
TEHNIČKI GLASNIK 16, 2(2022), 231-239 231

ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) Preliminary communication
https://doi.org/10.31803/tg-20220407095736 Received: 2022-04-07, Accepted: 2022-04-07

Influence of Programming Language on the Execution Time of Ant Colony Optimization
Algorithm

Luka Olivari*, Luca Olivari

Abstract: Supply chains can be accelerated by route optimization, a computationally intensive process for a large number of instances. Traveling Salesmen Problem, as the
representative example of routing problems, is NP-hard combinatorial problem. It means that the time needed for solving the problem with exact methods increases exponentially
with the increased dataset. Using metaheuristic methods, like Ant Colony Optimization, reduces the time needed for solving the problem drastically but finding a solution still takes
a considerable amount of time for large datasets. In today’s dynamic environment finding the solution as fast as possible is important as finding a quality solution. The programming
language used for finding the solution also influences execution time. In this paper, the execution time of Ant Colony Optimization to solve Traveling Salesman Problems of different
sizes was measured. The algorithm was programmed in several programming languages, execution time was measured to rank programming languages.

Keywords: ACO; Ant Colony Optimization; execution time; programming language; Traveling Salesmen Problem; TSP

1 INTRODUCTION

In order to reduce inefficiencies and considerable
economic waste, any company with a distribution network
needs to accelerate their supply chains. One aspect of supply
chain optimization is finding the route with minimal cost. For
a large number of instances, route optimization is a
computationally very intensive process. For some time now,
due to the dynamic and ever-changing environment,
requirements for route optimizers have not just been finding
the quality solution but finding it as fast as possible. [1]
Although there is a metaphorical deluge of heuristic and
metaheuristic solvers for route optimization in the scientific
literature [2], Ant Colony Optimization (ACO) algorithm is
chosen because it has proven to be an efficient and reliable
algorithm time and time again over many years. Also, ACO
has been historically often used as a solver for a variety of
supply chain and vehicle routing problems. [1] Regarding
computational intensity, it can represent lots of other
algorithms such as Particle Swarm Optimization, Firefly, Bee
Colony, Artificial Bee Colony, etc., as they are very similar
in implementation to the ACO.

For those interested in creating software applications for
solving route optimization problems, an important decision
is which programming language to use, as it may
considerably impact computational time. The purpose of this
paper is to give an answer to the question of which are the
fastest and slowest programming languages for this purpose.
Python, C, C#, R, and MATLAB as some of the most popular
programming languages in science and the industry, have
been compared and ranked according to the execution time
of the ACO algorithm.

Traveling Salesman Problem (TSP) is chosen to
represent routing problems as one of the simplest among
them, and yet very complex to solve. TSP is considered the
simpler version of the Vehicle Routing Problem (VRP).
While VRP looks for the shortest path for m vehicles, visiting
n customers, TSP is reduced to one vehicle. A solution to
TSP is the shortest Hamiltonian cycle in a complete graph.
 Both problems are well known to the scientific
community, with TSP being introduced in 1930, [3] and VRP

being introduced in 1959. [4] Both problems have their
dynamic variant, where information, such as customer
location, is subject to change after the vehicle has already
started the route. Such variants of problems are named
Dynamic Traveling Salesman Problem (DTSP), and
Dynamic Vehicle Routing Problem (DVRP). In those
dynamic variants of the problems, it is especially important
to make quick decisions, as they are made as vehicles are
already on the route. Making quick decisions often
compromises with decision quality. That means, that more
time is used for calculating better solutions, reactiveness to
the dynamic changes is decreased.

TSP is an NP-hard computational class of problem,
which means that optimum cannot be found by exact
algorithms in a time suitable for practical use. Computational
problems are divided into complexity classes which
determine how much resources are needed to solve a given
problem, and how needed resources scale with an increased
size of the problem. The computational complexity of a
problem is denoted as O and it refers to the worst-case
scenario. The size of the problem is denoted as n and it refers
to the number of nodes in a graph. Some of the complexity
classes are P class, NP class, NP-complete class, and NP-hard
class. Solution to the P class of problems can be found in
polynomial time O(n2). For the NP class of problems,
solution can be found in nondeterministic polynomial time
O(2n). It is obvious that the computational time of NP
problems increases significantly faster with size than the
computational time of P problems. NP-complete problems
are the hardest problems in NP class, and NP-hard class
problems are at minimum as hard as NP-complete problems.
[5]

The maximum number of possible tours in symmetric
TSP is (n ‒ 1)!/2. [6] Brute force algorithms take factorial
time O(n!) to solve TSP, which is the worst possible
computational complexity class (excluding the theoretical
infinite computational complexity class). With dynamic
programming, by using the Held-Karp algorithm in this case,
the computational complexity of the problem is reduced to
exponential time O(n22n) [7] which means that calculation for
large-scale problems takes too much time for practical use.

Luka Olivari, Luca Olivari: Influence of Programming Language on the Execution Time of Ant Colony Optimization Algorithm

232 TECHNICAL JOURNAL 16, 2(2022), 231-239

That is the main reason why heuristics and metaheuristics are
often used for finding a near-optimal solution.

Ant Colony Optimization (ACO) algorithm is a
metaheuristic method used for solving complex
combinatorial problems. ACO is biologically inspired
algorithm. It mimics behaviour of ant colonies in search of
food. The first ACO algorithm, called Ant System (AS) was
created by M. Dorigo in 1996, [8] it was applied to the
classical Traveling Salesman Problem. ACO mimics a
pheromone trail which real ants use as a communication
method while searching for food. High-quality solutions to
the complex combinatorial problems can be obtained with
ACO algorithm. [9]

To the authors' knowledge, no such comparison of
programming language influence on the execution time of the
ACO algorithm has been made. Although, other
programming language comparisons exist.

In [10] authors compare the execution time of the same
algorithm programmed in different programming languages
on Windows and Mac operating systems. Chosen
programming languages are often used for numerical
analysis in macroeconomics. The authors confirmed that
compiled programming languages are considerably faster
than scripted programming languages.

In [11] authors compare syntax, Lines of Code, Machine
Dependency, Compilation Time, and Execution Time of
most common high-level programming languages. The
authors concluded that there isn’t the best overall
programming language for all-purpose. Each programming
language has its own strengths and weaknesses which
potential programmer needs to evaluate according to their
own requirements.

In [12] authors compare execution time, memory
consumption, and energy efficiency of 27 programming
languages. The authors concluded that even though there is a
connection between performance and energy consumption,
more time-efficient languages are not always ones that
consume the least amount of energy. Also, the authors state
that it is possible to find the best programming language for
execution speed and energy consumption, but it is not the
case if memory usage is also taken into consideration.

In [13] authors compare Julia programming language
execution speed with several other popular programming
languages. Authors increase the complexity of algorithms
and measure execution time in comparison with problem
size. Julia performed well compared with other languages.

In chapter 2 of this paper Traveling Salesman Problem
and Ant Colony Optimization algorithm are explained in
detail. Chapter 3 describes the experiment, and a discussion
about results is presented in chapter 4.

2 TRAVELING SALESMAN PROBLEM AND ANT COLONY

OPTIMIZATION ALGORITHM
2.1 Traveling Salesman Problem

 Traveling Salesman Problem (TSP) looks for the shortest
path in a complete graph between a given set of nodes, which
are often called locations, cities, or customers, that goes
through every existing node exactly once and returns to the
origin. Only the first/last node is visited twice to close the
path. The number of nodes in the problem is denoted with n.

If i and j are nodes of a graph, and node i is adjacent to node
j, which means that two nodes are connected with an edge ij,
Solution to TSP is the shortest Hamiltonian cycle in a
complete graph with weighted edges. All graphs can be
assumed to be complete by assigning positive infinity (or
very large constant) weight to the non-existing edges. [14]
 If the cost of traveling between node i and node j is the
same as traveling in another direction, from node j to node i,
the problem may be represented with an undirected graph. In
this case, the problem is called Symmetric TSP. If traveling
cost is different when traveling from node i and node j than
traveling from node j to node i, then is called Asymmetric
TSP. [15]
 The mathematical structure of TSP is a complete
weighted graph, where each city salesmen need to visit is
represented as a node in the graph, roads between cities are
represented with weighted edges between nodes, while edge
weight value represents distance or cost of traveling between
two cities.
 The distance from node i to node j is denoted dij, where
i, j = 1,…, n. As a convention, the value of dii is set to positive
infinity to disallow connecting the node to itself. Variable xij
is needed to formulate asymmetric TSP.

1, if node is reach from node
0, otherwiseij

j i
x

=

 (1)

Variable xi,j is a binary variable, and equal to 1 if node i

is reached from node j, and otherwise it is 0 (zero). As stated
above in the text, the total number of cities or nodes is
denoted n.
 Traveling salesman problem can be formulated as:

1 1
min

n n

ij ij
i j

d x
= =
∑∑ (2)

 The length of the tour is defined as the sum of edge
weights of all the edges included in the tour. To select all
edge weights included in the tour, their edge weight is
multiplied by xij = 1, to exclude edges that are not part of the
solution, their edge weight is multiplied by xij = 0.
 Constraints in the TSP are that all nodes in the tour must
have exactly one edge pointing to the node, and one edge
pointing away from it. As there can be only one node from
which node j is visited, called entry node, and entry node can
be any node except node j, the constraint can be formulated
as:

1
1 1, 2, ...,

n

ij
i
i j

x j n
=
≠

= ∀ =∑ (3)

Also, there can be only one node that is visited after node

i, called exit node, and that node can be any node except node
i, the constraint can be formulated as:

Luka Olivari, Luca Olivari: Influence of Programming Language on the Execution Time of Ant Colony Optimization Algorithm

TEHNIČKI GLASNIK 16, 2(2022), 231-239 233

1
1 1, 2, ...,

n

ij
j
j i

x i n
=
≠

= ∀ =∑ (4)

Binary restrictions for xij can be written as:

{ }0,1 1, 2, ..., 1, 2, ..., ijx i n j n∈ ∀ = ∀ = (5)

With this formulation, it is possible that the solution is
an unconnected graph, where every connected component is
considered subtour. Those solutions may be optimal, but not
feasible, as the tour is not closed. To exclude subtours i.e.,
tours that are not connecting all the cities, additional subtour
braking constraints are needed. If S is set of all edges in
subtour, the constraint can be written as:

(,)
1ij

i j S
x S

∈
≤ −∑ (6)

 This reads as, if subtour exists, not all edges in that
subtour can be selected, or from all edges in subtour, at least
1 edge needs to be removed. [15]
 Traveling Salesman Problem is represented in the
computer as n × n square matrix, called adjacency matrix
where n represents the number of nodes. Value of cell aij
represents the distance between node i and node j. There are
no loops in the graph, as it makes no sense that the node
connects to itself, so diagonal values of the matrix are always
0.

2.2 Ant Colony Optimization Algorithm

Ant Colony Optimization (ACO) was created in 1996. by
M. Dorigo [8]. At the time it was called Ant System (AS). It
is a metaheuristic inspired by the stigmergy of the ant
colonies. Stigmergy is the mechanism of interaction and
coordination between agents. In this case, ants, modify the
environment. Agents can be entirely unaware of each other,
there is no hierarchy, and there is no direct communication
between them. This type of self-organization can produce
seemingly intelligent solutions, without any planning or
management, by simple agents who are not even aware of
each other and have no memory. [16] Ants modify their
environment by laying pheromone trails for other ants to
"read". Pheromone is a chemical left on the ground by ants
for various purposes, upon death ant will release warning
pheromone, when searching for food and will lay pheromone
to mark its path to find a way back, when an ant finds a food
source it will release pheromone for other ants to follow, and
when the food source is depleted, it will release yet another
kind of pheromone to inform other ants that the food is gone.

Ant Colony Optimization algorithm uses only one kind
of artificial pheromone, inspired by the one that ants leave on
the ground when they find a source of food. When a single
ant finds the food source, it will mark its way back to the
colony. The goal of an ant colony is to collect the maximum
amount of food by spending the minimum amount of energy.

In order to do so, they need to find the shortest path from the
colony to the food source. Often there are multiple ways to
reach the food. At first, ants will randomly choose a path to
reach the food, but in time all ants will travel the shortest one.

Figure 1 Ant searching for food [authors]

 If there are two possible paths to reach the food source,
ants have a 50% chance to choose either of them. Those ants
that travel shorter path will reach food source faster as is
shown in the top picture in Fig. 1. On the way back, all ants
leave the same amount of pheromone on each trail, but on the
longer trails, a pheromone has more time to evaporate until
the next ant is confronted with the choice of path. Now ants
have a higher chance to choose the shorter path because it has
a stronger pheromone trail. As it is shown in the middle
picture in Fig. 1, more ants will travel the shorter path,
leaving an even stronger pheromone trail, while pheromone
on a longer trail evaporates.

Eventually, as it is shown in the bottom picture in Fig. 1,
all the ants will use the shorter path, as pheromone on the
longer path is completely evaporated. [17]

Mathematical models of ACO algorithms may slightly
variate, like in the case of different methods of laying
pheromone. The algorithm can be modeled to release the
same amount of the pheromone on the path regardless of path
quality or to release a higher amount of the pheromone on
paths with higher quality. Or pheromone evaporation may
occur before or after laying new pheromone levels in each
iteration.

Luka Olivari, Luca Olivari: Influence of Programming Language on the Execution Time of Ant Colony Optimization Algorithm

234 TECHNICAL JOURNAL 16, 2(2022), 231-239

2.2.1 ACO Mathematical Model

There are three important concepts to be modeled, laying
pheromone trail, pheromone evaporation, and decision-
making. A mathematical model for depositing a higher
amount of pheromone on a better-quality path will be used,
and it can be formulated as:

th1 , ant travels on the edge
Δ

0, otherwise

k
kij

k ij
Lτ

=

 (7)

Where Δ k

ijτ is the quantity of pheromone deposited by
kth ant when traveling from node i to node j; Lk is the path
length. The longer the path length, the less pheromone is
deposited on every edge that makes that path. If ant did not
travel over the edge, it leaves 0 (zero) amount of pheromone
on that edge. After every ant has deposited the pheromone,
pheromone levels on each edge need to be calculated by
summation of all pheromones laid by every ant, which can be
formulated as:

1
Δ

m
k k
ij ij

k
τ τ

=
= ∑ (8)

Where m is the total number of ants. This mathematical

expression simulates pheromone deposition without
evaporation. If evaporation needs to be modeled, expression
is formulated like this:

1
(1) Δ

m
k k
ij ij ij

k
τ ρ τ τ

=
= − +∑ (9)

 Where ρ is the evaporation rate and can be any number
between 0 and 1. If the evaporation rate ρ is set to 1, all
previous pheromone levels will be evaporated, and
expression will be the same as one above. If the evaporation
rate ρ is set to zero, no evaporation occurs. If the evaporation
rate ρ is set to, let’s say 0,4 it means that 40% of previous
pheromone levels will evaporate, or more accurately 60% of
previous pheromone levels will remain and new pheromone
levels will be added. A higher evaporation rate will lead to
higher randomization of the new solution.
 To use pheromone levels to influence the decision-
making of an artificial ant, the probabilities equation will be
used:

() ()

() ()
ij ij

ij
ij ij

P
α β

α β

τ η

τ η
=

 ∑

 (10)

Where Pij is a probability that an ant will choose a certain

path. Quality of edge ij is indicated by ηij, and is calculated
as:

1
ij

ijL
η = (11)

where Lij is the length of the edge ij.

Parameters α and β are used to increase the impact of τ
or η on path choosing process of artificial ant. If β is set to 0
(zero) quality of edge ij is not considered in the decision-
making process. If α is set to 0 (zero) then the pheromone
level of edge ij is not considered in the decision-making
process, but that beats the purpose of the Ant Colony
Algorithm.

2.2.2 ACO Pseudocode and Initial Parameters

 Traveling Salesman Problem will be solved by using Ant
Colony Optimization algorithm programmed in several
programming languages. ACO algorithm code is based on
[18] and [19].

 Pseudo code for ACO:

procedure ACO algorithm for TSP
 Initialize ACO parameters, initialize pheromone trails
 while (stopping condition not met) do
 Construct solutions
 Update pheromone levels
 end
 Display results
end [18]

After initializing the parameters of the ACO algorithm,
each ant is placed on a random node. Each ant randomly
creates a path in the graph according to the probability rules
of an algorithm. After each ant has exhausted all unvisited
nodes, it returns to the initial node. The last visited node must
be one step away from the initial node. All path lengths are
calculated, and the best solution is stored. Pheromones for
each path are updated according to path fitness. After the
pheromone matrix is updated, evaporation occurs. The
algorithm loops until the stopping criteria is met, in this case,
the maximum number of iterations. The final step is to
display the best path and total path length.
 The Ant Colony Optimization algorithm's initial
parameters include the maximum number of iterations,
number of ants, initial pheromone level, the desirability of an
edge, alpha and beta parameters.

The maximum number of iterations determines how
many times ACO will run in order to find the solution. The
more time algorithm runs the higher chance of finding a
better solution, but it takes more time to run the algorithm. In
simple problems, solutions may be found in a low number of
iterations so there is no need for the algorithm to run any
longer as an optimal solution is already found.

The number of ants determines how many artificial ants
will be looking for the solution in each iteration i.e., how
many solutions will be in each iteration. Again, the higher the
number of ants higher the chance of finding a better solution
but the algorithm takes more computational resources.

Luka Olivari, Luca Olivari: Influence of Programming Language on the Execution Time of Ant Colony Optimization Algorithm

TEHNIČKI GLASNIK 16, 2(2022), 231-239 235

 The initial pheromone level is the amount of pheromone
on each edge before the first iteration. The initial pheromone
level is inversely proportional to an average distance of all
the edges multiplied by the number of nodes.
 The desirability of an edge is value inversely
proportional to edge length, the shorter the edge the more
desirable it is for artificial ants to use.
 The evaporation rate is set to a constant value, it
determines the percentage of pheromone that will evaporate
at end of each iteration. The higher the evaporation rate, the
more randomized solutions will be.
 α and β parameters increase or decrease the influence of
pheromone level and path desirability when randomly
choosing a path.
 Parameter values are shown in table 1.

Table 1 ACO parameters
Parameter Value

Maximum number of iterations 50
Number of ants 10
Pheromone evaporation rate 80%
α 1
β 2

3 EXPERIMENT

The goal of this experiment is to measure the Execution
time of five popular programming languages when solving
the Traveling Salesman Problem with the Ant Colony
Optimisation algorithm. Execution time is “wall-clock time”
needed to run the program i.e., processing input given by the
user, in this case, node coordinates, and generate a solution,
in this case, shortest path on a graph. It should be noted that
compiling time is not included in Execution time.

Chosen programming languages are Python, C, C#, R,
and MATLAB. These programming languages are very
popular in science and industry. According to
https://www.tiobe.com/tiobe-index/, all programming
languages are ranked in the top 15 most popular
programming languages in February 2022. Phyton being
ranked no.1, C being ranked no.2, C# being ranked no.5, R
being ranked no.13, and MATLAB being ranked no.14.
Another important factor for choosing these languages is the
authors' familiarity with them.

Python is an open-source, object-oriented interpreted
scripting language, used mostly for system administration,
CGI programming, and other small computing tasks. It is
available for most computing platforms. [20] Visual Studio
with Python extension and Python version 3.9.5 was used.
Execution time was measured using the time module.

C is a flexible, general-purpose programming language,
it was initially designed in 1972 for system programming, but
it can be used in a wide range of application areas. C gained
in popularity in the 1980s because the widely used UNIX
operating system provided a compiler for it on different
computers. [20] Visual Studio with C/C++ extension and gcc
version 11.2.0 was used. Execution time with clock function
from library time.

C# is the simple object-oriented programming language
for general purposes. The main concepts of C# are borrowed

from Java and C++. [20] Visual Studio with C# extension
v1.24.0 and .NET SDK 6.0.102 was used. Execution time
was measured using watch class.

R programming language was primarily conceived to be
used for statistical computing. In the 90s almost hundreds of
computer scientists and mathematicians were improving, at
that time, very popular programming language. The main
goals were to offer free, easy, and versatile programming
language. [13] R v4.1.2 version was used in the experiment.
R Studio with and R version v4.1.2 was used. Execution time
was measured using the system.time function. Elapsed time
was measured and reported because it refers to elapsed wall-
clock time.

MATLAB, short for Matrix Laboratory, is a
programming platform often used for numeric and scientific
computation. MATLAB is a scripted programming language.
MATLAB R2015a was used, and Execution time was
measured using tic and toc functions.

The Execution time of the ACO algorithm in each
programming language was measured as the number of nodes
in TSP was incrementally increased. Execution time was
measured for each data set i.e., number of nodes n. Problems
were divided into two groups. In the first group problems
scale form size n = 20 to n = 200 with an increment of 20.
This means that execution time was measured for problem
sizes n = 20, 40, 60, …, 200. In the second group problems
scale from n=200 to n=2000 with an increment of 200. This
means that execution time was measured for problem sizes n
= 200, 400, 600, …, 2000. Nodes were randomly generated,
but the time needed for random number generation was not
measured. It should be noted that the quality of the solution
was not considered, only the Execution time for a limited
number of iterations. Although a very important
characteristic of any solver, convergence rate was not
measured for two reasons. First, it is considered that, if the
algorithm were to run enough times in any programming
language, statistically, the convergence rate should be the
same in all cases because they all run the same algorithm with
the same parameters. Another reason why convergence rate
was not considered is that benchmark datasets consist of
irregular increases between them. For example, as found on
TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/) instances sizes are n = 14, 29, 52, 58, 130, 150,
…, 1000, 1291, 1577, etc. For our purpose, we wanted a
regular increase in instance size, so we used randomly
generated coordinates for each instance. Because node
coordinates were randomly generated, optimal solutions
were not available, and convergence rate was not possible to
determine. Also worth mentioning is that coordinates of the
nodes do not influence execution time at all.

Original code was created in MATLAB, and then
"translated" into other programming languages. In C, C# and
R used arrays were static. In Python, even though lists were
used their size wasn't changed during the execution of the
algorithm. In MATLAB new elements were added to the list.
ACO algorithm was created to be time-efficient, but authors
cannot guarantee that the algorithm in all languages was
made as time-efficient as possible. Experienced

Luka Olivari, Luca Olivari: Influence of Programming Language on the Execution Time of Ant Colony Optimization Algorithm

236 TECHNICAL JOURNAL 16, 2(2022), 231-239

programmers in optimization problems and languages used
would most likely find room for improvement. One of the
possible improvements would be to preallocate memory i.e.,
that a program allocates all the required memory blocks once
after start-up, rather than allocate memory multiple times
during execution and leave a memory that is no longer
needed for the garbage collector to free.

The experiment was conducted on Windows 10
Enterprise operating system. Computer configuration is
Intel(R) Core™ i7-8750H CPU 2.20 GHz, Installed RAM 16
GB, 64-bit operating system, x64-based processor. Source
code used in the experiment can be found on the GitHub
repository available at https://github.com/l-olivari/influence-
of-programing-language-on-the-execution-time-of-ant-
colony-optimization-algorithm.git.

As stated in Tab. 1, the algorithm stopping criteria was
50 iterations, and 10 ants were used in each iteration. If
execution time was less than 20 seconds, the algorithm was
run 5 times and results were averaged to reduce the influence
of background processes of the operating system. Similarly,
if execution time was between 20 and 60 seconds, the
algorithm was run 3 times and the result was averaged. If
execution time was above 60 seconds, the algorithm was run
only once as time variations for multiple runs were
insignificant relative to total time.

Results of absolute Execution time for problems size n =
20 - 200 are shown in Tab. 2. As it can be seen, the fastest
results are obtained with the C programming language.

Table 2 Absolute Execution time in seconds for problems size n = 20 - 200
n Python C C# R MATLAB
20 0,194 0,007 0,018 0,111 0,229
40 0,560 0,030 0,058 0,256 0,437
60 1,079 0,068 0,122 0,426 0,654
80 1,795 0,121 0,211 0,661 0,871
100 2,672 0,190 0,326 0,907 1,106
120 3,676 0,273 0,462 1,255 1,325
140 4,926 0,372 0,626 1,517 1,579
160 6,350 0,484 0,809 1,921 1,821
180 7,989 0,615 1,022 2,425 2,051
200 9,624 0,758 1,253 2,862 2,324

 In Tab. 3 relative time is shown. The fastest performing
programming language is given value 1,0. Other values are
calculated by dividing their respective absolute Execution
time by the fastest absolute Execution time for each problem
size. The table gives a clear indication of how many times
other languages are slower than a best-performing
programming language.

Table 3 Relative Execution time for problems size n = 20 - 200
n Python C C# R MATLAB
20 27,0 1,0 2,5 15,5 31,8
40 18,8 1,0 1,9 8,6 14,7
60 16,0 1,0 1,8 6,3 9,7
80 14,9 1,0 1,7 5,5 7,2
100 14,1 1,0 1,7 4,8 5,8
120 13,5 1,0 1,7 4,6 4,9
140 13,2 1,0 1,7 4,1 4,2
160 13,1 1,0 1,7 4,0 3,8
180 13,0 1,0 1,7 3,9 3,3
200 12,7 1,0 1,7 3,8 3,1

Graphical representation of data from Tab. 2 i.e., the
absolute execution time for problem sizes n = 20 - 200 is
shown in Fig. 1.

Figure 2 Absolute Execution time (n = 20 – 200) [authors]

As absolute Execution time for the Python programming

language is much larger compared to other programming
languages, it was excluded from graphical representation in
Fig. 2 to offer a clearer comparison between other
programming languages.

Figure 3 Absolute Execution time (n = 20 – 200) without Python [authors]

 Results of absolute Execution time for problems size n =
200 - 2000 are shown in Tab. 4. As it can be seen, the fastest
results are again obtained by the C programming language,
while Python has the worst results.

Table 4 Absolute Execution time in seconds for problems size n = 200 - 2000
n Python C C# R MATLAB

200 9,62 0,758 1,25 2,86 2,32
400 36,87 3,034 5,01 9,81 5,35
600 80,93 6,809 11,13 23,36 10,12
800 147,42 12,162 19,70 39,95 16,76

1000 223,36 18,928 30,61 62,40 24,00
1200 335,51 27,048 44,26 91,78 34,40
1400 452,51 37,031 59,64 124,15 44,96
1600 605,57 48,349 77,46 160,44 55,40
1800 797,30 62,341 98,03 204,53 69,02
2000 919,46 76,958 120,03 253,70 82,98

 In Tab. 5 relative time is shown. The fastest performing
programming language is given a value of 1,0. As in Tab. 3,
other values are calculated by dividing their respective
absolute Execution time by the fastest absolute Execution

Luka Olivari, Luca Olivari: Influence of Programming Language on the Execution Time of Ant Colony Optimization Algorithm

TEHNIČKI GLASNIK 16, 2(2022), 231-239 237

time. The table gives a clear indication of how many times
other languages are slower than a best-performing
programming language.

Table 5 Relative Execution time for problems size n = 200 - 2000
n Python C C# R MATLAB

200 12,7 1 1,7 3,8 3,1
400 12,2 1 1,6 3,2 1,8
600 11,9 1 1,6 3,4 1,5
800 12,1 1 1,6 3,3 1,4

1000 11,8 1 1,6 3,3 1,3
1200 12,4 1 1,6 3,4 1,3
1400 12,2 1 1,6 3,4 1,2
1600 12,5 1 1,6 3,3 1,1
1800 12,8 1 1,6 3,3 1,1
2000 11,9 1 1,6 3,3 1,1

Graphical representation of data from Tab. 4 is shown in

Fig. 3 i.e., the absolute execution time for problem sizes n =
200 - 2000.

Figure 4 Absolute Execution time (n = 20 – 200) [authors]

 As was the case with Fig. 2, results obtained by Python
programming language were excluded from graphical
representation in Fig. 4 to offer a clearer comparison between
other programming languages.

Figure 5 Absolute Execution time (n = 200 – 2000) without Python [authors]

4 DISCUSSION

For problem sizes n = 20 - 200 fastest programming
language turns out to be C, closely followed by C#. Relative
differences in Execution time between programming
languages are higher the smaller problem it is. For example,
MATLAB is almost 32 times slower than C for problem size
n = 20, but only 3,1 times slower for problems size n = 200.
Similarly, R is 15,5 times slower than C for problem size n =
20, to be only 3,8 times slower than C for problem size n =
200. For problem sizes n = 20, programming languages
ranked from fastest to the slowest are:
1. C
2. C#
3. R
4. Python
5. MATLAB

 For problems sizes n = 40 - 140 situation is different as
Python falls to the last place, and languages are ranked:
1. C
2. C#
3. R
4. MATLAB
5. Python

 For problems size n = 160 - 200, programming languages
are ranked:
1. C
2. C#
3. MATLAB
4. R
5. Python

 For problem sizes n = 200 - 2000, C is again being
fastest, with C# in the second place up to the problem size n
= 400, but then is taken over by MATLAB. Python remained
the slowest one. So, for problems size n = 200 - 400 ranking
is not changed.

Finally, for problems size n = 400 - 2000, programming
languages are ranked:
1. C
2. MATLAB
3. C#
4. R
5. Python

 C programming language is undisputed winner of this
race, which is not surprising because it is "lowest" of "high"
programming languages, also it is compiled language, while
others, on this list, except C#, are scripted languages. C has
proven to be the fastest programming language for both,
small and large problem sizes.
 C# is somewhat slower than C, but it performs
consistently just above 1,5 times slower than C except for
small problem sizes (n = 20 and 40). C# hold second place
for all problem sizes up to n = 400.

Luka Olivari, Luca Olivari: Influence of Programming Language on the Execution Time of Ant Colony Optimization Algorithm

238 TECHNICAL JOURNAL 16, 2(2022), 231-239

 MATLAB Execution time was very interesting to
follow, as it started as the slowest programming language, to
overtake Python at problem size n = 40, and R at problem
size n = 160, only to end up in the second place at problem
size n = 600. It turns out to be just 1,1 times slower than C
for problem size n = 2000, while C# was 1,6 times slower for
the same problem size. Authors tested will MATLAB
overtake C for even larger problem sizes, but as it is not the
case, results are not reported in the tables.

Python is convincingly the slowest programming
language overall. It was slower than other candidates to such
an extent it had to be removed from graphical representations
to allow a clearer representation of other programming
languages. The biggest relative difference from C was 27
times slower at problem size n = 20, and the smallest relative
difference from C is 11,9 times slower at problem size n =
2000. As results were unexpected, to make sure that mistake
isn’t made on our part and syntax is correct, we used an
independent algorithm (which can be found on:
https://pypi.org/project/ACO-Pants/) and compared results.
Results from our code and independent code can be found
side-by-side in Tab. 6.

Table 6 Relative Execution time for two different algorithms in Python

n Our code Independent
code n Our code Independent

code
20 0,194 0,193 200 9,624 9,398
40 0,560 0,699 400 36,869 37,984
60 1,079 0,880 600 80,933 85,574
80 1,795 1,499 800 147,421 158,731

100 2,672 2,283 1000 223,356 247,655
120 3,676 3,240 1200 335,513 355,658
140 4,926 4,560 1400 452,507 491,909
160 6,350 5,949 1600 605,573 653,725
180 7,989 7,562 1800 797,296 808,770
200 9,624 9,398 2000 919,456 1017,300

As it can be seen, the results are roughly the same. Our

algorithm was somewhat slower for smaller instances (n = 20
- 200) but was somewhat faster for large instances (n = 200 -
2000).

R is performing consistently well, as with the other
programming languages, the relative difference is reducing
with the size of the problem, to be about 4 times slower than
C for problem sizes n = 140 – 200, and about 3,3 times slower
than C for problem sizes above n = 400.

5 CONCLUSION

The fastest programming language for solving Traveling
Salesman Problem with Ant Colony Optimization algorithm,
unsurprisingly, turns out to be C, closely followed by C# for
problem sizes less than n = 400, at which point it is overtaken
by MATLAB. Python turns out to be the slowest
programming language for solving this kind of problem for
all problem sizes, except for n = 20, in which case MATLAB
is to be the slowest one.

It was interesting to see MATLAB, which was the
slowest programming language for problem size n = 20,
taking third place for problem size n = 160 - 200, and then
climbing to second place for problem sizes n = 400 - 2000.

A possible explanation why MATLAB was the slowest
programming language in the beginning and got at the second
place, in the end, is because original code was created in
MATLAB and then "translated" into other programming
languages. As stated above in the text, code is based on [19],
whose author is internationally recognized for his
innovations in optimization algorithms. It is possible that
small in-language optimization techniques add up for large
instances in the case of complex algorithms such as Ant
Colony Optimization and result in lower Execution time.

Although relative differences for small problem sizes are
largest, the programming language does not make a
considerable difference as results are calculated within a
fraction of the second. For large problem sizes, Python
should be avoided, while C, C#, and MATLAB are all good
choices.

In future research, it would be important to find out what
makes Python, in this group, the slowest programming
language for large instances, and can something be done to
alleviate slow execution times. Also, it would be interesting
to see how the Execution time of the ACO algorithm scales
when it is used for solving VRP and DVRP problems and to
include even more programming languages such as C++,
Java, JavaScript, Julia, and others. Future analysis can be
expanded to include other metrics such as lines of code,
memory management, and energy consumption.

Notice

The paper will be presented at MOTSP 2022 – 13th
International Conference Management of Technology – Step
to Sustainable Production, which will take place in
Primošten/Dalmatia (Croatia) on June 8‒10, 2022. The paper
will not be published anywhere else.

6 REFERENCES

[1] Dzalbs, I. & Kalganova, T. (2020). Accelerating supply chains

with Ant Colony Optimization across a range of hardware
solutions. Comput. Ind. Eng., 147, 106610.
https://doi.org/10.1016/j.cie.2020.106610

[2] Osaba, E., Yang, X. S., & Del Ser, J. (2020) Is the Vehicle
Routing Problem Dead? An Overview through Bioinspired
Perspective and a Prospect of Opportunities. In: Yang X. S. &
Zhao, Y. X. (eds) Nature-Inspired Computation in Navigation
and Routing Problems. Springer Tracts in Nature-Inspired
Computing. Springer, Singapore.
https://doi.org/10.1007/978-981-15-1842-3_3

[3] Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J.
(2011). The Traveling Salesman Problem: A Computational
Problem. Princeton: Princeton University Press.
https://doi.org/10.1515/9781400841103

[4] Dantzig, G. B. & Ramser, J. H. (1959). The Truck Dispatching
Problem. Manage. Sci., 6(1), 80-91.
https://doi.org/10.1287/mnsc.6.1.80

[5] Arora, S. & Barak, B. (2009). Computational Complexity: A
Modern Approach. Cambridge University Press.

 https://doi.org/10.1017/CBO9780511804090
[6] Taha, H. A. (2017). Operations Research an Introduction, 10th

edition. Fayetteville: University of Arkansas.

Luka Olivari, Luca Olivari: Influence of Programming Language on the Execution Time of Ant Colony Optimization Algorithm

TEHNIČKI GLASNIK 16, 2(2022), 231-239 239

[7] Held, M. & Karp, R. M. (1962). A Dynamic Programming
Approach to Sequencing Problems. Journal of the Society for
Industrial and Applied Mathematics, 10(1), 196-210.
https://doi.org/10.1137/0110015

[8] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system:
Optimization by a colony of cooperating agents. IEEE Trans.
Syst. Man, Cybern. Part B Cybern., 26(1), 29-41.
https://doi.org/10.1109/3477.484436

[9] Mavrovouniotis, M., Yang, S., Van, M., Li, C., & Polycarpou,
M. (2020). Ant colony optimization algorithms for dynamic
optimization: A case study of the dynamic travelling
salesperson problem (Research Frontier). IEEE Comput. Intell.
Mag., 15(1), 52-63. https://doi.org/10.1109/MCI.2019.2954644

[10] Aruoba, S. B. & Fernández-Villaverde, J. (2015). A
comparison of programming languages in macroeconomics. J.
Econ. Dyn. Control, 58, 265-273.
https://doi.org/10.1016/j.jedc.2015.05.009

[11] Fatima, N. & Parveen, Z. (2016). Performance Comparison of
Most Common High Level Programming Languages. Int. J.
Comput. Acad. Res., 5(5). 246-258. Available:
http://www.meacse.org/ijcar

[12] Pereira, R. et al. (2017). Energy Efficiency across
Programming Languages. Int. Conf. Softw. Lang. Eng., 256-
257.

[13] Januszek, T. & Pleszczyński, M. (2018). Comparative Analysis
of the Efficiency of Julia Language against the Other Classic
programming languages. Silesian J. Pure Appl. Math., 8(1), 49-
56.

[14] Korte, B. & Vygen, J. (2020). The Traveling Salesman
Problem. In: Combinatorial Optimization. Algorithms and
Combinatorics, 21, 473-505. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-21708-5_21

[15] Hoffman, K. L. & Padberg, M. (2001). Traveling Salesman
Problem. Encyclopedia of Operations Research and
Management Science, 3(1), 849-853.

 https://doi.org/10.1007/1-4020-0611-X_1068
[16] Marsh, L. & Onof, C. (2008). Stigmergic epistemology,

stigmergic cognition. Cogn. Syst. Res., 9(1-2), 136-149.
https://doi.org/10.1016/j.cogsys.2007.06.009

[17] Dorigo, M. & Stützle, T. (2019). Handbook of Metaheuristics;
Ant colony optimization: Overview and recent advances.
International Series in Operations Research and Management
Science, 272, 311-351. Springer, Cham.

 https://doi.org/10.1007/978-3-319-91086-4_10
[18] Stutzle, T. & Dorigo, M. (1999). ACO Algorithms for the

Traveling Salesman Problem. Evol. Algorithms Eng. Comput.
Sci. Recent Adv. Genet. Algorithms, Evol. Strateg. Evol.
Program. Genet. Program. Ind. Appl.

[19] Mirjalili, S. (2022). Ant Colony Optimization MATLAB code.
https://seyedalimirjalili.com/aco

[20] Sebesta, R. W. (2012). Concepts of programming languages,
10th ed. Colorado: University of Colorado.

Authors’ contacts:

Luka Olivari, mag. ing. mech., lecturer
(Corresponding author)
Polytechnic of Sibenik,
Trg Andrije Hebranga 11, 22 000 Šibenik, Croatia
(022) 311-060, lolivari@vus.hr

Luca Olivari, mag. math, professor assistant
Polytechnic of Sibenik,
Trg Andrije Hebranga 11, 22 000 Šibenik, Croatia
(022) 311-060, lolivari1@vus.hr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

