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Abstract. Manevitz and Weinberger (1996) proved that the existence of effective K-
Lipschitz Z/nZ-actions implies the existence of effective K-Lipschitz Q/Z-actions for all
compact connected manifolds with metrics, where K is a fixed Lipschitz constant. The
Q/Z-actions were constructed from suitable actions of a sufficiently large hyperfinite cyclic
group ∗Z/γ ∗Z in the sense of nonstandard analysis. By modifying their construction, we
prove that for every direct system (Λ, Gλ, iλµ) of torsion groups with monomorphisms, the
existence of effective K-Lipschitz Gλ-actions implies the existence of effective K-Lipschitz
lim−→Gλ-actions. This generalises Manevitz and Weinberger’s result.
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1. Introduction

Let M be a compact connected manifold with a metric. Using nonstandard analy-
sis, Manevitz and Weinberger [18] proved that if M admits an effective K-Lipschitz
action of the cyclic group Z/nZ for each n ∈ Z+, then M also admits an effective
K-Lipschitz action of the rational circle group Q/Z. (The standard approach to this
type of result with applications can be found in [22].) A sketch of the proof is as
follows: let γ be an infinite hyperinteger that is divisible by all non-zero integers
(e.g. the factorial ω! of an arbitrary positive infinite hyperinteger ω). Then Q/Z can
be embedded into the hyperfinite cyclic group ∗Z/γ ∗Z by identifying k/n+Z ∈ Q/Z
with k (γ/n)+γ ∗Z ∈ ∗Z/γ ∗Z. By the transfer principle, the nonstandard extension
∗M admits an internal effective K-Lipschitz action of ∗Z/γ ∗Z. By restricting the
domain and taking its standard part, we obtain the desired Q/Z-action on M . The
effectiveness of the resulting action follows from Newman’s theorem in the version of
[1, III.9.6 Corollary]. Their proof requires no advanced knowledge of transformation
group theory. However, their proof contains an error involving the use of the down-
ward transfer principle (see the footnote in the proof of Theorem 6). Fortunately,
their proof can be corrected, as we shall see below.

Considering that Q/Z is isomorphic to the direct limit of Z/nZ (n ∈ Z+), it is
natural to attempt to generalise Manevitz and Weinberger’s result to direct limits of
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a more general class of groups. In Section 2, we recall some results from nonstandard
analysis and topology. In Section 3, we prove that for every direct system G :=
(Λ, Gλ, iλµ) of torsion groups with monomorphisms, if M admits an effective K-
Lipschitz Gλ-action for each λ ∈ Λ, then M also admits an effective K-Lipschitz
lim−→G-action. The result on Q/Z-actions is an immediate corollary to our result.
One can also obtain the following corollary on Z [1/p] /Z-actions: if the cyclic groups
Z/pnZ (n ∈ N) effectively act on M by K-Lipschitz maps, then the p-Prüfer group
Z [1/p] /Z does as well. In Section 4, we conclude the paper by mentioning related
works involving nonstandard approximations of direct and inverse limits.

2. Preliminaries

First of all, we recall the model-theoretic framework of nonstandard analysis (NSA).
We refer to [20, 3, 16] for model-theoretic NSA and [12] for axiomatic NSA. The
reader is assumed to be familiar with the rudiments of mathematical logic. NSA
uses the following two universes:

1. The standard universe (U,∈). Assume the following:

Transitivity The underlying set U is a transitive set, i.e. x ∈ U implies
x ⊆ U.

Richness All standard mathematical objects we need (such as groups and
manifolds that appear in this paper) belong to U.

Absoluteness All (but finitely many) set-theoretic formulae we need are ab-
solute with respect to U. In other words, given a set-theoretic formula
ϕ (~x) that appears in this paper (such as “U is an open set of X” and “f
is continuous at x”) and parameters ~a ∈ U, the sentence ϕ (~a) is true in
U (by interpreting ∀ and ∃ as quantifiers over U) if and only if ϕ (~a) is
actually true (by interpreting ∀ and ∃ as quantifiers over all mathematical
objects). In particular, all axioms of ZFC we need are true in U.

While the existence of such a universe U is provable in ZFC by the reflec-
tion principle, the reader familiar with category theory may consider U as a
Grothendieck universe. (The absoluteness holds for all bounded formulae in
this case.) A more clever approach can be found in [6].

2. The nonstandard universe (∗U, ∗∈) with the embedding
∗
(−) : U ↪→ ∗U satis-

fying the following principles:

Transfer For any sentence ϕ (~a) with parameters ~a in U, ϕ (~a) is true in U
if and only if ϕ (∗~a) is true in ∗U. The “only if” part is referred to as
upward transfer. The “if” part is referred to as downward transfer.

κ-saturation Let κ be a fixed infinite cardinal. Let p (~x) be a set of formulae
with variables ~x and parameters in ∗U. Suppose that |p (~x)| < κ. If every
finite subset q (~x) of p (~x) has a solution in ∗U, the whole p (~x) has a
solution in ∗U. The limitation of the cardinality of p (~x) cannot be relaxed,
because the unlimited saturation principle leads to a contradiction. To
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prove the main results of this paper, we only need to assume the following
weaker principle.

Weak saturation Let p (~x) be a set of formulae with variables ~x and param-
eters in ∗U. Suppose that each parameter of p (~x) belongs to the image
of the embedding

∗
(−). If every finite subset q (~x) of p (~x) has a solution

in ∗U, the whole p (~x) has a solution in ∗U.

See [3] for the construction of ∗U.

A mathematical object is said to be standard (or U-small in terminology of category
theory) if it is an element of U; internal if it is an element of ∗U; and external if it
is not internal. Given a concept X on U defined by a formula ϕ (~x,~a), the concept
on ∗U defined by the associated formula ϕ (~x, ∗~a) is called internal X, hyper X, and
*X. We drop the star

∗
(−) unless there is a risk of confusion. In particular, we

identify the *membership relation ∗∈ with the genuine membership relation ∈.

Example 1 (The ordered field of hyperreals). Let K be an ordered field. We may
assume without loss of generality that K is an extension of Q. An element of K is
called an infinite (with respect to Q) if its absolute value is an upper bound of Q. An
element of K is called an infinitesimal if its absolute value is a lower bound of Q+.
The ordered field K is said to be non-Archimedean if one of the following equivalent
conditions holds: (i) it has an infinite; (ii) it has a non-zero infinitesimal.

The property that R is an ordered field can be described as a formula. By transfer,
∗R is an ordered field. The field ∗R and its elements are called by the above conven-
tion the hyperreal field and hyperreal numbers. The restriction of U ↪→ ∗U gives an
embedding of R into ∗R. Consider the set p (x) = { “x ∈ ∗R” }∪{ “a < |x| ” | a ∈ Q }
of formulae with one variable x (and parameters ∗R and a ∈ Q). Every finite subset
of p (x) is solvable in ∗U, so p (x) is solvable in ∗U by weak saturation. The so-
lutions of p (x) are precisely hyperreal numbers whose absolute values are greater
than all (standard) rational numbers, i.e. infinites. Similarly, one can obtain
non-zero infinitesimals by considering the set q (x) = { “x ∈ ∗R” } ∪ { “x 6= 0” } ∪
{ “ |x| < a” | a ∈ Q+ }. Hence ∗R is a non-Archimedean ordered field.

We recall some fundamental results from nonstandard topology.

Definition 1 (see [20]). Let (X, τX) be a standard topological space. For x ∈ X,
the set µX (x) :=

⋂
x∈U∈τX

∗U is called the monad of x.

Definition 2 (see [20]). Let X be a standard metric space. For x, y ∈ ∗X, we
say that x and y are infinitely close (x ≈X y) if the *distance ∗dX (x, y) is an
infinitesimal.

For a standard metric space X, the monad µX (x) of x ∈ X is precisely the set
of all points of ∗X infinitely close to x.

Lemma 1 (see [20]). Let X be a standard topological space and x ∈ X. There exists
a *open set U (i.e. a member of ∗τX) such that x ∈ U ⊆ µX (x).

Proof. Apply weak saturation to the set

p (U) := { “x ∈ U”, “U ∈ ∗τX” } ∪ { “U ⊆ ∗V ” | x ∈ V ∈ τX } .
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Theorem 1 (see [20]). Let X be a standard topological space and x ∈ X. A subset
U of X is a neighbourhood of x if and only if µX (x) ⊆ ∗U .

Proof. The “only if” part is trivial by the definition of µX . To prove the “if”
part, suppose that µX (x) ⊆ ∗U . By Lemma 1, there exists a V ∈ ∗τX such that
x ∈ V ⊆ µX (x) ⊆ ∗U , i.e. ∗U is a *neighbourhood of x. By downward transfer, U
is a neighbourhood of x.

Corollary 1 (see [20]). Let X be a standard topological space. A subset U of X is
an open set if and only if for all x ∈ U , µX (x) ⊆ ∗U .

Corollary 2 (see [20]). Let X be a standard topological space. A subset F of X is
a closed set if and only if µX (x) ∩ ∗F 6= ∅ implies x ∈ F for all x ∈ X.

Theorem 2 (see [20]). A standard topological space X is Hausdorff if and only if
µX (x) ∩ µX (y) = ∅ for all distinct x, y ∈ X.

Proof. Let x, y ∈ X. It suffices to show that x and y are separable by neigh-
bourhoods if and only if µX (x) ∩ µX (y) = ∅. Suppose x and y are separable
by neighbourhoods Ux and Uy. By Theorem 1, µX (x) ∩ µX (y) ⊆ ∗Ux ∩ ∗Uy =
∗
(Ux ∩ Uy) = ∗∅ = ∅. Conversely, suppose µX (x) ∩ µX (y) = ∅. There exist
Ux, Uy ∈ ∗τX such that x ∈ Ux ⊆ µX (x) and y ∈ Uy ⊆ µX (x) by Lemma 1. Note
that Ux ∩ Uy ⊆ µX (x) ∩ µY (y) = ∅. By downward transfer, there exist (standard)
Ux, Uy ∈ τX such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅.

Theorem 3 (see [20]). A standard topological space X is compact if and only if
∗X =

⋃
x∈X µX (x).

Proof. Suppose X is compact. Let x ∈ ∗X. Consider the family of closed sets of
X defined by

F := {F ⊆ X | F is closed and x ∈ ∗F } .

For each F1, . . . , Fn ∈ F , since x ∈ ∗F1 ∩ · · · ∩ ∗Fn 6= ∅, F1 ∩ · · · ∩ Fn 6= ∅ by
downward transfer. The intersection

⋂
F has an element y by the compactness

of X. Let U be an arbitrary open neighbourhood of y. Then X \ U /∈ F , i.e.
x /∈ ∗(X \ U) = ∗X \ ∗U . Hence x ∈ µX (x), because U was arbitrary.

Suppose ∗X =
⋃
x∈X µX (x). Let {Fi }i∈I be a family of closed subsets with

the finite intersection property. The intersection
⋂
i∈I
∗Fi has an element x ∈ ∗X

by weak saturation. Choose a y ∈ X such that x ∈ µX (y). For each i ∈ I, since
x ∈ µX (y) ∩ ∗Fi 6= ∅, y ∈ Fi by Corollary 2. Therefore

⋂
i∈I Fi is non-empty.

Corollary 3 (see [20]). If X is a standard compact Hausdorff space, there exists a
unique map

◦
(−) : ∗X → X (called the standard part map) such that x ∈ µX (◦x).

Theorem 4 (see [20]). A standard map f : X → Y between topological spaces is
continuous at x ∈ X if and only if ∗f [µX (x)] ⊆ µY (f (x)).

Proof. Suppose f is continuous at x. Let U be a neighbourhood of f (x). Then
f−1 [U ] is a neighbourhood of x. By Theorem 1, ∗f [µX (x)] ⊆ ∗f

[∗f−1 [∗U ]
]
⊆ ∗U .

Since U was arbitrary, ∗f [µX (x)] ⊆ µY (f (x)).
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Conversely, suppose ∗f [µX (x)] ⊆ µY (f (x)). Let U be a neighbourhood of
f (x). By Lemma 1, there exists a V ∈ ∗τX such that x ∈ V ⊆ µX (x). Then
∗f [V ] ⊆ ∗f [µX (x)] ⊆ µY (f (x)) ⊆ ∗U by Theorem 1. By downward transfer, there
exists a (standard) V ∈ τX such that f [V ] ⊆ U . Hence f is continuous at x.

3. Main results

3.1. Nonstandard approximations of direct limits

Let G := (Λ, Gλ, iλµ) be a standard direct system of groups and homomorphisms.
A cocone over G consists of a group G and a homomorphism jλ : Gλ → G for each
λ ∈ Λ which makes the following diagram commutative:

G

Gλ

jλ

>>

iλµ // Gµ

jµ

``

Given two cocones (G, jλ) and (H, kλ) over G, a morphism between them is a
homomorphism f : G→ H (of groups) such that the diagram

G
f // H

Gλ

jλ

``

kλ

>>

is commutative for all λ ∈ Λ. The collection of cocones over G and their morphisms
forms a category. The initial object of this category is called the colimiting cocone
over G and is denoted by iλ : Gλ → lim−→G. The group lim−→G is called the direct
limit of G. The direct limit lim−→G can be constructed as the quotient of the disjoint
union

⊔
λ∈ΛGλ :=

⋃
λ∈Λ ({λ } ×Gλ) modulo the equivalence relation ≡ defined by

(λ, g) ≡ (µ, h) if and only if iλν (g) = iµν (h) for some ν ≥ λ, µ.

Lemma 2. There exists an index γ ∈ ∗Λ such that Λ ≤ γ.

Proof. Consider the set p (x) := { “x ∈ Λ” } ∪ { “λ ≤ γ” | λ ∈ Λ } and apply weak
saturation.

Theorem 5. Let γ be as in Lemma 2. There exists an embedding j : lim−→G→ ∗Gγ
such that the following diagram is commutative for every λ ∈ Λ:

lim−→G
j // ∗Gγ

Gλ

iλ

bb

∗iλγ

==
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Proof. The homomorphisms jλ := ∗iλγ � Gλ : Gλ → ∗Gγ (λ ∈ Λ) form a cocone
over G: jµ ◦ iλµ = ∗iµγ � Gµ ◦ ∗iλµ � Gλ = ∗iλγ � Gλ = jλ. By the universal
mapping property, there exists a (unique) homomorphism j : lim−→G → ∗Gγ such
that the above diagram is commutative. More specifically, given g ∈ lim−→G, find a
λ ∈ Λ and a gλ ∈ Gλ such that g = iλ (gλ), and then define j (g) := ∗iλγ (gλ).

To prove the injectivity, let g ∈ ker j. Choose gλ ∈ Gλ such that g = iλ (gλ).
Then, ∗iλγ (gλ) = j (g) = e by definition. Hence there exists a µ ∈ ∗Λ such that
∗iλµ (gλ) = e. By downward transfer, there exists a µ ∈ Λ such that iλµ (gλ) = e.
Therefore g = e.

As a corollary, we obtain another construction of direct limits.

Corollary 4. lim−→G ∼= j
[
lim−→G

]
=
⋃
λ∈Λ

∗iλγ [Gλ].

The above argument also applies to any other algebraic system in the sense of
universal algebra which includes rings, gyrogroups, lattices and Heyting algebras.

Example 2 ([18]). Let Λ := Z+, Gλ := Z/λZ and iλµ (k + λZ) := k (µ/λ) + µZ,
where the index set Z+ is ordered by the divisibility relation. Its direct limit is isomor-
phic to the rational circle group Q/Z. The canonical homomorphism iλ : Z/λZ →
Q/Z is given by k + λZ 7→ k/λ + Z. Let γ be a positive hyperinteger divisible
by all non-zero (standard) integers, e.g. the factorial ω! of an infinite hypernatu-
ral number ω ∈ ∗N \ N. The direct limit Q/Z is then embedded into ∗Z/γ ∗Z by
k/n+ Z 7→ k (γ/n) + γ ∗Z.

Example 3. Fix a prime number p. Let Λ := N, Gλ := Z/pλZ and iλµ
(
k + pλZ

)
:=

pµ−λk+ pµZ, where N is ordered by the usual linear order ≤. Its direct limit, called
the p-Prüfer group, is isomorphic to Z [1/p] /Z. Let γ be an infinite hypernatural
number. The direct limit Z [1/p] /Z can be embedded into ∗Z/pγ ∗Z by

∑n
i=0 aip

−i +
Z 7→

∑n
i=0 aip

γ−i + pγ ∗Z.

Example 4. Let k be a commutative field. Let Λ := N (with ≤), Gλ := GL (λ, k)
and

iλµ (Aλ) :=

(
Aλ Oλ,µ−λ

Oµ−λ,λ Iµ−λ

)
.

The direct limit GL (∞, k) is the group of regular ∞×∞-matrices of the form:(
Aλ Oλ,∞
O∞,λ I∞

)
, Aλ ∈ GL (λ, k) .

Let γ ∈ ∗N be an infinite hypernatural number. Then GL (∞, k) is embedded into
∗
GL (γ, ∗k) by

j

(
Aλ Oλ,∞
O∞,λ I∞

)
:=

(
Aλ Oλ,γ−λ

Oγ−λ,λ Iγ−λ

)
.
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3.2. Construction of direct limit group actions

Definition 3. Suppose that a group G acts on a metric space M . Let K > 0. The
action is said to be effective if for each g ∈ G \ { eG }, dM (x, gx) > 0 for some
x ∈ M . The action is said to be K-Lipschitz if dM (gx, gy) ≤ KdM (x, y) for all
g ∈ G and all x, y ∈M .

Our main theorem is the following.

Theorem 6. Let M be a compact connected manifold with a metric dM . Let G :=
(Λ, Gλ, iλµ) be a direct system of torsion groups, where iλµ is a monomorphism for
all λ ≤ µ. If there exists an effective K-Lipschitz Gλ-action on M for each λ ∈ Λ,
then there exists an effective K-Lipschitz lim−→G-action on M .

Remark 1. If for each λ ∈ Λ there exists an effective K-Lipschitz Gλ-action Φλ on
M such that Φµ ◦ iλµ = Φλ for all λ ≤ µ, then there exists an effective K-Lipschitz
lim−→G-action on M . In order to prove it, we just construct the action by gluing
the given actions: Ψ (iλ (g) , x) := Φλ (g, x). We do not assume such a coherency
condition in Theorem 6.

Before proving the theorem, we consider some direct consequences (see Example
2 and Example 3).

Corollary 5 (see [18]). Let M be a compact connected manifold with a metric. If
there exists an effective K-Lipschitz Z/nZ-action on M for each n ∈ Z+, then there
exists an effective K-Lipschitz Q/Z-action on M .

Corollary 6. Let M be a compact connected manifold with a metric and p a prime
number. If there exists an effective K-Lipschitz Z/pnZ-action on M for each n ∈ N,
then there exists an effective K-Lipschitz Z [1/p] /Z-action on M .

Note that Q/Z and Z [1/p] /Z are locally finite, i.e. every finitely generated
subgroup is finite. In fact, the above corollaries are a consequence of a more general
corollary on locally finite group actions.

Corollary 7. Let M be a compact connected manifold with a metric and let G
be a locally finite group. If every finite subgroup H of G acts effectively on M by
K-Lipschitz maps, then G acts effectively on M by K-Lipschitz maps.

Proof. Consider the set Λ of all finite subgroups of G ordered by the inclusion
relation ⊆. We first verify that Λ is a directed set. Let H1, . . . ,Hn ∈ Λ. Since G is
locally finite, the group H ′ generated by H1 ∪ · · · ∪Hn is finite, i.e. H ′ ∈ Λ. The
finite group H ′ is an upper bound of {H1, . . . ,Hn }. For H,H ′ ∈ Λ with H ⊆ H ′,
let iHH′ : H → H ′ be the inclusion map. Then G := (Λ, H, iHH′) forms a direct
system of torsion groups with monomorphisms.

By the local finiteness, the group 〈g〉 generated by g is finite for each g ∈ G,
so G =

⋃
g∈G 〈g〉 ⊆

⋃
H∈ΛH ⊆ G. It is easy to see that the direct limit lim−→G is

isomorphic to
⋃
H∈ΛH, which is precisely G. The statement of the corollary now

follows by Theorem 6.
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In Theorem 6, to prove effectiveness, we employ the following version of New-
man’s theorem.

Theorem 7 (see [5, Theorem 2]). Let M be a connected manifold with a metric
dM . There exists a constant ε := ε (M,dM ) > 0 such that for every effective action
of a finite group G on M , there exist g ∈ G and x ∈M such that dM (x, gx) ≥ ε.

A group action G y M is said to be ε-effective if for every g ∈ G \ { eG }
there exists an x ∈ M such that the orbit Gx has a diameter of at least ε. In
this terminology, Newman’s theorem states every effective action of a finite group is
ε-effective, where ε > 0 depends only on M .

Proof of Theorem 6. By the absoluteness of U, we may assume without loss of gen-
erality that all the objects that appeared in the statement (such as M and G) are
standard. For simplicity, denote G = lim−→G. Let j : G → ∗Gγ be the embedding
of Theorem 5, where γ ∈ ∗Λ is an upper bound of Λ. By upward transfer, there
exists an internal effective K-Lipschitz action Φ: ∗Gγ × ∗M → ∗M . Since M is
compact Hausdorff, each point x ∈ ∗M is infinitely close to a unique point ◦x ∈ M
(see Corollary 3). Now define a map Ψ: G×M →M by putting

Ψ (g, x) :=
◦
(Φ (j (g) , x)).

Claim 1. Ψ is an action.

Proof. Let g, h ∈ G and x ∈M . Since j : G→ ∗Gγ and Φ: ∗Gγ → ∗
(Aut (M)) are

homomorphisms, we have that

Ψ (e, x) =
◦
(Φ (j (e) , x))

=
◦
(Φ (e, x))

= ◦x

= x,

and

Ψ (gh, x) =
◦
(Φ (j (gh) , x))

=
◦
(Φ (j (g) j (h) , x))

=
◦
(Φ (j (g) ,Φ (j (h) , x)))

=
◦(

Φ
(
j (g) ,

◦
(Φ (j (h) , x))

))
= Ψ (g,Ψ (h, x)) .

Note that the fourth equality of the latter comes from the K-Lipschitz property of
Φ:

∗dM
(
Φ (j (g) ,Φ (j (h) , x)) ,Φ

(
j (g) ,

◦
(Φ (j (h) , x))

))
≤ K ∗dM

(
Φ (j (h) , x) ,

◦
(Φ (j (h) , x))

)
= finite× infinitesimal

= infinitesimal.
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Hence Φ (j (g) ,Φ (j (h) , x)) and Φ
(
j (g) ,

◦
(Φ (j (h) , x))

)
have the same standard

part.

Claim 2. Ψ is K-Lipschitz.

Proof. Let g ∈ G and x, y ∈ M . Since Ψ (g, x) ≈M Φ (j (g) , x) and Ψ (g, y) ≈M
Φ (j (g) , y),

(Ψ (g, x) ,Ψ (g, y)) ≈M×M (Φ (j (g) , x) ,Φ (j (g) , y)) .

By the the continuity of the metric function dM : M×M → R (Theorem 4), we have

dM (Ψ (g, x) ,Ψ (g, y)) ≈R
∗dM (Φ (j (g) , x) ,Φ (j (g) , y))

≤ KdM (x, y) .

It follows that dM (Ψ (g, x) ,Ψ (g, y)) ≤ KdM (x, y).

Claim 3. Ψ is effective.

Proof. Let g ∈ G \ { e }. Choose a gλ ∈ Gλ such that g = iλ (gλ). Since iλ is a
homomorphism, gλ is not a unit element. Since Gλ is a torsion group, the group 〈gλ〉
generated by gλ is a finite subgroup of ∗Gλ. (Note that ∗A = A holds for all standard
finite sets A by upward transfer.) Consider the internal action Φλ : 〈gλ〉×∗M → ∗M
defined by

Φλ (h, x) := Φ
(∗iλγ (h) , x

)
.

Since ∗iλγ is injective by upward transfer, Φλ is effective. By Newman’s theorem
and upward transfer, there exists a standard constant ε := ε (M,dM ) > 0 such that
“there exist an h ∈ 〈gλ〉 and an x ∈ ∗M such that ∗dM (x,Φλ (h, x)) ≥ ε”.§ There
exists a standard n ∈ N such that h = gnλ . Then ∗dM (x,Φλ (gnλ , x)) ≥ ε holds. Since
Φ is K-Lipschitz,

Ψ (gn, ◦x) =
◦
(Φ (j (gn) , ◦x))

≈M Φ (j (gn) , ◦x)

≈M Φ (j (gn) , x)

= Φ
(∗iλγ (gnλ) , x

)
= Φλ (gnλ , x) .

By the continuity of dM ,

dM (◦x,Ψ (gn, ◦x)) ≈R
∗dM (x,Φλ (gnλ , x)) ≥ ε.

Hence dM (◦x,Ψ (gn, ◦x)) ≥ ε > 0. Since Ψ (g)
n

= Ψ (gn) 6= idM , it follows that
Ψ (g) 6= idM .

§The downward transfer principle cannot be applied to the quoted statement, because it contains
a nonstandard object, namely Φλ. Manevitz and Weinberger [18, p. 152, ll. 2124] accidentally
applied the downward transfer principle to the corresponding statement in the original proof. As
you can see, this error can be avoided.
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4. Conclusion

Our proof can be summarised as follows. For each index λ ∈ Λ, there exists an
effective K-Lipschitz action Gλ y M . Fix an infinitely large index γ ∈ ∗Λ. By
transfer, there exists an effective K-Lipschitz action Φ: ∗Gγ y ∗M in ∗U. Since the
direct limit lim−→G can be embedded into ∗Gγ , the desired action is obtained as the
restriction of the standard part ◦Φ: ∗Gγ y M . The effectiveness of the resulting
action follows from Newman’s theorem.

The crux of this paper is the idea of approximating categorical limits by nonstan-
dard objects rather than the results themselves. This enables us to study categorical
limits with nonstandard analysis. Here are some examples of nonstandard approxi-
mations of direct and inverse limits.

4.1. Čech theory and McCord theory

First, recall the definition of Čech (co)homology groups following [4]. Let X be a
topological space and G an abelian group. The family CovX of all open covers of
X forms a (downward) directed set with respect to the refinement relation. If λ
is a refinement of µ, there exists a (canonical) homomorphism V (λ) → V (µ) of
Vietoris complexes. Here the Vietoris complex V (λ) is the simplicial set, where
a0, . . . ap ∈ X span a psimplex if a0, . . . ap ∈ U for some U ∈ λ. The Čech (co)
homology groups of X with coefficients in G are then defined as the limits:

Ȟ• (X;G) := lim←−
λ∈CovX

H• (V (λ) ;G) .

Ȟ• (X;G) := lim−→
λ∈CovX

H• (V (λ) ;G) .

By Lemma 1, Ȟ• (X) can be embedded into ∗H• (∗V (λ)) for all infinitely fine λ ∈
∗CovX . This gives a nonstandard construction of Čech cohomology.

McCord [17] has given a much deeper construction of Čech (co)homology. Let
X be a standard topological space and G an internal abelian group. For p ∈ N, a
p + 1tuple (a0, . . . , ap) from ∗X are called a pmicrosimplex if a0, . . . , ap ∈ µX (x)
for some x ∈ X. Denote the set of p-microsimplexes by ∆p. A hyperfinite formal
sum

∑n
i=1 giσi of pmicrosimplexes σi with coefficients gi ∈ G, where { gi }ni=1 and

{σi }ni=1 are both internal, is called a pmicrochain. (Formally, a p-microchain is an
internal map σ : ∗Xp+1 → G whose support is a hyperfinite subset of ∆p.) The
set Mp (X;G) of p-microchains forms an abelian group with respect to the usual
addition. The boundary homomorphisms ∂p : Mp (X;G)→Mp−1 (X;G) are defined
by

∂p

n∑
i=1

gi
(
ai0, . . . , a

i
p

)
:=

n∑
i=1

p∑
j=0

(−1)
j
gi
(
ai0, . . . , a

i
j−1, a

i
j+1, . . . , a

i
p

)
.

Thus M• (X;G) forms a chain complex.

0 M0 (X;G)oo M1 (X;G)
∂1oo M2 (X;G)

∂2oo · · · · · ·oo
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The McCord homology groups of X with coefficients in G are defined by

HM
• (X;G) := H• (M• (X;G)) ,

where H• is the homology functor of chain complexes. Roughly speaking, Mc-
Cord’s homology of X is the homology of the Vietoris complex of the monads
{µX (x) | x ∈ X }. Indeed, the following isomorphism results are known.

Theorem 8 (see [7]). Assume that ∗U is sufficiently saturated. Let X be a standard
compact space and G a standard abelian group. Then HM

• (X; ∗G) ∼= Ȟ• (X; ∗G).

Theorem 9 (see [14]). Assume that ∗U is sufficiently saturated. Let X be a standard
completely regular space and G a standard abelian group. Then HM

• (X; ∗G) ∼=
lim−→K

Ȟ• (K; ∗G), where the direct limit runs over all compact subspaces of X.

As a result of taking inverse limits, Čech homology may violate the exactness
axiom in the EilenbergSteenrod axioms depending on the choice of the coefficient
group (see [19]). Garavaglia [7] proved that Čech homology is exact for all compact
pairs if and only if the coefficient group is equationally compact. In contrast, McCord
homology satisfies the exactness axiom for all coefficient groups ([17]). See also [13].

One can also consider a cohomological counterpart of McCord’s theory. In con-
trast with McCord homology, there are at least two different definitions of McCord
cohomology. One is the homology based on external cochains. Let X be a standard
topological space and G an abelian group. Define the cochain complex M• (X;G)
by

Mp (X;G) := hom (Mp (X; ∗Z) , G) ,

where the coboundary homomorphisms dp : Mp (X;G) → Mp+1 (X;G) are defined
as usual:

dpϕ (u) := ϕ (∂pu) .

Note that ϕ : Mp (X; ∗Z) → G may not be determined by its values on ∆p. The
McCord cohomology groups of X with coefficients in G are defined as

H•M (X;G) := H• (M• (X;G)) ,

where H• is the cohomology functor of cochain complexes.

Theorem 10 (see [23]). Assume that ∗U is sufficiently saturated. Let X be a stan-
dard locally contractible paracompact space and G an abelian group. Then H•M (X; ∗G)
∼= Ȟ• (X; hom (∗Z, G)).

Assume that G is internal. We say that a p-cochain ϕ ∈Mp (X;G) is essentially
internal if there exists an internal homomorphism f :

∗(Z 〈Xp+1〉
)
→ G such that

ϕ �Mp (X; ∗Z) = f �Mp (X; ∗Z), where Z 〈Xp+1〉 denotes the free Z-module gener-
ated by Xp+1. As a consequence of upward transfer, each essentially internal cochain
ϕ : Mp (X; ∗Z)→ G is completely determined by its values on ∆p, so ϕ can be iden-
tified with a map ϕ � ∆p : ∆p → G having an extension f �

∗
Xp+1 :

∗
Xp+1 → G

in ∗U. The set M•µ (X;G) of essentially internal cochains forms a subcomplex of
M• (X;G). Finally, define

H•µ (X;G) := H•
(
M•µ (X;G)

)
.
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Theorem 11 (see [23]). Assume that ∗U is sufficiently saturated. Let X be a
standard paracompact space and G an internal abelian group. Then H•µ (X;G) ∼=
Ȟ• (X;G).

The uniform versions of Čech and McCord theories are studied in [9, 11].

4.2. Shape theory

Wattenberg [21] introduced and studied the envelope functor of metric spaces, which
is a nonstandard analogue of Borsuk’s shape theory. Intuitively, the envelope of a
metric space X is the strong homotopy type of the infinitesimal boldification of ∗X
within an ambient normed linear space ∗Y . Shape theory can be formulated in terms
of inverse systems (see [19]). Wattenberg’s theory is then considered as an example
of nonstandard approximations of inverse limits.

4.3. Ends

Let (X, ξ) be a pointed metric space. For each r > 0, let Er be the set of all
unbounded connected components of X \Br (ξ), where Br (ξ) denotes the open ball.
If r < s, there exists a canonical surjection Es → Er which sends Q ∈ Es to Q′ ∈ Er
so that Q ⊆ Q′. The elements of the inverse limit

e (X, ξ) := lim←−Er

in the category of sets are called ends (based at ξ). This notion plays a central role
in geometric group theory (see e.g. [2, 15]). The nonstandard construction of ends
can be found in [8, 10].
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