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Abstract. Our study is concerned with a hybrid spectral collocation approach to solv-
ing singularly perturbed 1-D parabolic convection-diffusion problems. In this approach,
discretization in time is carried out with the help of Taylor series expansions before the
spectral based on novel special polynomials is applied to the spatial operator in the time
step. A detailed error analysis of the presented technique is conducted with regard to the
space variable. The advantages of this attempt are presented through comparison of our
results in the model problems obtained by this technique and other existing schemes.
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1. Introduction

A singular perturbation problem contains a (positive) small parameter whose solu-
tion cannot be obtained or approximated by setting the parameter value to zero [17].
Various important physical phenomena in science and engineering can be described
mathematically as singularly perturbed convection-diffusion problems. They are
found e.g. in semiconductor device modelling [22], electromagnetic field problems in
moving media [7], and turbulent jet diffusion flames [8]. Other typical examples are
Navier-Stokes flow with a high Reynolds number and heat transfer model problems
with high Péclet numbers. In these models, the small parameter that premultiplies
the diffusion term typically exhibits boundary layers, which often makes most of the
proposed methods unsuccessful in practice [26].

Our main aim is to develop a hybrid approximation technique to solve the 1-D sin-
gularly perturbed second-order partial differential equations of convection-diffusion
type of the form:

∂u(x, t)

∂t
+α(x)

∂u(x, t)

∂x
+β(x)u(x, t) = ε

∂2u(x, t)

∂x2
+g(x, t), 0 ≤ x ≤ xf , 0 ≤ t ≤ tf ,

(1)
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where α(x), β(x), g(x, t) are some familiar real-valued functions. The constant 0 <
ε < 1 denotes the perturbation parameter and xf , tf are two given real numbers.
The initial condition is given by

u(x, t = 0) = u0(x), 0 ≤ x ≤ xf , (2)

while the following boundary conditions are supplemented with the initial-value
problem (1)-(2):

u(x = 0, t) = b0(t), u(x = xf , t) = bf (t), 0 ≤ t ≤ tf , (3)

where b0(t) and bf (t) are two prescribed functions.
So far, various approximate and numerical procedures have been developed for

treating the model problem (1)-(3). In this respect, we mention the approach based
on the classical implicit Euler and the simple upwind schemes [1], the piecewise-
analytical method [24], the B-spline collocation scheme [18], the parameter-uniform
finite difference schemes [21], the Bessel (of the first kind) collocation approach [30],
the Sinc-Galerkin method combined with a standard finite difference scheme [25],
the Galerkin weighted residual method [29], and a higher order finite difference
scheme [2]. In addition, the combined finite difference approaches implemented on
uniform and non-uniform meshes were developed in [3]-[6] and [23, 27]. Some other
computational methods proposed for the models closely related to (1) can be found
in [9, 10], [12, 13], and [19, 20].

The primary purpose of this study is to derive a new hybrid approximation al-
gorithm to solve (1). Since the underlying equation is a time-dependent problem,
developing an accurate algorithm for the time advancement is of interest. In this re-
spect, the Taylor approach with second-order accuracy is utilized. After discretizing
the time variable, we employ the novel special functions together with the colloca-
tion points to approximate the solution with respect to a space variable. Indeed, the
special polynomial of order q is defined explicitly as [28, 14]:

Sm(x) =
1

2m

m∑
q=0

(2m− q)!
(q − k)! q!

(2x)q, m = 0, 1, . . . . (4)

We should emphasize that these polynomials all have positive integer coefficients.
Note also that this class of polynomials is related to the Bessel functions recently
utilized in some research papers [11, 15, 16].

2. Time marching technique

To get an accurate time discretization for the parabolic convection-diffusion equa-
tion (1), we employ the Taylor expansion series approach. In this respect, we divided
the interval [0, tf ] into K uniform subintervals with grid points t0 = 0 < t1 = ∆t <
. . . < tK = K∆t = tf and the time step given by ∆t = tk − tk−1. Let us denote uk

as the approximate solution at time level tk. First, note that after evaluating the
original equation (1) at time level tk, one gets

∂uk

∂t
= ε

∂2uk

∂x2
− α(x)

∂uk

∂x
− β(x)uk + g(x, tk). (5)
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Applying the Taylor formula to ∂uk

∂t gives us

∂uk

∂t
=
uk+1 − uk

∆t
− 1

2
∆t

∂2uk

∂t2
+O(∆t2). (6)

Differentiating (1) with regard to t reveals

∂2uk

∂t2
= ε

∂3uk

∂x2∂t
− α(x)

∂2uk

∂x∂t
− β(x)

∂uk

∂t
+
∂g(x, tk)

∂t
.

The next aim is to substitute all first-order derivatives ∂uk

∂t by an approximation
uk+1−uk

∆t . Multiplying both sides by ∆t, the resultant equation becomes

∆t
∂2uk

∂t2
=ε

(
∂2uk+1

∂x2
− ∂2uk

∂x2

)
−α(x)

(
∂uk+1

∂x
− ∂uk

∂x

)
−β(x)

(
uk+1 − uk

)
+gk+1−gk,

(7)
where gk := g(x, tk). Hence, we place (7) into the right-hand side of (6) and then
equate with (5). After multiplying by 2∆t, we get the time-discretized equation
for (1) with second-order accuracy in time. If we introduce Yk+1(x) := uk+1 and

A(x) := −∆t ε, B(x) := ∆t α(x), C(x) := 2 + ∆t β(x),

Fk(x) :=
[
2−∆t β(x)

]
uk + ∆t ε

∂2uk

∂x2
−∆t α(x)

∂uk

∂x
+ ∆t(gk+1 + gk),

the resulting second-order equation with regard to the space variable can be written
as:

A(x)Y ′′k+1(x) +B(x)Y ′k+1(x) + C(x)Yk+1(x) = Fk(x), 0 ≤ x ≤ xf , (8)

for k = 0, 1, . . . ,K − 1. To solve linear equation (8), we need the given initial
condition u0 = u0(x) and its first- and second-order derivatives. This implies that
when k = 0, we have Y0(x) = u0(x) for 0 ≤ x ≤ xf . At each time level tk+1, we
exploit the boundary conditions obtained from (3) at x = 0, xf as follows:

Yk+1(0) := bk+1
0 = b0(tk+1), Yk+1(xf ) := bk+1

f = bf (tk+1), k = 0, 1, . . . ,K − 1.
(9)

3. Special functions: basic matrix relations

We discretized parabolic convection-diffusion equation (1) with regard to time by
relation (8) along with boundary conditions (9). Now, the task is to solve the initial-
boundary value problem given in (8)-(9) with respect to the space variable x. To
this end, we approximate the solutions Yk+1(x) in each time level as a combination
of special functions defined by (4). We first assume that Yk,M (x) is known as the
calculated special approximation to Yk(x) at the time step tk. Obviously, we have
Y0(x) from the given initial condition u0(x). In the next time step tk+1, we look for
the approximate solution Yk+1,M (x) for k = 0, 1, . . . ,K − 1 in the form:

Yk+1,M (x) =

M∑
m=0

qk+1
m Sm(x), x ∈ [0, xf = 1]. (10)
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Here, qk+1
m , m = 0, 1, . . . ,M unknown coefficients have to be found. To continue, we

introduce

QQQk+1
M =

[
qk+1
0 qk+1

1 . . . qk+1
M

]T
, ΣΣΣM (x) = [S0(x) S1(x) . . . SM (x)] .

Using the above vectors, (M + 1)-term finite series (10) can be represented in the
following matrix form:

Yk+1,M (x) = ΣΣΣM (x)QQQk+1
M . (11)

Next, we constitute the vector of monomials

XXXM (x) =
[
1 x x2 . . . xM

]
,

as well as the lower triangular matrix EEEM as follows:

EEEM=



1 0 0 . . . 0 0

1 1 0 . . . 0 0

3 3 1 . . . 0 0

...
...

. . .
. . .

. . .
...

21−M (2M−2)!
(M−1)! 0!

22−M (2M−3)!
(M−2)! 1!

23−M (2M−4)!
(M−3)! 2! . . . 1 0

2−M (2M)!
(M)! 0!

21−M (2M−1)!
(M−1)! 1!

22−M (2M−2)!
(M−2)! 2! . . . 2−1 (2M−(M−1))!

1! (M−1)! 1


(M+1)×(M+1)

.

One can easily verify that ΣΣΣM (x) can be written in terms of XXXM (x) and EEEM as

ΣΣΣM (x) = XXXM (x)EEETM . (12)

It can be further shown that the derivatives of XXXM (x) can be represented in terms
of XXXM (x) and the differentiation matrix DDD as

d`

dx`
XXXM (x) = XXXM (x) (DDDT )`, DDDT =



0 1 0 . . . 0
0 0 2 . . . 0
...

...
. . .

...
...

0 0 0
. . . M

0 0 0 . . . 0


(M+1)×(M+1)

, (13)

for ` = 1, 2. Ultimately, we need a set of collocation points on [0, 1] to acquire an
approximate solution of discretized model problem (8) in the form (10). In this
respect, we divided [0, 1] uniformly into the collocation points:

xτ =
τ

M
, τ = 0, 1, . . . ,M. (14)
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4. Hybrid methodology

To proceed, our aim is to find matrix forms of all unknown terms Yk+1 and the first
and second derivatives in (8). We first place relation (12) into (11). Therefore, our
approximate solution (10) in the matrix expression is rewritten as:

Yk+1,M (x) = XXXM (x)EEETM QQQk+1
M . (15)

With the help of collocation points (14) and by putting them into (15) we get

YYY k+1 = PPP EEETM QQQk+1
M , YYY k+1 =


Yk+1,M (x0)
Yk+1,M (x1)

...
Yk+1,M (xM )

 , PPP =


XXXM (x0)
XXXM (x1)

...
XXXM (xM )

 . (16)

Then we differentiate (15) twice with regard to x. Hence, we utilize relation (13)
for ` = 1, 2 to approximate the first- and second-orders derivatives in (8) in matrix
representation forms:{

Y ′k+1(x) ≈ Y(1)
k+1,M (x) = XXXM (x)DDDT EEETM QQQk+1

M ,

Y ′′k+1(x) ≈ Y(2)
k+1,M (x) = XXXM (x) (DDDT )2EEETM QQQk+1

M .
(17)

Now, it is sufficient to insert collocation points into the former relations. Thus, the
first and second derivatives in (17) can be expressed in the matrix forms:

YYY
(1)
k+1 = PPP DDDT EEETM QQQk+1

M , YYY
(1)
k+1 =


Y(1)
k+1,M (x0)

Y(1)
k+1,M (x1)

...

Y(1)
k+1,M (xM )

 , (18)

YYY
(2)
k+1 = PPP (DDDT )2EEETM QQQk+1

M , YYY
(2)
k+1 =


Y(2)
k+1,M (x0)

Y(2)
k+1,M (x1)

...

Y(2)
k+1,M (xM )

 . (19)

By exploiting the approximations Yk+1,M (x),Y(1)
k+1,M (x),Y(2)

k+1,M (x), we may re-
write (8) as:

A(x)Y(2)
k+1,M (x) +B(x)Y(1)

k+1,M (x) + C(x)Yk+1,M (x) = Fk(x), 0 ≤ x ≤ 1. (20)

Next, we put collocation points into (20) to arrive at the following system of equa-
tions

AAAYYY
(2)
k+1 +BBBYYY

(1)
k+1 +CCCYYY k+1 = GGGk, k = 0, 1, . . . ,K − 1. (21)
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Here, the coefficient matrices AAA/BBB/CCC of size (M + 1)× (M + 1), and the vector GGGk
are as follows:

AAA/BBB/CCC =


A/B/C(x0) 0 . . . 0

0 A/B/C(x1) . . . 0
...

...
. . .

...
0 0 . . . A/B/C(xM )

 , GGGk =


Fk(x0)
Fk(x1)

...
Fk(xM )


(M+1)×1

.

After placing relations (16), (18)-(19) into (21), we get the following fundamental
matrix equation for k = 0, 1, . . . ,K − 1:

ZZZkQQQ
k+1
M = GGGk, [ZZZk;GGGk], (22)

where
ZZZk :=

{
AAAPPP (DDDT )2 +BBBPPP DDDT +CCCPPP

}
EEETM .

It can be clearly seen that matrix equation (22) is a set of (M + 1) linear equations
in terms of (M + 1) unknown coefficients qk+1

0 , qk+1
1 , . . . , qk+1

M to be determined. In
order to solve (22), any classical solver can be utilized.

We finally need to incorporate boundary conditions (9) into the fundamental
matrix equation (22). With the help of representation (15), the boundary conditions
Yk+1,M (0) = bk+1

0 and Yk+1,M (1) = bk+1
f are written in the matrix notations:

ẐZZ
0

kQQQ
k+1
M = bk+1

0 , ẐZZ
0

k := XXXM (0)EEETM = [ẑ0
0 ẑ0

1 . . . ẑ0
M ],

ẐZZ
1

kQQQ
k+1
M = bk+1

f , ẐZZ
1

k := XXXM (1)EEETM = [ẑ1
0 ẑ1

1 . . . ẑ1
M ].

We finally replace the first and last rows of the augmented matrix [ZZZk;FFF k] by the

vectors [ẐZZ
0

k; bk+1
0 ] and [ẐZZ

1

k; bk+1
f ]. Therefore, the following modified linear system of

equations is obtained:

[
ẐZZk; ĜGGk

]
=



ẑ0
0 ẑ0

1 ẑ0
2 ẑ0

3 . . . ẑ0
M ; bk+1

0

z1
0 z1

1 z1
2 z1

3 . . . z1
M ; Fk(x1)

z2
0 z2

1 z2
2 z2

3 . . . z2
M ; Fk(x2)

...
...

...
. . .

...
... ;

...

zM−1
0 zM−1

1 zM−1
2 zM−1

3 . . . zM−1
M ; Fk(xM−1)

ẑ1
0 ẑ1

1 ẑ1
1 ẑ1

3 . . . ẑ1
M ; bk+1

f


. (23)

Now, by solving the above linear system we are able to obtain the unknown special
coefficients in (15).

5. Error analysis

In this part, we state two theorems regarding error analysis for the solutions obtained
by the special function method.
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Theorem 1. We suppose that yk+1(x) and Yk+1,M (x) = ΣΣΣM (x)QQQk+1
M are the ex-

act solution and the special polynomial solution by relation (15) of time-discretized

equation (8) for problem (1). Let yMac
k+1,M (x) = XXXM (x)Q̃QQk+1

M be the expansion of
the Maclaurin series with the M -th degree of yk+1(x) in [0, 1]. Then, the errors
ek+1,M (x) := yk+1(x) − Yk+1,M (x) of the special polynomial solution Yk+1,M (x) at
tk+1 are bounded:

‖ek+1,M (x)‖∞ ≤
1

(M + 1)!
‖y(M+1)
k+1 (cx)‖∞ + ‖Q̃QQk+1

M ‖∞ + ‖EEETM‖∞‖QQQ
k+1
M ‖∞, (24)

where XXXM (x) =
[
1 x x2 . . . xM

]
, QQQk+1

M shows the coefficient matrix of the
special polynomial solution Yk+1,M (x), and the matrix EEEM is as defined in (12).

Proof. With the help of the triangle inequality and the Maclaurin expansion
yMac
k+1,M (x) with the M -th degree, the error ‖ek+1,M (x)‖∞ can be written as fol-

lows:

‖ek+1,M (x)‖∞ = ‖yk+1(x)− yMac
k+1,M (x) + yMac

k+1,M (x)− Yk+1,M (x)‖∞
≤ ‖yk+1(x)− yMac

k+1,M (x)‖∞ + ‖yMac
k+1,M (x)− Yk+1,M (x)‖∞. (25)

From (10) we know that the special polynomial solution Yk+1,M (x) = ΣΣΣM (x)QQQk+1
M

can be expressed by the matrix form Yk+1,M (x) = XXXM (x)EEETMQQQ
k+1
M . Here, ΣΣΣM (x)=

[S0(x) S1(x) . . . SM (x)]. It is also known that the expansion of the Maclaurin

series by the M -th degree of yk+1(x) is yMac
k+1,M (x) = XXXM (x)Q̃QQk+1

M . Hence, the
following inequality can be written:

‖yMac
k+1,M (x)− Yk+1,M (x)‖∞ = ‖XXXM (x) Q̃QQk+1

M −XXXM (x)EEETMQQQ
k+1
M ‖∞

≤ ‖XXXM (x)

(
Q̃QQk+1
M −EEETMQQQ

k+1
M

)
‖∞, 0 ≤ x ≤ 1.

(26)

Since ‖XXXM (x)‖∞ ≤ 1 on [0, 1], we can arrange the last inequality (26) as:

‖yMac
k+1,M (x)− Yk+1,M (x)‖∞ ≤ ‖Q̃QQk+1

M −EEETMQQQ
k+1
M ‖∞. (27)

On the other hand, by using the fact that the remainder term of the Maclaurin series
yMac
k+1,M (x) by the M -th degree is:

‖
∞∑

m=M+1

y
(m)
k+1(0)

m!
xk‖∞ =

xM+1

(M + 1)!
y

(M+1)
k+1 (cx), 0 ≤ cx ≤ 1,

we get the inequality

‖yk+1(x)− yMac
k+1,M (x)‖∞ ≤

1

(M + 1)!
‖y(M+1)
k+1 (cx)‖∞. (28)
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Lastly, by combining the upper bounds (25), (27) and (28), we have the following
inequality:

‖ek+1,M (x)‖∞ ≤
1

(M + 1)!
‖y(M+1)
k+1 (cx)‖∞ + ‖Q̃QQk+1

M −EEETMQQQ
k+1
M ‖∞, 0 ≤ x ≤ 1.

(29)
The proof is completed by applying the triangle inequality to (29).

The next theorem provides an upper bound for the difference between ek+1,M (x)
and ek+1,M+1(x) in the infinty norm. To this end, let us define

Ek+1,M := ‖ek+1,M (x)‖∞ − ‖ek+1,M+1(x)‖∞, k = 0, 1, . . . ,K − 1.

Theorem 2. Let yk+1(x), Yk+1,M (x) and Yk+1,M+1(x) be the exact solution, the M -
th and the (M+1)-th degree special polynomial solutions of equation (8), respectively.
The difference of the error norms for the solutions Yk+1,M (x) and Yk+1,M+1(x) is
bounded by

|Ek+1,M | = C‖ek+1,∗(x)‖∞ ≤ ‖EEETM+1‖∞‖Q̃QQ
k+1
M+1 −QQQ

k+1
M+1‖∞, (30)

where C is a positive number in (0, 1), QQQk+1
M+1 and QQQk+1

M show the coefficient matrices

in a special polynomial solution in (11), Q̃QQk+1
M+1 =

[
QQQk+1
M

0

]
and ‖ek+1,∗(x)‖∞ =

max{‖ek+1,M (x)‖∞, ‖ek+1,M+1(x)‖∞}.
Proof. From equation (11), we know that the solutions Yk+1,M (x) and Yk+1,M+1(x)
can be written in the form:

Yk+1,M (x) = ΣΣΣM (x)QQQk+1
M , and Yk+1,M+1(x) = ΣΣΣM+1(x)QQQk+1

M+1, respectively.

Let Q̃QQk+1
M+1 be the resultant vector when the zero element is added to the end of

vector QQQk+1
M . Then we can write

Yk+1,M (x) = ΣΣΣM (x)QQQk+1
M = ΣΣΣM+1(x)Q̃QQk+1

M+1. (31)

On the other hand, by using the triangle inequality, we can write

|Ek+1,M | ≤ ‖Yk+1,M (x)− Yk+1,M+1(x)‖∞. (32)

By utilizing equation (31), we have:

‖Yk+1,M (x)− Yk+1,M+1(x)‖∞ = ‖ΣΣΣM+1(x)

(
Q̃QQk+1
M+1 −QQQ

k+1
M+1

)
‖∞. (33)

We know that ‖XXXM+1(x)‖∞ ≤ 1 on [0, 1] and that ΣΣΣM+1(x) = XXXM+1(x)EEETM+1

from equation (12). Then, equation (33) can be written as:

‖Yk+1,M (x)− Yk+1,M+1(x)‖∞ ≤ ‖EEETM+1‖∞‖Q̃QQ
k+1
M+1 −QQQ

k+1
M+1‖∞. (34)

Due to ‖ek+1,∗(x)‖∞ = max{‖ek+1,M (x)‖∞, ‖ek+1,M+1(x)‖∞}; then there is a pos-
itive number C in (0, 1) such that

|Ek+1,M | = C‖ek+1,∗(x)‖∞. (35)

Finally, the proof is completed when relations (32), (34), and (35) are combined.
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6. Simulations results

We demonstrate the efficiency and accuracy of the presented hybrid approach applied
to the model problem (1)-(3) on various benchmark examples and compare them to
computational procedures described earlier. Matlab plots have been presented to
illustrate the main results derived in this paper. Our calculations were performed
by using Matlab 2021a software on a personal laptop with a 2.2 GHz Intel Core
i7-10870H CPU machine with 1 TB of memory.

Test case 1. We first consider (1) using the following coefficients and the right-hand
side of [29, 30]

α(x) = 2x+ 1, β(x) = x2, g(x, t) = (x2 + 2x+ 2− ε) et+x/ε.

The initial and boundary conditions are:

u(x, 0) = ex/ε, u(0, t) = et/ε, u(1, t) = e1+t/ε.

In this case, the exact analytical solution takes the form:

u(x, t) = et+x/ε.

We first consider ∆t = 0.01, ε = 0.1 and tf = 1. Utilizing (10) with M = 5, the
following approximate solutions at three different time steps t = ∆t, t = tf/2, and
t = tf for 0 ≤ x ≤ 1 are obtained:

Y1,5(x) =0.14152651x5 + 0.34857723x4 + 0.34857723x3 + 5.0399108x2

+ 10.101416x+ 10.100502,

Y50,5(x) =0.26819065x5 + 0.47789125x4 + 2.897853x3 + 8.1912749x2

+ 16.494468x+ 16.487213,

and

Y100,5(x) =0.43639831x5 + 0.80116732x4 + 4.7661671x3 + 13.509883x2

+ 27.194127x+ 27.182818.

The profile of the approximate solution using these parameters is shown in Fig. 1.
In Fig. 2, we show the achieved absolute errors

Ek(x) := |u(x, tk)− Yk,5(x)|, k = 1, . . . ,K,

for x ∈ [0, 1], ∆t = 0.01, tf = 1 evaluated to various time levels t = s∆t, s =
1, 2, . . . , 100.

To proceed, some comparisons are made in Table 1 to validate our computational
results. In this respect, the error norms in L2 and L∞ at the final time t = tf are
calculated via

L2 :=

√
1

M + 1

∫ 1

0

[u(x, T )− YK,M (x)]2dx, L∞ := max
0≤x≤1

|u(x, T )− YK,M (x)|.
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Figure 1: Graph of the approximated solution in test case 1 using ∆t = 0.01, tf = 1, ε = 0.1, and
M = 5
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Figure 2: Graph of the absolute error in test case 1 using ∆t = 0.01, tf = 1, ε = 0.1, and M = 5

In Table 1, the achieved errors by the presented hybrid approach are evaluated at
tf = 1 and for x ∈ [0, 1]. We use M = 5 and the time steps are ∆t = 0.01 and 0.001
in all computations. In addition, similar results obtained via the Bessel collocation
method (BCM) [29] and the Galerkin weighted residual method (GWRM) [30] uti-
lizing the same computational parameters are tabulated in Table 1. Obviously, the
results show the ability of the proposed technique with less computational efforts
and better performance than two existing well-established schemes. To confirm this
fact, a comparison with GWRM with respect to required CPU time (in seconds)
is presented in Table 2. Here, we utilize ∆t = 0.02, M = 5, and diverse values of
ε = 1

10i , i = 1, 2, 3, 4 are as in Table 1. It can be clearly observed that the perfor-
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mance of the proposed hybrid technique is better than GWRM [30]. Note further
that our hybrid matrix method is easier to be implemented in practice.

Table 1: Comparison results of L∞ and L2 error norms for test case 1 using M = 5, ∆t =
0.01, 0.001, tf = 1, and various ε

∆t = 10−2 ∆t = 10−3 BCM [30] GWRM [29]

ε L∞ L2 L∞ L2 L∞ L2 L∞ L2

10−1 6.1125−4 1.5199−4 3.7094−4 1.0841−4 9.6181−4 1.9982−4 1.9640−3 5.0046−4

10−2 9.7979−3 2.3087−3 4.2413−3 1.5312−3 6.0181−3 1.7535−3 4.3049−2 7.0597−3

10−3 1.0256−1 2.5898−2 4.4547−2 1.6011−2 6.3998−2 1.7367−2 4.7793−1 8.4708−2

10−4 1.0305+0 2.6225−1 4.5044−1 1.6087−1 6.5455−1 1.7352−1 4.8544+0 8.6685−1

Table 2: Comparison results of L2 error norms and required CPU time (in seconds) for test case 1
using M = 5, ∆t = 0.02, tf = 1, and various ε

Present (∆t = 2× 10−2) GWRM [29]

ε L2 CPU [s] L2 CPU [s]

10−1 6.8827539−4 5.0025 5.0046−4 7.8753

10−2 6.3628758−3 4.9949 7.0597−3 7.8603

10−3 6.9269659−2 4.9920 8.4708−2 7.9880

10−4 7.0034490−1 4.9989 8.6685−1 8.0860

Next, we examine the effect of increasing M on the error norms. To this end,
we fix ∆t = 0.01, tf = 1, and utilize two different ε = 1 and ε = 10−2. The results
of L2/L∞ error norms versus the number of bases are shown in Fig. 3. We use
M = 1, 2, 4, 8 in these experiments. It can be obviously seen that for a fixed value
of ε, the magnitude of errors is decreased. Additionally, note that the error norms
increase as ε goes to zero. This is due to the fact that the relevant coefficients in the
underlying equation approache zero and then the model problem becomes inherently
singular. Therefore, the accuracy of the spectral method is usually be deteriorated.
Indeed, this observation is also available in other methods for singular perturbed
problems, see cf. [18, 24], and references therein.

Test case 2. As the second test problem, we consider

α(x) = 2− x2, β(x) = x, g(x, t) = 10x(1− x) t2e−t.

The initial and boundary conditions are taken as zero for 0 ≤ x, t ≤ 1

u(x, 0) = 0, u(0, t) = 0, u(1, t) = 0.

No exact solution is known for this model problem.

Let us first consider ∆t = 0.01, tf = 1, ε = 2−2, and M = 5. The approximated
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Figure 3: Plot of L2/L∞ error norms using ε = 1 (left) and ε = 10−2 (right) with ∆t = 0.001,
tf = 1, and various M in test case 1

solutions at t = 2∆t, t = tf/2, and t = tf take the forms:

Y1,5(x) =− 6.3361× 10−6 x5 + 1.8148× 10−5 x4 − 2.0170× 10−5 x3

− 9.1229× 10−6 x2 + 0.1249951626x+ 1.7480× 10−5,

Y10,5(x) =− 0.06961376x5 + 0.1806816x4 − 0.39029857x3 + 0.23039179x2

+ 0.048838945x+ 4.3601509× 10−106,

and

Y10,5(x) =− 0.088708544x5 − 0.088708544x4 − 0.59782978x3 + 0.57230508x2

+ 0.048838945x+ 0.15795965.

We note that for t = ∆t, the approximated solution is zero due to the given initial
and boundary conditions. The snapshots of numerical solutions at all time steps
t = s∆t for s = 1, . . . , 100 are visualized in Fig. 4. As previously mentioned that
exact solution of this test case is not available. To measure the accuracy of the
present hybrid method, we define the residual error function related to our discretized
equation (8). To this end, we calculate the following error function at time level tk+1

as:

Rk+1,M (x) :=A(x)Y(2)
k+1,M (x)+B(x)Y(1)

k+1,M (x)+C(x)Yk+1,M (x)−Fk(x), 0 ≤ x ≤ 1.
(36)

Using the same parameters used in Fig. 4, we compute the corresponding error
functions (36). The profile of the error is depicted in Fig. 5.

Let us fix M = 4 and see the behavior of error norms when ε varies. In addition,
we fix tf = 1 and compute L2/L∞ norms of the residual error function at the final
time as:

R2 := ‖RK,M (x)‖2, R∞ := max
x∈[0,1]

|RK,M (x)|.

The results of R2/R∞ error norms are reported in Table 3. For comparison, the
outcomes of the previously avaliable computational schemes are also displayed in
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Figure 4: Graph of numerical solutions in test case 2 at different time instants t = s∆t,
s = 1, 2, . . . , 100 for ∆t = 0.01,M = 5, ε = 2−2, and tf = 1
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Figure 5: Graph of residual error functions in test case 2 at different time instants t = s∆t,
s = 1, 2, . . . , 100 for ∆t = 0.01,M = 5, ε = 2−2, and tf = 1

Table 3. In this respect, we utilize the BCM [30], GWRM [29], the B-spline col-
location method (BSCM) [18] and the piecewise analytical method (PAM) [24]. It
can be seen that our numerical results are more accurate while employing a smaller
number of bases.

Finally, for the second test case we depict numerical solutions for two other
different smaller values of ε = 2−4 and ε = 2−8. For the simulations, we employ
M = 5, ∆t = 0.01, and tf = 1. The profiles of numerical solutions are shown in
Fig. 6. Related residual error functions are further visualized in Fig. 6.
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Table 3: Comparison results of L∞ and L2 error norms for test case 1 using M = 4, ∆t = 0.01,
tf = 1, and various ε

Present BCM [30] GWRM [29] BSCM [18] PAM [24]

ε R∞ R2 N = 4 N = 4 N = 16 N = 32 N = 16 N = 32

2−2 2.8048−3 3.0067−4 1.090−3 2.723−3 2.030−2 1.113−2 2.60−3 9.92−4

2−4 3.7054−2 4.8718−3 1.141−2 2.630−2 2.810−2 1.857−2 1.15−2 5.10−3

2−6 5.9778−2 8.0477−3 1.187−2 6.464−2 3.048−1 1.275−1 2.25−2 1.67−2

2−8 6.7140−2 9.0684−3 2.909−2 4.001−2 8.395−1 4.648−1 1.52+2 1.44−2
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Figure 6: Graphs of the numerical solution with ε = 2−4 (left) and ε = 2−8 (right) in test case 2
for ∆t = 0.01,M = 5, and tf = 1
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Figure 7: Graphs of residual errors with ε = 2−4 (left) and ε = 2−8 (right) in test case 2 for
∆t = 0.01,M = 5, and tf = 1

7. Conclusions

In this study, we have developed a collocation method based upon the hybrid of the
novel special polynomials and the Taylor series formula for the numerical solution
of convection-diffusion of parabolic type equations encountered in diverse disciplines
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of engineering science. The main feature of the presented work is that we need
to solve an algebraic system of equations in each time step rather than a global
system obtained in earlier spectral collocation methods. Error analysis of the hybrid
technique is stated and proved. Numerical experiments are summarized in figures
and tables show the accuracy and efficiency of the proposed approach in comparison
with some available published schemes.
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