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Abstract

High-throughput technologies, such as next-generation sequencing, have turned molecular biology into a
data-intensive discipline, requiring bioinformaticians to use high-performance computing resources and carry out
data management and analysis tasks on large scale. Workflow systems can be useful to simplify construction of
analysis pipelines that automate tasks, support reproducibility and provide measures for fault-tolerance. However,
workflow systems can incur significant development and administration overhead so bioinformatics pipelines are
often still built without them. We present the experiences with workflows and workflow systems within the
bioinformatics community participating in a series of hackathons and workshops of the EU COST action SeqAhead.
The organizations are working on similar problems, but we have addressed them with different strategies and
solutions. This fragmentation of efforts is inefficient and leads to redundant and incompatible solutions. Based on our
experiences we define a set of recommendations for future systems to enable efficient yet simple bioinformatics
workflow construction and execution.
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Introduction
High-throughput technologies such as next-generation
sequencing (NGS) have revolutionized molecular biology
and transformed it into a data-intensive discipline [1].
Bioinformaticians are nowadays required to interact
with e-infrastructure consisting of high-performance
computing (HPC) resources, large-scale storage, and a
vibrant ecosystem of bioinformatics tools. It is common
that analyses consist of multiple software tools applied in
a sequential fashion on input data; and these analysis steps
are usually executed on a server or a computer cluster
given the significant data size and computation time
requirements. Such a multi-step procedure is commonly
referred to as a workflow. In order to efficiently carry
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out such analysis it can be beneficial to use Scientific
Workflow Management Systems that can streamline the
design and execution of workflows and pipelines in high-
performance computing settings such as local clusters or
distributed computing clouds [2].
There exist a number of workflow systems for use in

bioinformatics. Taverna [3] pioneered integration of web
services in bioinformatics; Galaxy [4–6] is a workflow
system that has been used in sequence analysis and other
bioinformatics applications; Kepler [7] and Chipster [8]
are other examples of such systems that are used for next-
generation sequencing and gene expression data analysis.
All of the abovementioned systems have graphical user
interfaces for constructing workflows and can run on
HPC and cloud systems. However, experienced bioinfor-
maticians commonly work at a lower programming level
and write their workflows as custom scripts in a scripting
language such as Bash, Perl or Python. For this user group,

© 2015 Spjuth et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by P-arch

https://core.ac.uk/display/51249434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13062-015-0071-8-x&domain=pdf
mailto: ola.spjuth@farmbio.uu.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Spjuth et al. Biology Direct  (2015) 10:43 Page 2 of 12

a number of lightweight workflow systems have emerged
to simplify scripting and parallelizing tasks, which is
particular relevant for an efficient exploitation of HPC
resources, including Luigi (https://github.com/spotify/
luigi), Bpipe [9], Snakemake [10] and BcBio (https://
github.com/chapmanb/bcbio-nextgen). General Linux
tools such as Make [11, 12] are also widely used due to
their simplicity.
HPC resources in academia traditionally consist of com-

pute clusters with Linux operating system and batch
(queueing) systems for scheduling jobs. Recently, cloud
computing has emerged as an additional technology offer-
ing virtualized environments and the capability to run
custom virtual machine images (VMI). For workflows this
opens new possibilities such as packaging entire analy-
ses or pipelines as VMIs, which has been acknowledged
in bioinformatics [13, 14]. There are also other technolo-
gies such as MapReduce [15], Hadoop [16] and Spark [17]
that show great promise in bioinformatics and that might
change how bioinformatics analysis can be automated.
Within the COST Action BM1006: Next Generation

Sequencing Data Analysis Network (“SeqAhead”, http://
www.seqahead.eu/), a series of hackathons and workshops
brought together a number of scientists from different
organizations, all involved in data-intensive bioinformat-
ics analysis. This manuscript summarizes the participants’
current e-infrastructure, their experiences with work-
flows, lists future challenges for automating data-intensive
bioinformatics analysis, and defines the criteria to enable
efficient yet simple bioinformatics workflow construction
and execution.

Workflow experiences
UPPMAX and Science for Life Laboratory, Uppsala
University, Sweden
Overview
The Bioinformatics platform at UPPMAX and Science for
Life Laboratory (SciLifeLab) provide high-performance
computational resources for the national NGS community
in Sweden, as well as the necessary tools and competences
to enable Swedish bioinformaticians to work efficiently
with HPC systems [18]. Since 2010, UPPMAX has had
over 500 projects and 300 users, and as of December 2014
has 3328 compute cores and almost 7 PB of storage. On
UPPMAX HPC systems, users get access to installed
software, reference data, and are able to carry out data-
intensive bioinformatics analyses. Applications include
whole genome-, de novo- and exome sequencing, targeted
resequencing, single nucleotide polymorphisms (SNPs)
discovery, gene expression and methylation analysis.

Workflow experience
On our systems, most users use scripting in Bash, Perl, and
Python to automate analysis. We have a security policy to

not allow web servers, which has made it more difficult
for us to use graphical platforms such as Galaxy. Recently,
however, we have deployed a private cloud where we
aim to provision images containing workflow systems
like Galaxy, Chipster, and GPCR-ModSim [19], which we
believe will enable us to reach a larger scientific com-
munity. We are experimenting with the workflow system
Luigi on our HPC system, and CloudGene [20] on a pre-
viously established prototype Hadoop cluster in a private
cloud. For automating workflow execution we use either
cron jobs and an external Jenkins continuous integration
instance.
Besides the workflow evaluations, considerable efforts

were put on the quantitative comparison of the differ-
ent approaches to solve usual bioinformatic tasks in DNA
and RNA-seq experiments. In recent work we provide evi-
dence for superior scalability for the task of mapping short
reads followed by calling variants on the Hadoop-with-
HDFS platform compared with the existing HPC cluster
infrastructure [21]. We also developed a versatile solution
[22] for the feature-counting and quality assessment tasks
in RNA-seq analysis, extending the acknowledged HTSeq
package [23] into the e-Science domain with Hadoop and
MapReduce. We are also evaluating the Spark platform
for pipelining NGS data but our initial assessment did
not reveal any performance gain compare to Hadoop due
to the non-iterative nature of our problems. Spark has
however in our opinion a more intuitive and appealing
programming environment.

Future challenges
It is important for UPPMAX as a national provider of HPC
resources for NGS analysis to strive for efficient resource
usage. With many biologists having little experience of
automating bioinformatics analyses, it is important for
us to provide workflow systems, examples, support, and
training in order to maximize resource utilization and
improve efficiency of analyses. We are noting that future
pipelines will have problems running on our current HPC
systems due to intensive use of shared file systems,
and we will continue to evaluate and develop a future
e-infrastructure where Hadoop and Spark are interesting
options. There is however a challenge for traditional HPC
centers like UPPMAX to adopt cloud computing and
Hadoop clusters as they contrast a lot to current best
practices and experiences of system administrators. The
buildup of competence in these directions will be an
important task.

Chair of Bioinformatics Research Group, Boku University
Vienna, Austria
Overview
The Chair of Bioinformatics at Boku University Vienna
is a method-centric research group at the interface
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of computational analysis and large-scale experimental
assays. Recent work includes (i) an assessment of accuracy,
reproducibility, and information content of gene tran-
script expression profiling platforms, including RNA-Seq,
microarrays, and qPCR [24]; (ii) a method benchmark in
the comparison of normalization efficiency across multi-
site RNA-Seq laboratories [25]; (iii) signal level models of
hybridization based assays for high-density microarrays
[26, 27]. These analyses require high computational power
largely provided by HPC facilities like the Vienna Scien-
tific Cluster (VSC), with the VSC-2 consisting of 1,314
nodes with 16 cores and 32GB RAM, and the VSC-3 con-
sisting of 2,020 nodes with 16 cores and 64GB RAM.
Large memory tasks are run on individual fat nodes with
256GB–16TB RAM.

Workflow experience
In many instances, we simply useMake [12] to run custom
pipelines for both cluster and local jobs. It is a stan-
dalone tool with no setup/installation needed in most
standard environments. In our experience, if a workflow
system is less lightweight thanMake [12] and small scripts
(Perl, Bash, etc.), people will not use it when they need to
‘get something done’ even though many people know that
in the long-term this is not efficient. Systems like Galaxy
and Taverna provide useful platforms for the automa-
tion of routine data analysis steps as commonly found
in industrial or facility settings, but are less effective
for explorative and flexible analyses. In explorative work,
one would like to run workflows for different configura-
tions, and compare results. It would be helpful if there
was transparent support for tagging or otherwise man-
aging ‘alternative’ workflow runs, and outputs. Moreover,
most systems lack support for the enforcement of quality
control on inputs/outputs, and support for cycle control
(revisions of workflows, input data, tools).
We have initially tested several systems, including,

Bpipe [9], Moa [https://github.com/mfiers/Moa], Ruffus
[28], and Snakemake [10]. We have since focused on
exploring Snakemake due to, among other features, its
make-like workflow definition, simple integration with
Python, Bash code portability, ease of porting workflows
to a cluster, intuitive parallelization, and ongoing active
development. We are currently working on extending
Snakemake with a lightweight modular system for devel-
opment cycle control and policy-based specification of
rules and requirements that supports an in-flow enforce-
ment of consistency constraints. We have developed and
validated a proof-of-concept prototype of the mechanism
and automated the code generation of rules .
Specifically, we have used workflow systems to pre-

process cancer-related data, like tumour/normal samples
from the TCGA consortium [29], and to fully auto-
mate some steps of data analysis. Furthermore, we apply

workflow systems in the design of high-performance
microarrays for Drosophila melanogaster and other com-
plex eukaryotes or to automate specialized RNA-seq anal-
yses in fast evolving domains like single-cell profiling in
stem cell research.

Future challenges
While Snakemake seems to be a promising tool, on its
own, similar to currently available alternatives, it does
not provide an exhaustive workflow system solution but
instead requires external mechanisms to support critical
features like revision control and management of multi-
ple workflow instances run with varying parameter sets.
We are nowworking to integrate Snakemake with external
tools and our modular code generation system for in-flow
enforcement of consistency constraints.

CSC, Espoo, Finland
Overview
CSC - IT Center for Science is a government-owned com-
puting centre in Finland that provides IT support and
resources for academia, research institutes and compa-
nies. CSC provides capacity through a traditional batch
oriented HPC environment, but also with a cloud plat-
form. Major HPC environments are Cray XC40 super-
computer with 40,608 cores and HP XL230a cluster
with 12,960 cores. The OpenStack based infrastructure-
as-a-service (IaaS) cloud runs on the HPC cluster
hardware.
As a national bioinformatics facility CSC has a large

number of users, the majority of which have bio/medical
background and no experience in programming.We strive
to enable users to work independently by providing train-
ing and user friendly interfaces. An example of the latter is
the Chipster software, developed at CSC, that provides a
graphical user interface to a large suite of analysis tools [8].

Workflow experience
Chipster enables users to create and share bioinformat-
ics workflows. It tracks what the user does and allows
him/her to save any series of analysis steps. These work-
flows can be exported, shared, and applied to a different
dataset. Everything is tracked, including parameter set-
tings and reference data. The result files are also automat-
ically annotated with this information. An example of a
Chipster workflow is shown in Fig. 1.
One major challenge is where to stop when record-

ing analysis execution. We include parameters, inputs
and such, but also source code for the tools. However,
maintaining full reproducibility over years is impossi-
ble because the underlying tools and databases change.
Our philosophy has been to maintain reproducibility to
the level that is needed for workflows to be a practical
tool for users. For provenance and long term archival we

https://github.com/mfiers/Moa
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Fig. 1 Visual representation of a user-made ChIP-seq data analysis workflow in the Chipster software. After detecting STAT1 binding regions in the
genome, the user has filtered the resulting peaks for q-value, length and peak hight. S/he has then looked for common sequence motifs in the
peaks and matched them against a transcription factor binding site database. S/he has also retrieved the closest genes to the peaks and performed
pathway enrichment analysis for them. Finally, s/he has checked if the enriched pathways contain the STAT signaling pathway. All these downstream
analysis steps can be saved as an automatic workflow, which can be shared and executed on another dataset. In addition to analysing data and
building workflows, Chipster allows users to visualize data interactively. As an example, genome browser visualization is shown (bottom right panel)

store enough metadata on the workflow and, most impor-
tantly, all data with their relationships. That might not be
enough for one-click rerun of the pipeline several years
later, but it is still enough for manual reproduction of the
analysis.
Chipster users represent a wide range of research

fields, ranging from medicine to agriculture and biotech-
nology. Therefore also the workflow functionality has to
be flexible enough to cater for very different types of
analysis. The typical tasks include analysis of RNA-seq
data (QC, preprocessing, alignment, quantitation, differ-
ential expression analysis, filtering and pathway analysis),
ChIP-seq data (QC, preprocessing, alignment, peak call-
ing, filtering, motif discovery and pathway analysis) and
exome/genome-seq data (QC, preprocessing, alignment,
variant calling and filtering).

Future challenges
Potential future development at CSC is to provide a more
technically oriented workflow engine on top of our cloud
IaaS offering. We are looking into software packages that
are used and developed in the cloud and big data com-
munities as a base for our own development efforts.

Workflow system would be presented with platform-as-
a-service (PaaS) model. Technically capable users could
programworkflows that are run in the IaaS cloud, but they
would not need to care about the IaaS aspects such as
node provisioning and user management.
Important requirement for future workflow systems is

the ability to distribute data processing workload with
frameworks such as Hadoop and Spark. To this end,
we have participated in development of tools that allow
bioinformatics data to be efficiently processed in Hadoop:
Hadoop-BAM and SeqPig [30, 31]. This work is con-
tinued by integrating Hadoop and Spark into our IaaS
environment and providing easy to use interfaces for data
intensive computing.

Swedish National Genomics Infrastructure (NGI),
SciLifeLab, Stockholm, Sweden
Overview
The Stockholm genomics core platform of the Swedish
National Genomics Infrastructure (NGI) crunched over
45TBp (terabasepairs) in 2014. The current NGS instru-
mentation located in Stockholm includes 11 Illumina
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HiSeq 2500 sequencers, 3 MiSeq systems, and 3 HiSeq X
sequencers, and with the coming addition of more HiSeq
X instruments, the amount of data produced and pro-
cessed at NGI is expected to increase dramatically in the
year ahead.

Workflow experience
NGI in Stockholm uses bcbio-nextgen (https://github.
com/chapmanb/bcbio-nextgen) and some customizations
for assembling and running the analysis pipelines. For
us, having support from a pipeline framework already
established in other institutions has been a big plus.
In our experience, home-grown bioinformatics pipeline
frameworks not published or released early enough
in the development process fail to gain wide adop-
tion and momentum. As bioinformatics pipelines are
inherently complex, we think it is better to share this
complexity with the open source community and gen-
eralize as early as possible. Unfortunately we have not
been able to keep up with fast developments upstream
and periodically deploy validated instances of the
pipeline.
We think that this shows the growing disconnect

between traditional HPC architectures in academia and
other sectors in industry:

1. Non-community maintained software. Such as using
the ancient, hard to mantain and update “module
system” (http://modules.sf.net) versus a more
sustainable option such as the HomeBrew science
(https://github.com/chapmanb/homebrew-cbl)
system.

2. Non-existent stable usage of cloud computing
architectures. This could enable continuous
integration and delivery. Having containerized
execution units coupled with good software
management would increase robustness and
provenance tracking on pipelines. That is, globally
trackable software releases as opposed to the
home-grown local module system that we now use.

3. Lack of career paths for Research Software Engineers
(RSE) personnel (http://www.rse.ac.uk/who.html)
that could explore new avenues and maintain points
1 and 2. In other words, lack of a “research
computing” unit able to keep up and be up to date
with new ways of computing.

For instance, our current HPC system does not
now (and is not predicted to anytime soon) support
newer deployment strategies such as continuous deploy-
ment of lightweight Docker containers (https://github.
com/chapmanb/bcbio-nextgen-vm). As a result, we are
actively exploring workflow frameworks and methodolo-
gies that can survive the age of HPC systems. We are

investigating Piper (https://github.com/johandahlberg/
piper), Snakemake, and Luigi, which seem to be more
adaptable with regard to deployment strategies.
On the one hand, many pipelines incorporate a basic

test suite to ensure that all moving parts work as expected.
On the other hand, few of those include a benchmark-
ing suite that can validate several bioinformatic tools
and compare their performance and biological relevance.
Bcbio-nextgen has put some good care in validating that
the underlying biology remains sound across software
versions by following up with the “Genome in a Bottle
Consortium”, a gold standard for validation.
Having a continuously deployed and benchmarked

pipeline allows researchers and RSEs to validate every sin-
gle change in the source code, like industry does with
continuous software delivery and deployment models. In
this way, both source code and biology can be validated
and errors spotted earlier [32]. Likewise, performance of
variant callers can be continuously, closely assessed and
improved quantitatively in different versions of the whole
system.

Best practice pipeline
For a few years, bcbionextgen has been processing sam-
ples for the so called “best practice” pipeline at SciLifeLab.
The typical outputs of the pipeline include:

• Quality assessment via FastQC.
• Contamination screening via fastqscreen.
• Alignment against preconfigured reference genomes

and its indexes (mainly hg19).
• Variant analysis using the GATK toolkit and

FreeBayes.
• Functional anotation of variants using SNPeff.
• Several RNAseq packages such as cufflinks and

DEXSeq.

In practice, although the outputs are appreciated by
service customers, there are many sample and project-
specific details that have to be taken in consideration. This
limits our ability to generalize the data that can be most
useful to our scientists, but we found that at least the qual-
ity assessment and some alignment and coverage metrics
are immediately useful to researchers.

Future challenges
Modernizing the current computing environment to
more modern ways to isolate and reproduce workflows
(Docker) while collaboratively managing scientific soft-
ware (Homebrew Science, http://planemo.readthedocs.
org/en/latest/) are big challenges that hinder reproducibil-
ity and portability. Currently, we think that systems
like Piper and others are too tightly coupled with spe-
cific environments, compromising its generalization and
portability.

https://github.com/chapmanb/bcbio-nextgen
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CRS4, Pula, Italy
Overview
CRS4 is a government research center with a focus on
applied computing and biology. It hosts a high-throughput
genotyping and sequencing facility that is directly con-
nected to the center’s computational resources (3000
cores, 4.5 PB storage). With three Illumina HiSeq 2000
and two older Illumina Genome Analyzer IIx, it is the
largest NGS platform in Italy. CRS4 directly participates in
large-scale population-wide genetic studies – for instance,
pertaining to autoimmune diseases and longevity
[33, 34] – and provides sequencing services for external
collaborators and clients. All the data produced by the
sequencing laboratory undergoes some degree of pro-
cessing in the computing center, spanning from quality
control and packaging to reference mapping and variant
calling. Over the past five years, the facility has processed
more than 2000 whole-genome resequencing samples,
800 RNA-Seq samples and 200 exome sequencing
samples.

Workflow experience
At CRS4 we have worked to automate the standard pre-
liminary analysis of sequencing data to achieve high sam-
ple throughput and consistency. The processing system
is summarized by the schematic diagram in Fig. 2. Our
automation strategy is split in two layers. At the lower
layer we are using the Galaxy platform to implement
workflows for specific operations on data – e.g., demulti-
plexing (Fig. 3), alignment and variant calling. At a higher
level, a custom daemon launches and monitors the exe-
cution of these workflows according to its configuration.
When a workflow completes its operations, the daemon
registers the resulting datasets in our OMERO.biobank
[35] traceability framework, which allows us to keep track
of which input datasets and sequence of operations were
applied to produce the results (represented by serializing

the galaxy history). The process effectively results in a
dataset graph rooted at the original raw data.
The automation daemon also connects multiple work-

flow operations in sequence, when necessary; for instance,
after running the demultiplexing workflow it is configured
to run a sample-specific workflow to process each sample
dataset. The daemon implements an event-driven model,
where events are emitted in the system when something
specific happens (e.g., flowcell ready, workflow finished,
etc.) and the system is programmed to react to each
event type with a specific action. The action may perform
some housekeeping task, such as moving files to a specific
location, or execute some other workflow.
To help our operation sustain a high throughput

level – and to leverage CRS4’s computing cluster – we
implemented some of themore time-consuming and data-
intensive processing steps on the Hadoop platform [36],
and proceeded to integrate these tools with Galaxy [37]
to compose them with other conventional tools in our
bioinformatics workflows.
In summary, our operation uses Galaxy to define com-

plex operations (workflows) given its familiarity to biol-
ogists and bioinformaticians and its REST API, which
allows is to supplement it with our own custom automa-
tion daemon. On the other hand, we have turned to
Hadoop-based tools to improve our computational scal-
ability. Finally, to ensure reproducibility we trace all our
automated operations with OMERO.biobank. The entire
operation is described in more detail in [35].

Future challenges
Future challenges vary in complexity and ambition. At
a lower, perhaps simpler, level lies the need to have
full reproducibility of these data analyses procedures. To
a degree at CRS4 we have achieved this goal by trac-
ing all automated operations with the combination of
Galaxy and the OMERO.biobank. However, the system

Fig. 2 Components in CRS4’s automation system. The system has been created by linking together freely available components with some
specialized software built in-house. In addition to running preliminary processing, it records operations within OMERO.biobank, thus ensuring
reproducibility
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Fig. 3 Example of a Galaxy Workflow. used at CRS4 to generates demultiplexed fastq files starting from an Illumina run directory. The BCL to qseq
conversion and the demultiplexing operations are performed on a Hadoop cluster using the Seal toolkit

only works with operations that are run and monitored
by our automation daemon; therefore, it cannot trace
interactive, user-driven operations. In addition, our cur-
rent solution introduces some complexity in managing of
changes in workflows and tools versions. For these issues
we currently rely on Galaxy, but its functionality in these
terms is limited so alternative solutions will need to be
devised or integrated.
A more ambitious challenge lies in the need to be

able to efficiently deal with the steady stream of updates
to model data (such as genomic references), bioinfor-
matics tools and analysis procedures. To stay current,
all acquired datasets need to be kept in line with the
state-of-the-art. This is a very laborious, complex and
computationally intensive task which, however, could be
automated with the proper support for operating on both
data and workflows computationally as first class citi-
zens. With such functionality one could, for instance,
update an alignment workflow to use the latest genome
reference and automatically find all datasets that had
been generated with the previous version and recompute
them.

Division of Genetic Epidemiology, Medical University of
Innsbruck, Austria
Overview
The Medical University of Innsbruck (MUI) is one of
the leading centres of medicine in Austria. Within the
MUI, the Division of Genetic Epidemiology is an inter-
nationally recognized expert on lipid-associated disor-
ders, holds cooperations with several epidemiological
studies and is involved in several genome-wide asso-
ciation studies (GWAS) and imputation projects. An
intensive cooperation with the research group Databases

and Information Systems (DBIS) at the University of
Innsbruck exists, developing data-intensive bioinformat-
ics software solutions such as Cloudgene [20], HaploGrep
[38] or the mtDNA-Server (http://mtdna-server.uibk.ac.
at). Lately, the developed workflow system Cloudgene
has been utilized as the underlying architecture for
the Michigan Imputation Server, developed in coopera-
tion with the Department of Biostatistics, University of
Michigan. For in-house data analysis, a cloud approach
based on a shared-nothing cluster architecture is used for
data processing.

Workflow experience
Our institute is especially experienced in providing
biomedical workflows as a service to everyone (SaaS). For
example, the Michigan Imputation Server
(https://imputationserver.sph.umich.edu) provides an
efficient, user-friendly and free service to impute large-
scale population studies using the 1000 Genomes Panel
(Phase 1 and 3) or the new HRC Panel. Furthermore, the
mtDNA-Server (http://mtdna-server.uibk.ac.at) enables
a highly parallelized way to detect heteroplasmies and
contamination within mtDNA samples.
For these time-intensive manipulation and analysis of

huge datasets, we mainly focus on the application of
Hadoop (hadoop.apache.org). Therefore we developed
Cloudgene, a framework for the execution and tracking
of HadoopMapReduce workflows (http://cloudgene.uibk.
ac.at). This graphical workflow system allows domain
experts to run implemented MapReduce workflows
directly from their web browsers. Cloudgene is able to
combine existing MapReduce programs written in Java,
approaches based on the high-level language Apache Pig,
command line tools and R-based scripts to a sophisticated

http://mtdna-server.uibk.ac.at
http://mtdna-server.uibk.ac.at
https://imputationserver.sph.umich.edu
http://mtdna-server.uibk.ac.at
http://cloudgene.uibk.ac.at
http://cloudgene.uibk.ac.at
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workflow. All used parameters and input/output data are
tracked ensuring reproducibility and transparency. Final
reports are created using R and RMarkdown. Within
Cloudgene, workflow steps are defined in a YAML man-
ifest file, the underlying workflow definition language
(WDL) supports conditions and loops. Based on this
workflow definition, Cloudgene creates user interfaces
to submit MapReduce jobs graphically. Since Cloudgene
supports the execution of command-line programs and
bash scripts, it can also be seen as a generic workflow
system. Furthermore, the architecture behind Cloudgene
was developed in a way that it is compatible with exist-
ing cloud managers such as CloudMan [39, 40]. Thus, the
same workflow can be executed on a local infrastructure
or on private and public clouds without any adaptions
[41]. This enables us to develop prototypes of new bioin-
formatics workflows fast and to provide them as services
to other scientists.

Future challenges
Reproducibility of data and software is from our per-
spective one of the most challenging task in near future.
Many publications are presenting software solutions,
which are often hard to integrate into a local work-
flow ore impossible to use due to specific require-
ments on software packages. We think that cloud-based
SaaS approaches applying state-of-the-art pipelines could
improve the quality of current data analyses. Of course,
Apache Hadoop is not applicable to all kind of problems,
but its scalable and open-source nature could result in
a boost within Bioinformatics. One goal of Cloudgene
is therefore to improve it to an even more generic big
data platform by supporting the complete Hadoop YARN
architecture. This opens the door to build and exe-
cute workflows based on different computational models
such as Apache Spark (http://spark.apache.org) or Apache
Giraph (http://giraph.apache.org).

Faculty of Mathematics and Informatics and ABI/Joint
Genomic Centre, Sofia University, Bulgaria
Overview
At the Faculty of Mathematics and Informatics and Joint
Genomic Center, both part of Sofia University, we do
research projects that require customized workflows. This
has been necessary for tasks ranging from biodiver-
sity estimation in metagenomics, to alternative transcript
detection in the wheat, maize, sorghum and arabidopsis
genomes, as well as SNP discovery in wheat. For this rea-
son, graphical or web-based workflow software designed
for easy creation and maintenance of workflows does not
suffice for our requirements. We started with shell scripts
and then moved to standard Makefiles and as an alter-
native, our own Python-based bioinformatics workflow
system.

Workflow experience
In our experience, more modern workflow systems do
not always offer significant advantages. In our bioinfor-
matics projects, the use of Makefiles alone is not enough.
During tasks such as NGS assembly, alignment or vari-
ant calling, some custom data processing which cannot
be implemented in shell pipelines is usually implemented
in AWK, Bash or Python scripts. AWK allows compact
presentation of simple data processing and is enough
in surprisingly many cases. Biopython library has also
proved to be very convenient for more complex handling
of bioinformatics data files.
While easy to use and construct, Makefiles are often

not flexible enough - their support for parallel jobs cannot
take multi-threaded or multi-process jobs into account,
and they do not provide any usable means to describe a
recursive flow, such as progressive application of multiple
alignment for large datasets. Some of the shortcomings
can be overcome by using sub-Makefiles, however we
thought it would be useful to develop a YAML-based
workflow description system inspired by Makefiles. We
apply them for the more convoluted problems, but we are
hoping to make it generally applicable to simple problems
as well [42].

Future challenges
Our aim is to build a workflow tool that is as simple as
Makefiles, yet one that can make use of more complex
functionality. The major challenge is making the system
feature-complete and as expressive as Makefiles without
sacrificing the simplicity that is inherent in the alterna-
tives. Work is also ongoing to optimize the workflow
schema and extension syntax to take maximum advan-
tage of the YAML format. We are looking for expanding
our expertise in workflow systems and improving our own
tool.

Discussion
The approaches for automating bioinformatics analysis by
the organizations at the SeqAhead hackathons and work-
shops roughly fall into the following categories: scripting
(usually in languages such as Bash, Perl, or Python),Make-
files (Make, CMake, etc.), and other workflow systems
(such as Snakemake, Luigi, Galax, Taverna, and BcBio).
We summarize the main advantages and disadvantages
from our point of view in Table 1. One observation is that
scientific workflow systems are used in two different ways.
There are core workflows that are used for routine pro-
cessing, are standardized, and rarely change. Then there
are research workflows that a bioinformatician creates to
run ad hoc analysis, explore the data and try to extract
biologically relevant information. These are not and can-
not be standardized and indeed the steps and parameters
are chosen and modified often as the understanding of

http://spark.apache.org
http://giraph.apache.org
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Table 1 Advantages and disadvantages of different categories of automation strategies for bioinformatics

Advantages Disadvantages

Scripting • Simple to construct • Hard to hand over, manual tools integration and
difficult HPC interaction

Makefile • Simple to construct once you are familiar with
the programming languages and the bioinformatics
command-line tools involved

• Multithreaded programs and remote execution not
handled well

• Describes data flow and takes care of dependency
resolution, parallel execution and caching results from
previous runs

• Lack of recursion support

• Uses code fragments in familiar scripting languages
for processing of data

• Requires programming or shell experience

• Can’t be automatically parsed and visualized

Scientific Workflow Systems • More powerful features, easier tomaintain and share • Requires more effort

the data and the problem changes. We note that several of
the organizations are not satisfied with the currently avail-
able tools and have resorted to developing in-house tools
to better support their specific usage scenarios. We also
observe that workflow tools developed and used in other
domains, such as astronomy [43] in many cases are not
widely used in bioinformatics, which may partly be due
to a lack of communication between scientists of different
field, yet also reflect domain specific needs.

Scripting
Shell scripts are compact and tailored for running com-
mands in a specific order. Standard Unix/Linux systems
have simple yet powerful commands for text processing,
and most bioinformatics tools are available as executables
that can be launched from a Shell. Other popular scripting
languages like Perl or Python can also launch executables
implementing bioinformatics algorithms, and additional
functionality is provided by libraries that are often main-
tained by the community. There are some significant dis-
advantages to this simple approach to automation. One is
that it can be tricky to ensure reproducibility of analyses;
or rather, the onus is completely on the individuals who
are using the script to document in some way the datasets
that have been produced. Moreover, desirable advanced
features such as resilience to hardware problems, the abil-
ity to re-use intermediate datasets, integration with HPC
cluster resources, etc. must all be written from scratch. It
can be argued that by the time such features have been
integrated into the script one has effectively written a new
workflow system, and thus might have been better off
adopting one from the start.
However, scripting also has advantages and hence many

adopters. The most important convenience is proba-
bly its simplicity and flexibility, meaning that one can
very quickly achieve some degree of process automa-
tion that works, though it may not be optimal or
efficient. Another important advantage is that most

bioinformaticians already have scripting experience and
are familiar with some scripting languages. By automat-
ing through scripts that knowledge can easily be recy-
cled. In the authors’ experience scripting is not sufficient
to provide a fault-tolerant automation for production
use.

Makefiles
The standard Unix/Linux solution for automating com-
pilation and other tasks that follow a dependency graph
are Makefiles [11]. These can serve as a simple yet
effective tool to describe bioinformatics workflows, and
are applicable to a wide variety of tasks. They describe
dependencies between files and commands, and com-
mands can be executed in parallel. Subsequent runs of
the workflow use as much as possible of the computa-
tion files from previous runs, which serves as a basic
form of caching. Drawbacks of Makefiles are their inabil-
ity to describe dependencies betweenmultiple output files
per input file and a lack of support for multiple wild-
cards in I/O names. Moreover, the standard Unix / Linux
Make tool shows limitations when encountering long run-
ning operations, and execution on heterogeneous failure-
prone distributed resources. To address these issues
both general purpose Make implementations, like SCons
[http://www.scons.org], PGMake [44] or GXP make [45]
were developed, and bioinformatrics-dedicated systems,
like Makeflow [46] and Snakemake [10]. These tools try to
move beyond Makefiles while retaining the simplicity of
GNUMake [12].
As Makefiles grow they tend to become very complex.

In the authors’ experience, Makefiles are good for simpler
use cases, but have shortcomings when it comes to more
complex workflows with multiple steps and branches.

Scientific workflows
Scientific workflow system s provide an environment to
interconnect components and in most cases allow for

http://www.scons.org
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execution on distributed resources. Authors’ experiences
regarding their utility vary. While all acknowledge the
power and importance of scientific workflow systems
to enable reproducible data analysis and simplified inte-
gration with HPC systems, in practice it turns out that
many projects have started using workflow tools and
frameworks but later switched back to custom scripting
and Makefiles (or similar) since they discovered limi-
tations of the systems, especially with the pressure to
deliver results faster in an internationally competitive
environment.
An important remaining challenge is the standardiza-

tion of data flow in workflow systems. There have been
several attempts to address this issue, where some are
based on describing common data types via a dedicated
XML schema [47, 48] or introducing ontology-based
methods for managing data types [49]. No particular
approach, however, has yet emerged that could substan-
tially impact the field or find widespread acceptance in the
bioinformatics community. With no central authority to
dictate standards for interoperability, the community can
only develop standards through collaborative efforts like
the EU COST action SeqAhead.

Key insights
• Automation on shared HPC clusters is difficult, and

workflow tools can aid in achieving it.
• Full analysis reproducibility is hard, sometimes

impossible to achieve. This has two reasons: i) large
scale analysis very often relies on external databases
that commonly are not versioned, or even if they are
versioned only ’milestone’ versions are available, ii)
scientific software management is on one hand
inefficient in HPC clusters while on the other hand
usage of the Web Services might be risky due to
instability and lacking versioning. Community efforts
for standardized software packaging and versioning
are also lacking.

• The available log processing and provenance systems
are not good enough. These would provide better
reproducibility, monitoring, and analytics.

• Bioinformatics analyses are currently to a large extent
file-based and there is no standardized way of passing
data between applications in a workflow. This would
require a transparent conversion of data formats
with the resulting technical as well as semantic
challenges [50]. In addition there is a necessity to
check the consistency of the produced data. Although
these tasks do not form a ‘research’ part of the
workflow they can still constitute the majority of the
workload in a typical analysis [51].

• Biological validation of workflows is typically missing.
In other words, integration with a reference
biological dataset, such as genome in a bottle, and

accompanying test suite that validates biology across
changes to external data or tools, as well as workflow
revisions is, unfortunately, not a common practice
today.

• Makefiles are a quick way to get the work done in a
seemingly efficient manner, but the standard Make
tool can become limiting when more advanced
features are required. New efficient tools have been
developed to address these issues (e.g. Snakemake,
Bpipe).

• Scripting is common for analysis development, but we
see a move toWorkflow tools for data production that
has strict requirements to support audits, or similar.

• Workflow systems on HPC resources have
advantageous performance over cloud computing
resources, but software installation is simplified on
cloud systems, which can also more suitable for
interactive use.

Conclusions
Many researchers have similar problems in data-intensive
bioinformatics analyses. In the authors’ experience the
trend is clear in bioinformatics — workflow tools are get-
ting increasingly more powerful, user-friendly, and hence
more frequently used and appreciated for automation and
creation of research pipelines. Nevertheless, the authors
had to develop different ways of resolving remaining
issues, which is clearly inefficient and leaves consider-
able room for future improvements in next-generation
workflow systems.
Apart from using workflow systems the authors have

developed new tools aiding workflow construction
(Chipster, CloudGene, SeqPig), contributed to other
workflow systems (Galaxy, Snakemake, Chipster) and
analyzed frameworks such as Hadoop and Spark. Based
on these experiences we have devised a set of recommen-
dations for the next-generation automation systems for
bioinformatics.

Recommendations for future workflow systems
Bioinformatics analysis are currently to a large extent
file-based, and as long as this will be the case workflow
tools will continue to be important for bioinformatics
automation. Even though exciting new data analytics
frameworks such as Hadoop and Spark provide alterna-
tives, with high up-front costs and the so far low uptake
in the bioinformatics community we do not see a shift in
paradigm within the nearest years.
The harder it is for a scientist to use a system com-

pared to an ad-hoc hack, script, or perhaps a suboptimal
stand-alone tool, the lower the widespread acceptance
of a workflow system is in the wider bioinformatics and
computational biology community. In general, we there-
fore recommend further development of lightweight and
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layered systems, where at least the basic functionality is
easily accessed. More specifically:

• Maintain as much reproducibility as possible without
sacrificing usability and simplicity of design and
execution.

• Keep things simple, lightweight, easy to install and
integrate with Bash and scripting languages.

• Workflows should be easily executed, with little or no
change in local and distributed environments (HPC
and cloud).

• Encourage attempts for further data flow
standardization and data versioning as well as
standardized software management.

• Put more effort into (biological) testing, validation,
continuous delivery and deployment of the software.
In other words, spend more effort on quality
assurance.

Reviewer’s report
Reviewer 1: Dr Andrew Clark
The authors represent a number of impressive bioin-
formatics operations and share some valuable insight
and experiences in this paper. Research sites engaged in
similar work will no doubt relate to many of these realistic
lessons learned.
The authors are right to emphasize the need for

further work in the bioinformatics community on: shared
community-wide standards for data, more rigor/higher
quality in bioinformatics software engineering, and repro-
ducible research/workflow methods.
I do think that hearing more real world experiences

from groups fully committed to using a scientific work-
flow management system (WMS) would improve the
concluding discussion and comparison for/against each
workflow option. This perspective seems underrepre-
sented in the views expressed. Other research fields that
require data-intensive computing workflows (e.g. astron-
omy, physics, neuro imaging) have contributed some
robust APIs and tools which are equally viable for bioin-
formatics applications. But such WMS options are not
given much real estate in favor of quicker solutions.
Author’s response:We agree with the reviewer and have

added a note and reference to the discussion on workflow
tools which from other domains which could be useful in
bioinformatics.
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