters

of 2.49 eV2,4,40 and 0.166 Å41, respectively. The results for the dot sizes between 4 and 12

nm, and for different compositions 0 ≤ x ≤ 1, show that the indirect interband transitions

(towards the L valley states) occur from 0.8 to 0.4 eV, while the direct interband transition

occur from 2.5 to 1.5 eV, as also shown in Fig. 6(b), implying that they are indirect gap

materials. The direct energy band gap depends quadratically on the Sn composition (note

the non-monotonic dependence of Eg on x in Fig. 6(b)), because the bowing parameter in

the direct band gap of the alloy has a strong influence. Experimentally, for dots of small

diameters (<10 nm) the absorption peaks between 1.5 eV and 2 eV were found38, which

agrees very well (perhaps surprisingly so, in view of the approximations involved) with the

data for direct transitions given in Fig. 6(b). Nevertheless, these dots are (predicted to be)

an indirect band gap material.

Finally, we have also made calculations for Sn dots embedded in Ge, which can be fab-

ricated in the same manner as Sn/Si dots, due to the small solubility of Sn in Ge. Here we

find the type-II alignment (after the strain), i.e. the dot is the potential well only for holes,

but not for either Γ or L-valley electrons. The conduction band edge at L is well below that

at Γ inside the Sn dot, since it is largely determined by strain, and this does not change too

much when going from Si to Ge matrix. This in turn implies that Sn dots in a SixGe1−x

12



matrix (which presumably could also be grown by the same technique) cannot become a

prominent direct gap material for any value of x.

IV. CONCLUSION

Using the nonlocal empirical pseudopotential method to extract the k·p parameters and

deformation potentials of bulk Sn, and the 8×8 k·p method to calculate the electronic

structure and optical properties of quantum dots, we have explored the properties of self-

assembled Sn dots embedded in Si, and Ge1−xSnx quantum dots in Si or in Ge, relevant for

optoelectronic applications. Cylindrical, lens and truncated cone shaped dots were consid-

ered. The self-assembled Sn/Si dots of size between 4 nm and 12 nm were found to have

indirect interband transitions (towards the L-valley size-quantized states) from 0.8 to 0.4

eV, and direct interband transitions from 2.5 to 2.0 eV. The indirect interband transition

energies compare very well with the experimental reported absorption peaks10. However,

the indirect nature of the lowest interband transition makes Sn or SnGe quantum dots in Si

matrix the unlikely candidates for optoelectronic devices, except perhaps for pure absorption

applications, in contrast to some previous expectations.
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22 M. V. Fischetti, and S. E. Laux, J. Appl. Phys. 80, 2234 (1996).

14



23 P. Yu, J. Wu, and B. F. Zhu, Phys. Rev. B 73, 235328 (2006).

24 T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Cristensen, Phys. Rev. B 48, 8629 (1993).

25 S. Adachi, J. Appl. Phys. 66, 813 (1989).

26 H. U. Middelmann, L. Sorba, V. Hinkel, and K. Horn, angle-resolved photoemission”, Phys.

Rev. B 35, 718 (1987).

27 G. P. Srivastava, J. Phys. C: Solid State Phys. 16, 1649 (1983).

28 D. J. Dugdale, S. Brand, and R. A. Abram, Phys. Rev. B 61, 12933 (2000).

29 S. Ridene, K. Boujdaria, H. Bouchriha, and G. Fishman, Phys. Rev. B 64, 085329 (2001).

30 C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).

31 M. Cardona, and F. H. Pollak, Phys. Rev. 142, 530 (1966).

32 P. Lawaetz, Phys. Rev. B 4, 3460 (1971).

33 B. L. Booth, and A. W. Ewald, Phys. Rev. 168, 805 (1968).

34 B. J. Roman, and A. W. Ewald, Phys. Rev. B 5, 3914 (1972).

35 M. Jaros, Phys. Rev. B 37, 7112 (1988).

36 P. Mock, Y. Lei, T. Topuria, N. D. Browning, R. Ragan, K. S. Min, and H. A. Atwater Physical

Chemistry of Interfaces and Nanomaterials 4807, 71 (2002).

37 Z. Yang, Y. Shi, J. Liu, B. Yan, R. Zhang, Y. Zheng, and K. Wang Materials Letters 58, 3765

(2004).

38 Y. Nakamura, A. Masada, and M. Ichikawa, Appl. Phys. Lett. 91, 013109 (2007).

39 Y. Nakayama, K. Takase, T. Hirahara, S. Hasegawa, T. Okuda, A. Harasawa, I. Matsuda, Y.

Nakamura, and M. Ichikawa, Japan. J. Appl. Phys. 46, L1176 (2007).

40 V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis,

and J. Menéndez, Phys. Rev. B 73, 125207 (2006).

41 P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, and J. Kouvetakis, Appl. Phys.

Lett. 84, 888 (2004).

15



Parameters a1 a2 a3 a4 a5 a6

Si 0.1299 3.469 0.7618 3.574 5.0 0.3

Ge 0.2962 2.527 0.6813 1.159 5.0 0.3

Sn 0.1221 2.145 3.100 2.741 5.0 0.3

TABLE I: Parameters of the pseudopotential of α-Sn (this work), and for Si and Ge, Ref. 22. The

normalization (lattice) volumes for Si, Ge, and Sn are 134.3, 151.8, and 230.5 a.u., respectively.

Value(unit)

Parameter Sn (this work) Sn (other sources) Si Ge

γ
1

-25.19 -12.0a),-14.97b),-19.2c) 4.285 13.38

γ2 -15.11 -8.45a),-10.61b),-13.2c) 0.339 4.24

γ
3

-13.53 -6.84a),-8.52b),-9.0c) 1.446 5.69

Ep 14.26 eV 23.8b) eV 21.60 eV 26.30 eV

A′ -3.25 -4.285 -7.519

ac -8.714 eV ac + av=-7.04a) 1.98 eV -8.24 eV

av 1.62 eV 2.46 eV 1.24 eV

b -2.01 eV -2.3d) -2.1 eV -2.9 eV

d -0.39 eV -4.1d) -4.8 eV -5.3 eV

∆ 0.70 eV 0.72a),0.77b) eV 0.044 eV 0.29 eV

Eg -0.408 eV -0.406a)-0.413b) eV 4.185 eV 0.898 eV

TABLE II: The k·p and deformation potential parameters for bulk α-Sn, Si and Ge. ( a) – Ref. 24,

b) – Ref. 32, c) – Ref. 33, d) – Ref. 34.)
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FIG. 1: Cylindrical, lens and cone shaped quantum dots.
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(a)

(b)

(c)

FIG. 2: Strain distribution in (a) cylindrical, (b) lens, and (c) cone shaped Sn quantum dots in Si

matrix.
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FIG. 3: a) The EPM calculated band structure of bulk α-Sn, and (b) the band structure near

the Γ point, calculated by the eight-band k · p method with the obtained parameters (dashed),

compared to the band structure calculated by EPM (solid lines).
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(a)

(b)

(c)

FIG. 4: The wave functions of a couple of conduction and valence quantized states in 8 nm diameter

Sn/Si quantum dots of (a) cylindrical, (b) lens, and (c) cone shape.
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FIG. 5: The direct interband absorbtion spectra of Sn/Si quantum dots of (a) cylindrical, (b) lens,

and (c) cone shape, for different dot diameters d. Solid lines correspond to z-polarized light (along

the dot axis), and dashed lines to in-plane polarized light.
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FIG. 6: (a) The wavefunctions squared along the axis of Sn/Si dots with diameters from 4 to 10

nm, for the quantized states at Γ (solid) and at L point (dashed); (b) The dependence of the band

gap of Ge1−xSnx/Si dots on the diameter and composition x.
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