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Abstract

SWEET (Shallow Water Equations Evolving in Time) is a code for the solution

of the 2D de Saint Venant equations, written in their conservative form. The code

adopts a Finite Di�erences scheme to advance in time, with a fractional step pro-

cedure. The space discretization is realized through Finite Elements, with a linear

representation of the water elevation and a quadratic representation of the unit-

width discharge. In this document, the physical model and the numerical schemes

used for solving the resulting equations are extensively described. The accuracy of

the scheme is veri�ed in di�erent test cases.

The sequential algorithm has been ported in the parallel computing framework

by using the domain decomposition approach. The Schwarz algorithm has been

added to the scheme for preconditioning the iterative solution of the elliptic equation

modeling the dynamics of the elevation of the water level. The performance of the

parallel code are evaluated on a large size computational test case.

The structure of the code is explained by a description of the role of each sub-

routine and by a owchart of the program.

The input and output �les are described in detail, as they constitute the user

interface of the code. Both input and output �les have a simple structure, and any

e�ort has been made to simplify the procedure of the input setup for the parallel

code, and to manage the output results.

The PVMmessage passing library has been used to perform the communications

in the parallel version of SWEET. A short introduction to PVM is added at the end

of the present report.

The SWEET package is the results of a joint work between CRS4 and Enel -

Polo Idraulico e Strutturale. The authors of this document kindly acknowledge the

valuable contributions of Vincenzo Pennati, from Enel - Polo Idraulico e Strutturale,

and of Luca Formaggia, Al�o Quarteroni and Alan Scheinine, from CRS4.

This manual is an extension and revision of the SWEET User Manual Version

1.0, 1996. The author of the former document, as well as of the largest part of the

SWEET code, is Davide Ambrosi, currently at Politecnico di Torino. To him, not

only our sincere thank is due, but mainly the recognizance that SWEET is and will

remain a work of his.
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Part I

Physical Modeling

1 The 3D Navier{Stokes Equations

Let us consider the Reynolds{averaged incompressible Navier{Stokes (NS) equations for

a free surface uid,
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where (u; v; w)

T

is the velocity vector, �

h

is the horizontal eddy viscosity, �

v

is the vertical

eddy viscosity, � is the density, r and r� represent the horizontal gradient and the

horizontal divergence respectively, p is the pressure, g is the gravity acceleration, T is the

temperature, �

h

is the horizontal eddy di�usivity and �

v

is the vertical eddy di�usivity.

The values of �

h

and �

v

are usually very di�erent, due to the fact that the horizontal

dimensions of the water body are often much larger than the vertical dimension. Here we

neglect the internal energy transfer due to viscous e�ects. The uid domain is vertically

bounded by the surfaces satisfying the following equations:

z = �(x; y; t) (6)

z = �h

0

(x; y) (7)

The boundary condition on the free surface is that the uid doesn't cross it, i.e. the uid

moves with velocity equal to that of the surface itself:
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At the bottom it is possible to consider free{slip or no{slip boundary conditions:
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w = �u
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u = v = w = 0 (10)

In the present work we suppose that the pressure �eld is almost hydrostatic, i.e. that the

vertical accelerations in the uid are negligible with respect to the hydrostatic pressure

gradient, so that equation (3) can be approximated as follows:

1

�
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@z

� g = 0 (11)

The assumption (11) is valid only when the vertical accelerations are small, i.e. when

the wavelength is much greater than the height of the wave itself, so that it is usually

referred to these equations as long waves model. However, when investigating the range

of applicability that this assumption allows, it is sometimes used as non-dimensional

reference quantity the ratio between the basin depth and the basin width, instead of the

amplitude and length of the involved waves. This implies an identi�cation between these

quantities that should be veri�ed case by case.

2 Shallow Water Model

The shallow water equations (also referred to as de Saint Venant equations) are derived

integrating the Navier{Stokes equations along the vertical under the hypothesis of con-

stant density. In this way, only the average velocity is involved and a 2D description is

recovered.

If � is constant, equation (11) is immediately integrated as follows:

p = p

0

+ �g(� � z) (12)

De�ning

u

a

(x; y; t) =

1

h
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v(x; y; z; t) dz (14)

the horizontal velocities can be written as
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u(x; y; z; t) = u

a

(x; y; t) + u

0

(x; y; z; t) (15)

v(x; y; z; t) = v

a
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where
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We recall the Leibnitz di�erentiation rule that will be useful in the next:
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2.1 Continuity Equation

Integration of the continuity equation along the vertical yields
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Using the boundary equations (8-9) and simplifying we �nd
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Note that only the assumption of constant density has been used to derive expression

(21).

2.2 Momentum Equation

We integrate the horizontal momentum NS equations along the vertical; considering each

term separately, we get
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Summing up and using the boundary conditions (8-9) these terms reduce to
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Introducing the unknowns de�ned in (15{16) we get
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To close the problem, we do the following additional hypothesis: the sum of the terms

involving u

0

; v

0

plus the vertical average of the horizontal di�usion terms in (1-2) are

supposed to depend on the average velocity as follows:
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where �

k

is a parameter which should account both for turbulence and vertical dishomo-

geneities.

The integration of the vertical di�usion term (1-2) gives
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The right hand side terms are the wind stress and the bottom stress, which are usually

modeled as follows:
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Repeating the same derivation for the y component and collecting the all contributions,

the shallow water equations �nally have the following form
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Let's use from now on a di�erent notation, to adhere more strictly to what can be

found in the source code of SWEET. Let q(x; y; t) = (q

x

; q

y

)

T

be the unit-width discharge,

that is q

x

= hu

a

; q

y

= hv
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, and w the wind stress tensor, that is w
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. Then, the Shallow Water Equations, SWE from

now on, read :

@q

@t

+r � (qq=h)�r � (�rq) + ghr� = �g

qjqj

h

2

h

1=3

K

2

� 2
 � q+w (36)

@�

@t

+r � q = 0 (37)

Clearly, � is the elevation over a reference plane, h is the total depth of the water, � is

the horizontal dispersion coe�cient (formerly �

h

), g is the gravity acceleration, K is the

Strickler coe�cient. In the Coriolis term, 
 is the angular velocity of the earth.

3 Turbulence Modeling

The Shallow Water Equations describe the motion of a turbulent ow in a satisfactory

way, but in any practical numerical solution, the computational grid needed to fully

resolve the turbulent motion would be too �ne to �t in the memory of any computer.
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Turbulent motion indeed occurs on a great range of length scale. The energy is passed

from big vortices to smaller vortices, in a cascade process, and it is eventually dissipated

by viscous e�ect at a very small scale (the turbulent scale, where all the Fourier modes

are dissipated). Being impossible to describe the motion of the uid in such detail, we

are forced to resort to a modelization of the e�ects that the turbulent sub-grid motion

has on the uid motion which we are willing to compute on our computational mesh. A

great variety of turbulence models have been proposed through the years. Here we are

interested in those methods which rely upon the Eddy Viscosity/Di�usity concept, �rst

introduced by Boussinesq, which models turbulent stresses as proportional to the mean

velocity �eld, introducing the concept of a turbulent viscosity, in addition to the usual

physical viscosity. The values for this new viscosity can be obtained through algebraic

models, or through the solution of one or two equations, which describe the temporal and

spatial evolution of some quantities related to the turbulent viscosity.

We have chosen the most classical between the two-equations models, the so-called

k�" model, to be implemented in the SWEET code. This model determine the turbulent

viscosity through the evaluation of two quantities, the turbulent kinetic energy k and its

rate of dissipation ". This is accomplished through the solution of two coupled advection-

di�usion equations. Appropriate conditions for k and " on closed and open boundary

have to be tuned in a suitable way, as explained in the following paragraph.

3.1 The k � " Turbulence Model for Shallow Water Equations

We will not derived the formulation of the k � " model for the SWE, an excellent intro-

duction being easily found in [21].

The Reynolds averaged shallow water equations in conservative di�erential form read
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where q(x; y; t) = (q

x

; q

y

)

T

is the unit-width discharge, � is the elevation over a reference

plane, h is the total depth of the water, � is the kinematic viscosity (about 10

�6

m

2

s

�1

for water), �

t

is the turbulent viscosity, computed as

�

t

= c

�

k

2

"

g is the gravity acceleration, 
 is the angular velocity of the earth, K is the Strickler

coe�cient.
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Equation (38) is slightly di�erent from the momentum equation (36) for laminar ow. All

the di�erences are in the stress tensor, accounting for turbulent di�usion. It is not constant

in space, has diagonal part

2

3

k, involves the operator rq

T

coupling the two components of

the momentum equation. The Reynolds stress models only turbulent di�usion and does

not account for momentum dispersion due to vertical non-homogeneity of the horizontal

velocities. Such aspect is not addressed here and only turbulence modeling is discussed.

The vertically averaged turbulent kinetic energy k and the rate of dissipation of tur-

bulent kinetic energy " obey to the following equations:

@k

@t

+ (v � r)k �r � ((� + �

t

)rk) = P + P

k

� " (40)

@"

@t

+ (v � r)"�r �

  

� +

c

"

c

�

�

t

!

r"

!

=

c

1

c

�

"

k

P + P

"

� c

2

"

2

k

(41)

where the constants c

�

= 0:09; c

1

= 0:126; c

2

= 1:92; c

"

= 0:07, are based on classical

test cases, and P is the production term, due to horizontal gradient of velocity, which

expression is
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Equations (40-41) are di�erent from the ones usually referred as k � " model. The

di�erence is in the presence of two source terms P

k

and P

"

, that were �rst proposed

by Rodi et al. [21]. These terms account for production of kinetic energy and rate of

dissipation of kinetic energy due to bottom friction. The production terms P

k

; P

"

are

related to the vertically averaged velocity as follows:
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; and c
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= 3:6
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is the coe�cient of friction, that we have chosen to deduce from the Strickler formula
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is the friction velocity at the bottom equal to
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The form of the model which has been presented above is valid only for fully turbulent

ows. Close to solid walls there are inevitably regions where the local Reynolds number of

turbulence (measured with y

+

) is so small that viscous e�ects predominate over turbulent

ones. A special treatment is required in order to obtain realistic numerical predictions. In

SWEET the simple but e�cient e�ective viscosity wall function approach has been taken.

Considering the existence of a local turbulence equilibrium at the solid boundary,

such that production (by shear stress on the boundary and on the bottom) is equal to

dissipation, the value of k and " at a distance � from the solid wall are given by
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where u
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is the component parallel to the wall of the shear velocity. These

boundary conditions are valid at a distance � from the wall such that the local Reynolds

number, de�ned as

y

+

=

u

�

�

�

is such that y

+

2 [20; 100]. Following the Hinze's hypothesis, the condition for the parallel

component of the velocity at the wall is

v � � = u

�

 

1

�

log(�y

+

)

!

(46)

where � = 0:41 is the von Karman constant, and � depends on the roughness of the walls

(we have considered hydraulically smooth walls for which � = 9), n and � are the versors

normal and tangent to the closed boundary, respectively.

At the open boundaries, on the contrary, where the discharge is imposed Dirichlet

boundary conditions are enforced, and elsewhere natural boundary conditions have been

imposed for k and ", while the boundary conditions for q; � are not di�erent from the

ones used for laminar ow.
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Part II

Numerical Algorithms

Introduction to the Numerical Discretization

The time-advancing method adopted for SWEET is of fractional step type. The main

idea underlying this formulation is the splitting, at every time step, of the equations of

the di�erential system, in order to decouple the physical contributions. In particular, the

wave traveling at speed

p

gh, which is the most restrictive with respect to the maximum

time-step allowed in this kind of problem, is treated implicitly with a low computational

cost. In the discussion of the numerical results it will be shown that this method, coupled

with a Lagrangian treatment of the convective terms, totally avoids the oscillations for

the velocity that are known to plague the �nite element approximations of the shallow

water equations written in primitive form.[2]

4 The Shallow Water Equations

Let's rewrite the SWE of eqs. (34) once again:

@q

@t

+r � (qq=h)�r � (�rq) + ghr� = �g

qjqj

h

2

h

1=3

K

2

� 2
 � q (47)

@�

@t

+r � q = 0 (48)

As before, we have that: q(x; y; t) = (q

x

; q

y

)

T

is the unit-width discharge, that is q

x

=

hu

a

; q

y

= hv

a

, � is the elevation over a reference plane, h is the total depth of the water,

� is the horizontal dispersion coe�cient, g is the gravity acceleration, K is the Strickler

coe�cient and 
 is the angular velocity of the earth. A schematic representation of some

of these quantities may be seen in Figure 1.

According to the theory of characteristics, if � = 0 and the ow is subcritical, two

boundary conditions are to be prescribed at the inow and one at the outow. However,

when considering the case � 6= 0, the presence of the di�usion term in system (47-48)

requires the imposition of a proper boundary condition for the unit-width discharge on the

whole boundary and, moreover, as � is usually very small in the applications, it is natural

to require that these boundary conditions recall the inviscid case as the viscosity coe�cient

tends to zero. Therefore, the boundary conditions applied here are as follows: as many

Dirichlet conditions as required by the characteristic theory plus Neumann boundary

conditions for each component of the unit-width discharge where its value is not yet

imposed. Note that the weak Neumann condition on q arises naturally in the integration

by parts of the di�usive term, when considering the weak form of (47).
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Figure 1: Elevation and depth.

5 The Numerical Scheme for the SWE

The main idea behind the adopted time-advancing scheme is to split the equations at

every time step, in order to decouple the physical contributions. The discretization in

time of the system (47-48) leads to the following equations to be solved:

Step 1

v

n

= q

n

=h

n

; v

n+1=3

= v

n

�X (49)

Step 2

q

n+1=3

= h

n

v

n+1=3

q

n+2=3

+�t g

q

n+2=3

jq

n+1=3

j

h

2

h

1=3

K

2

= q

n+1=3

+�t

h

r �

�

�rq

n+1=3

�

� 2
 � q

n+1=3

i

(50)

Step 3

q

n+1

� q

n+2=3

+�t gh

n

r�

n+1

�

q

n+2=3

h

n

�

�

n+1

� �

n

�

= 0 (51)

�

n+1

� �

n

+�tr � q

n+1

= 0 (52)

The symbol v

n

�X indicates the value of the velocity, obtained by a Lagrangian integration

using the method discussed in Section 5.1. At the third step, the equations (51) and (52)

are decoupled by subtracting the divergence of (51) from (52). One then solves the

following Helmholtz{type equation:

�

n+1

� (�t)

2

r �

�

gh

n

r�

n+1

�

+�tr �

 

q

n+2=3

h

n

�

n+1

!

= �

n

(53)

��tr � q

n+2=3

+�tr �

 

q

n+2=3

h

n

�

n

!

(54)
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This new elevation is then used to solve equation (51).

The spatial discretization of equations (50-52) is based on the Galerkin �nite element

method; the basic theory of the Galerkin approach may be found, for example, in [1], [3]

and in reference [5], which treats the SWE. The weak formulation of equations (49-52),

is accomplished in a standard way, and is not shown here. An important aspect of the

spatial discretization of equations (50-53) is that two di�erent spaces of representation

have been used for the unknowns: the elevation is interpolated by P1 functions, whilst

the unit-width discharge is interpolated by P2 functions. As usual, P1 is the set of

piecewise linear functions on triangles and P2 is the set of piecewise quadratic functions

on triangles. The choice of these interpolation spaces, �rst suggested in [4], eliminates

the spurious oscillations that arise in the elevation �eld when a P1-P1 representation

is used. To knowledge, no theoretical explanation of incompatibility between spaces of

representation of the unknowns has yet been stated theoretically for the SWE.

The main advantage of this fractional step procedure is that the wave traveling at speed

p

gh is decoupled in the equations and treated implicitly. Therefore, the CFL condition

due to the celerity is cheaply circumvented. Moreover, as the Lagrangian integration is

unconditionally stable and all the terms appearing in eq. (50) are discretized implicitly,

the resulting scheme is unconditionally stable.

A drawback of a fractional step scheme as the one adopted here is that this scheme is

only �rst order accurate in time. However, this is not an actual disadvantage as the model

deals with tidal phenomena that vary slowly in time. From a mathematical point of view,

in this fractional step framework one requires, a priori, that the boundary conditions to

be satis�ed by the collection of fractional steps coincide with the boundary conditions to

be satis�ed by the original di�erential system, as described in Section 4. Unfortunately, at

Step 3 the solution of the elliptic equation (53) requires the imposition of proper boundary

conditions for the elevation on the whole boundary and, in the practical applications, this

may not be the case. To overcome this di�culty, we relax the original requirement and at

this step we impose a Neumann condition on the part of the boundary where the value of

the elevation is not originally given. In the test cases one can observe that this procedure

works well in practice.

In the integration of the weak formulation of eqs. (50) and (51) the lumping technique

has been adopted for the mass matrices of q. By the term \mass lumping" we intend

the use of a low order quadrature formula for the evaluation of the integrals involving the

non di�erential terms, yielding a diagonal sti�ness mass matrix. It is well known that

for P2 elements a nontrivial diagonalization has to be performed (as may be the case

of P1), otherwise a singular matrix is recovered (see appendix 8 of reference [5]). This

di�culty has been overcome in the following way: each triangle of the mesh is divided

into four parts by connecting the midpoints of the sides; it is then possible to use the

three vertex-points rule on each subtriangle. The total integral is then the sum of the

subintegrals and automatically leads to a diagonal mass matrix.

A possible objection to this approach is that the mass lumping technique is known
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to produce large phase errors for unsteady problems, which are precisely the ones we

are interested in. However, at Step 2, no wave-type phenomena are involved and the

dissipation coe�cient is usually so small that the di�usive term can be treated explicitly

without resulting in any additional unphysical constraints. On the other hand, when

considering equation (51), for given �

n+1

, the equation is explicit.

The computational e�ort required by this scheme for the solution of algebraic systems

therefore consists of the inversion of one symmetric matrix, with size coinciding with the

number of P1 nodes.

5.1 Lagrangian Scheme for the Convective Terms

At Step 1, the advective part of the momentum equation is integrated by a Lagrangian

scheme [6, 7]. Rewriting the convective terms of equation (47) in Lagrangian form, results

in the solution of two coupled ordinary di�erential equations:

dv(X(t); t)

dt

= 0 (55)

dX

dt

= v(X(t); t) (56)

The curve X(t) is the characteristic line and its slope is the velocity itself so that, at

this stage, it coincides with the pathline. The velocity �eld plays a double role: it is the

unknown to be determined as well as the slope of the characteristic curve. As we are

interested in computing the solution at the nodes of the mesh, let us consider the node

with coordinates y. The initial condition associated with equation (56) must be:

X(t

n+1

) = y (57)

To integrate equation (56) we need to know the slope of the characteristic curve at y

at time t

n+1

which, i unfortunately, is the unknown velocity itself. Therefore, the slope

of the characteristic line has to be approximated in some way, for instance by a zero-

order extrapolation in time. Assuming the use of a second-order Runge-Kutta scheme to

integrate equation (56), the algorithm is as follows:

�

X = y�

�t

2

v

n

(y) (58)

X(t

n

) = y��tv

n

(

�

X) (59)

and equations (55) immediately give:

v

n+1=3

(y) = v

�

X(t

n+1

); t

n+1

�

= v (X(t

n

); t

n

) (60)
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As the Lagrangian integration requires the primitive form of the equations, the fourth

term that appears in the left hand side of (51) has been added to ensure consistency with

equation (47), which is written in conservative form. We note that, apart from this term,

the discrete counterpart of equations (49-52) requires the inversion of symmetric matrices

only. However, this consistency term is of minor relevance in all the ows in which the

typical time scale is much larger than the time step (as is the case of tides). Therefore,

the usual Conjugate Gradient (CG) algorithm can be con�dently used in this kind of

simulation.

The Lagrangian discretization of the transport terms has many attractive features: it

avoids spurious oscillations arising due to the centered treatment, without the inclusion

of any unphysical viscosity coe�cient and it eliminates any restriction on the time step.

However, when using unstructured grids the pathline reconstruction, which requires the

knowledge of the element in which the foot of the pathline falls, consists of a greater

algorithmic e�ort than that on structured grids. In practice, this di�culty has been

overcome in the code by de�ning an ordered list containing all the elements that are

adjacent to a node or to a given element. In this way the search for the element in which

the pathline foot falls is restricted to clusters of elements. To avoid that the foot of the

pathline reconstructed falls outside of the domain, the rigid boundary of the domain is

always assumed to be a streamline.

It is worthwhile to remark that the quadratic representation of velocities, that has been

adopted for compatibility reasons, fully satis�es the accuracy requirements recommended

for the reconstruction of the pathline [6].

5.2 Imposition of Boundary Conditions

Particular conditions on the unknowns must be posed on the boundary of the integration

domain. To further investigate which are the di�erent possible conditions, we distin-

guish between open boundaries, across which we can have a net ux of water, and closed

boundaries, i.e. solid walls.

5.2.1 Open Boundaries

In these regions we can impose conditions on the discharge unknown or on the elevation

unknown. We can have Dirichlet b.c. on the discharge, for example at an inow region, to

impose a particular ux of water on that part of the domain, possibly changing in time.

In this case, we will not have conditions on the elevation.

Alternatively we can impose Dirichlet b.c. on the elevation, for example to simulate sea

tides. In this case we usually impose natural b.c. on the discharge, that is the requirement

that the discharge must be normal to the pro�le of the boundary. This is done projecting

the momentum equation on the normal direction.
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5.2.2 Close Boundaries

On solid walls we can model the ow in two di�erent ways: we can reproduce the physical

situation, in which we �nd the water at rest, or we can ignore the friction e�ect of the

wall, simply imposing a zero ux across the wall. The two di�erent models are usually

referred as no-slip and free-slip boundary conditions.

No-slip boundary conditions We impose a null velocity �eld all along the closed

boundary, thus

q = 0

on the boundary, that is we impose a Dirichlet boundary condition on the unit-width

discharge.

Free-slip boundary conditionsWe ask for a null ux across the wall, by imposing a null

normal component of the velocity (and thus of the discharge) along the close boundary,

q � n = 0

where n is the unit outward normal direction. As we treat the convective terms with a

lagrangian procedure, we must pose this condition in a strong way. It is impossible to

obtain the normal derivative in a weak form. The discretized momentum equations for

the two components of the discharge give rise to two linear systems,

Aq

x

= b

x

(61)

Aq

y

= b

y

(62)

(63)

where A is the di�erential operator.

Instead of the two systems above, we consider a unique system of the form :

 

A 0

0 A

!

q = b (64)

where q = (q

x

; q

y

)

T

, and b = (b

x

; b

y

)

T

. We now couple the equations, solving on the solid

boundary

q

x

n

x

+ q

y

n

y

= 0 (65)

and

A(q

x

n

y

� q

y

n

x

) = b

x

n

y

� b

y

n

x

(66)

In the code, the �rst condition is imposed on the q

x

variable, and the second on the q

y

variable, if jn

x

j > jn

y

j, and the opposite is done if jn

y

j > jn

x

j. This procedure ensures

positivity of the diagonal terms of the matrix. Please note that condition (65) imposes a

null normal velocity component, while equation (66) solves the tangential component of

the velocity.
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6 Numerical Scheme for the k � " Model

The numerical approximation of the shallow water equations for turbulent ow is almost

the same that was originally developed for laminar ow, and described in Section 5. We

have adopted a fractional step method, where for turbulent ow it has been decided to

adopt only implicit discretization because, by de�nition, turbulence modeling is used for

ows where di�usive e�ects play a relevant role.

The convection of turbulent quantities is carried out by lagrangian integration, in analogy

to what is done for momentum transport. The source terms are discretized implicitly or

explicitly, depending on their sign. This procedure, known as semi-implicit scheme [1],

reduce the cost of the fully implicit scheme; the idea is to split the terms of order zero

into their positive part and negative part, and treat implicitly the positive terms and

explicitly the other ones. Then all the terms on the left hand side are positive and so are

all the terms on the right hand side. The maximumprinciple for PDE in the discrete case

insures positive value of k and ". (For physical and mathematical reasons it is essential

that the system of PDE yields positive values for k and ").

The �nal scheme for the equations (3) and (4) is then

k

n+1

�

1 + �t

"

n

k

n

�

��tr �

�

(� + �

n

t

)rk

n+1

�

= k

n

(X) + �tP

n

+�tP

n

k

(67)
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1 + �tc
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"
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��tr �
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c

"

c

�

!

r"

n+1

!

= "

n

(X) + �t

c

1

c

�

"

n

k

n

P

n

+�tP

n

"

(68)

with

�

n

t

= c

�

(k

n

)

2

"

n

7 Transport of a Passive Tracer

A passive tracer is a quantity that is transported by the velocity �eld of the uid, but

that does not a�ect the uid motion itself. It can represent a concentration of a pollutant,

or a thermal �eld (where the e�ects due to the variation of density are neglected). The

equation describing the evolution of the tracer is thus of the form advection-di�usion,

with the possible presence of source terms:

@T

@t

+ u � rT �

1

h

r � (h�

t

rT ) = S

T

(69)

where T is the vertically integrated value of the tracer, u = (u; v) is the velocity �eld of

the uid, h is the water depth, �

T

is the di�usion coe�cient of the tracer and S

T

is the

source term.
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This equation is solved in SWEET through the usual algorithms used for the other

equations, that is a lagrangian integration for the advective term and an implicit formu-

lation for the di�usive term, giving rise to a linear system, solved through a conjugate

gradient algorithm.

Boundary conditions are imposed only on open boundaries, where the water enters or

leaves the domain. At the inlet, we impose a Dirichlet condition on T , assigning it a given

value (usually zero). At the outlet, we impose the value resulting from the integration of

the advective term.

8 Parallelization Strategy

In the numerical scheme described above, two \computational kernels" can be recognized.

For equations (50-52), since all terms but q

n+2=3

are evaluated at previous time levels,

the �nite element formulation of equation (50) gives

Mq

n+2=3

= g (70)

where g is a known vector and M is the �nite element mass matrix, i.e.

M

ij

=

Z




�

i

�

j

d
 (71)

f�

i

g being the set of nodal shape functions which provide a basis of piecewise linear

polynomials. By adopting a mass lumping technique [3], the solution of the Step 2 is

explicit and therefore the main computational e�ort reduces to the following tasks:

1. Lagrangian integration of the convective term as de�ned by equations (55-56).

2. Solution of the elliptic problem de�ned by equation (53).

8.1 Mesh Partitioning

The strategy devised for the parallelization of the above listed computational kernels is

based on domain decomposition. This technique exploits the topology of the problem,

partitioning the computational domain into subregions. The fact that we are dealing

with unstructured meshes poses some additional problems for the implementation of the

parallel algorithms, both for de�ning properly the decomposition into sub-domains and

for the de�nition of an e�cient communication scheme. However, the exibility ensured

by unstructured grids is a remarkable advantage of the �nite element technique when

dealing with complex geometries (as it is often the case in environmental ows) and it

makes the e�ort worthwhile.

The �rst step for a domain decomposition approach is the partition of the computa-

tional domain into a given number of sub-domains. The speci�cations characterizing such

partitioning should be:
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1. Minimization of the number of neighbors for each sub-domain.

2. Minimization of the number of nodal values at interfaces between sub-domains.

3. Balancing the size (i.e. the number of nodes) of each sub-domain; this will result in

a balancing of the computational load between the di�erent processors.

To perform the partitioning we have tested three software packages, Metis [11], Chaco [9]

and TopDomDec [10], which implement several algorithms. The interested reader may

consult the given bibliography for details. Our parallel procedure requires that the sub-

domains partially overlap each other. This feature has been obtained by developing an

ad-hoc software.

8.2 Lagrangian Integration of the Convective Term

The Lagrangian integration of the convective term requires the calculation of the pathlines

and the evaluation of the velocity where the pathline falls. On an unstructured grid

the major computational cost consists in recognizing which elements are crossed by the

pathline. In practice, this operation requires, for each node and at each integration step,

the computation of the area of some triangles for each mesh node. This formulation for

the Lagrangian integration of the convective term does not require any matrix inversion.

It is then a local operation, which needs for each node some information about the old

solution in a cluster of elements around it.

The Lagrangian integration of the convective terms can naturally be performed in

parallel in a domain decomposition framework. Each processor carries out the integra-

tion in the nodes belonging to the sub-domain assigned to the processor itself. As the

pathline can exit the sub-domain, care must be used when dealing with the nodes posed

in proximity of its boundary. The Lagrangian integration of the nodes belonging to the

overlap region must be computed by the processor which succeeds in the reconstruction

of the pathline. With regard to the nodes in the proximity of the overlap, a limit on the

time step is dictated by the requirement that their pathline does not exit the sub-domain

to which they belong. This means in practice that the CFL velocity number should be

smaller than 2:

max




(

jvj

�x

)�t � 2 (72)

Such a condition is not restrictive in practical applications, where the wave celerity is

usually much larger than the uid speed.

8.3 Parallel Solution of the Linear System

Equation (53) can be seen as a particular case of elliptic di�erential problem of the form:
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Figure 2: Lagrangian integration at the boundary between sub-domains.

Lu = f; (73)

where u = �

n+1

, L = L(�

n

;H;q

n+2=3

;�t) indicates a quasi-symmetric linear operator

and

f = f(�

n

;H;q

n+2=3

;�t).

After being approximated by �nite elements, relation (73) can be written in the algebraic

form:

Ax = b (74)

The matrix A is symmetric, positive de�nite, sparse and, typically, very large. An e�ective

algorithm to solve the linear problem (74) is the conjugate gradient (CG), when coupled

with a suitable preconditioner.

We use a parallel implementation of a CG to solve equation (74) on a distributed

memory machine. An e�ective parallelization of this iterative method can be be obtained

as follows. Let us suppose that the computational domain 
 is partitioned into N sub-

domains 


i

, with an overlap of one element, such that 
 =

S

i




i

. We assign at every

processor the job of performing the computations on the elements of the matrix belonging

to a sub-domain 


i

. The following pseudo-code focuses the communications needed in

the parallel version of the algorithm, see for instance [15].

r

0

:= b�Ax

0

; p

0

= r

0

For j = 1; ::::: until convergence
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) inter-processor communication!

x

j+1

= x

j

+ �

j
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j

r
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= r

j
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j
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j
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j

= (r

j+1

; r

j+1

)=(r

j

; r

j

) inter-processor communication!

p

j+1

= r

j+1

+ �

j

p

j

end do

A look at the algorithm listed above shows that the iterative method can be parallelized

by exchanging information only when global scalar quantities are computed; this occurs

twice in each iteration.

An e�cient implementation of a standard preconditioner is not straightforward. In

fact, neglecting the trivial case of diagonal preconditioning, e�ective techniques such as

incomplete LU decomposition are intrinsically sequential. We can indeed say that the

main e�ort in �nding an e�cient parallel iterative solver has to be spent in devising the

appropriate preconditioner.

8.4 Additive Schwarz Preconditioning for the Elliptic Problem

In what follows, we briey outline the additive Schwarz preconditioner, more details on

the theory being available, as example, in Ref. [12]. The method of Schwarz has been

originally proposed as a solver. The underlying idea is to solve the elliptic problem

separately on some portions of the original integration domain, exchange information at

the borders of the di�erent portions, and then iterate the procedure till convergence,

obtaining, from the union of the solutions on sub-domains, the global, exact solution of

the original problem. In recent years this view of the Schwarz method as a solver has

been practically abandoned, whereas its attractive features as a preconditioner have been

exploited. We de�ne R

i

as the restriction operator relative to the sub-domain 


i

and

A

i

= R

i

AR

T

i

. Note that, from a functional point of view, A

i

is the local sti�ness matrix

in 


i

as arises when imposing homogeneous Dirichlet boundary conditions on @


i

. If we

consider

M

�1

=

X

i

R

T

i

A

�1

i

R

i

where A

i

= R

i

AR

T

i

(75)

the parallel conjugate gradient algorithm preconditioned with the Additive Schwarz method

then reads:

r

0

:= b�Ax

0

; z

0

= M

�1

r

0

; p

0

= z

0
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For j = 1; ::::: until convergence
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) inter-process communication!

p

j+1

= z

j+1

+ �

j

p

j

end do

The Schwarz preconditioner is an attractive choice for parallel computations because of its

locality: it does not require any exchange of information between sub-domains. Moreover,

because of the de�nition of the restriction operator R

i

, the elements of the matrix M are

identical to the ones that are in the matrix A, so that no speci�c storage is required for

the preconditioner. Finally, it may be noted that the local subproblems to be solved at

the preconditioning level are always well posed because they can be seen, at a functional

level, as the discretization of a Poisson problem with homogeneous Dirichlet boundary

conditions.

An open question refers to of the possibility of solving the local problems (i.e. the Schwarz

preconditioning) in an approximate way. We will discuss further this subject in Section

9.

8.5 Coarse Grid Correction

Some theoretical results are available from the analysis of the Schwarz preconditioner.

When using a regular grid of spatial step �x, partitioned into sub-domains of linear

length H, with overlap size � = �H, it may be shown [8, 12] that the condition number

of the matrix M

�1

A is bounded as

cond(M

�1

A) � CL

�2

(1 + �

�2

) (76)

where C is a value independent from H and �. In 2D problems,H

�2

is proportional to the

number of sub-domains, and therefore this estimate reveals a deterioration of the quality

of the algorithm with the increase of the number of sub-domains. This inconvenience can

be removed by introducing a coarse grid operator. Let's A

H

be the matrix arising from

the discretization of the elliptic problem on a coarse grid, whose element size is of the

same order of magnitude of the sub-domains. Then we can replace M by M

c

, de�ned as
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M

�1

c

= R

T

H

A

�1

H

R

H

+M

�1

(77)

Here, R

T

H

is the prolongation map from coarse to �ne grid, given, for example, by a

piecewise linear interpolant from coarse grid nodes. It can be shown that

cond(M

�1

c

A) � C(1 + �

�1

) (78)

where, again, C is independent from H and �. Thus, the preconditioning property of the

operator M

c

does not depend on the number of sub-domains, but only on the amount of

the overlap between them.

The coarsening of an unstructured grid can be a non-trivial task. Therefore, we have

investigated a di�erent procedure for the construction of the coarse grid operator A

H

,

by resorting to an agglomeration technique similar to that introduced in [13, 14] in the

context of multigrid procedures. We consider R

H

so that

A

H

= R

H

AR

T

H

(79)

where

R

H

ij

=

8

<

:

1 if j 2 


i

[ @


0 otherwise

The construction of A

H

is thus a completely algebraic procedure and it does not require

to build a coarse triangulation. There are no theoretical results concerning this operator.

We have therefore resorted to numerical investigations to test its e�ectiveness; in Section

11.3 some computational results are shown and the performance of this algebraic coarse

grid operator is discussed.

After these details, it clear that the choice of this Schwarz preconditioner has been guided

by its intrinsic parallelism and its ability to ensure, when the coarse grid correction is

used, a behavior independent on the number of sub-domains, and thus on the number of

processors, used in the calculation.

8.6 Parallelization of the k � " model

As explained in Section 6, the equations for the k and " quantities are solved using the same

numerical methods for the integration of the advective and di�usive terms of the equation

for the momentum, that is a lagrangian integration for the advective terms and a conjugate

gradient to solve the linear system arising from a semi-implicit formulation of the di�usive

term. Thus, no new algorithm are introduced in the code, and the parallelization of the

k � " model follows the same strategy stated above.
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8.7 Parallelization of the Transport of the Scalar Tracer

Exactly the same considerations given above hold for the advection-di�usion equation for

the passive tracer.

9 Parallelization: Implementation Details

Even if the sub-domains overlap each other there is only one sub-domain where a given

node i is considered as interior. This sub-domain will be termed as the parent sub-domain

for that node.

The domain decomposition approach can be easily applied to the explicit parts of algo-

rithms, since the operations are mainly local. The nodes at the boundary between sub-

domains must be updated at the end of each step, by receiving the values from their parent

sub-domains. Thus, lists of sending and receiving nodes are de�ned for every sub-domain,

together with a communication pattern able to guarantee no-blocking communications.

During the Lagrangian step (Step 1), the situation is complicated by the fact that

for a border node it is possible that the pathline falls outside the sub-domain. Thanks

to the overlap, it is possible to perform the Lagrangian integration in the neighboring

sub-domain. However, the list of the border nodes for which the pathline falls outside the

sub-domain can change at each temporal iteration, depending on the velocity direction. A

dynamic mechanism has then been devised for the de�nition of the sending and receiving

nodes.

The integration of the implicit equation for the elevation at Step 3 poses di�erent

problems from the point of view of the parallel implementation of the algorithm. The CG

is parallelized in a genuine domain decomposition way: the matrix, the right hand side and

the unknown vector are distributed among the processors, and the matrix-times-vector

and vector-times-vector operations are performed in parallel on the distributed set of data.

Again, the communication scheme has been designed to avoid blocking patterns. The

interprocessor communications doesn't make any use of pre-de�ned collective message-

passing instructions, but only the base instructions send and recv of the PVM [17]

message passing library. In this way the code portability is assured and its performance

is reproducible.

As discussed in the previous Section, the CG is preconditioned by an additive Schwarz

algorithm. To exploit all its capabilities, we decided to have the number of sub-domains

for the Schwarz algorithm be independent from the number of processors. We have thus

introduced a second level of subdivision into domains, so that several sub-domains can be

assigned to a single processor. We �rst partition the domain into a number of portions N

p

equal to the number of processors, then each portion is further subdivided into the �nal

sub-domain pattern. A schematic representation of this two levels partition is presented

in Figure 3.
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Figure 3: The two level of partitions used in the code: we imagine a run over eight processors,

and thus a �rst level partition of the global domain in eight sub-domains. The detail on the two

�rst sub-domains shows how every sub-domain is further partitioned in several regions. All the

explicit integrations act on the �rst level of sub-domains. The Schwarz algorithm acts locally

on the second level of sub-domains. The global CG uses the same data sets of the Schwarz

algorithm. In dark grey the overlap regions for the �rst-level sub-domains, in light grey the

overlap regions for the second-level sub-domains.
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Using a large number of sub-domains for the Schwarz algorithm may produce a con-

siderable reduction of computational time. In fact, the solution of many small linear

systems can be faster than the solution of few linear systems of larger dimension. The

distribution of the matrix and vectors for the global CG is made at the second level of sub-

domains: in this way the same data structures are used for carrying out both the global

CG and the Schwarz preconditioning, thus optimizing the memory requirements. This

choice greatly complicates the managing of the communications for the global CG. To gain

the maximum e�ciency, we have set up a scheme that uses implicit communications via

common blocks when the two communicating sub-domains reside on the same processor,

and explicit message-passing instructions when the communication involves two di�erent

processors. Moreover, to minimize the latency time, all the messages from sub-domains

residing on one processor, that are to be delivered to sub-domains all residing on another

processor, are �rst collected in a bu�er and then sent with a unique send instruction.

The linear systems local to the sub-domains resulting from the Schwarz algorithm are

governed by the matrix A

i

, which is positive de�nite. Therefore, we have decided to use

again a CG procedure, preconditioned with an incomplete LU decomposition (ILUT)[15],

for their solution. On the contrary, the coarse grid system is always solved \exactly", by

inverting the matrix A

H

. We will refer to the CG iterations at sub-domain level used to

solve the Schwarz preconditioning system as the \local" CG.

Since the local CG has to work just as a preconditioner, the solution of the subsystems

would preferably be carried out with a low degree of accuracy. This would correspond

to use an approximation of the preconditioning system. In practice, however, we have

noted that the convergence rate of the global CG is heavily dependent on the accuracy

of the local solutions. We thus have coupled the convergence thresholds of the local and

the global CG's so that the values of the local residuals are always lower than the current

value of the global CG residual. In this way we have obtained a good overall convergence

rate.

The pseudo-code of the parallel shallow water model thus reads as follows:

do i = 1, number of time steps

solve Lagrangian transport in each of the N

p

sub-domains

exchange boundary conditions among the N

p

sub-domains

solve Step 2 in each of the N

p

sub-domains

exchange boundary conditions among the N

p

sub-domains

do until convergence

precondition solving local linear systems on each of the N

s

sub-domains

by CG + ILUT

perform one CG iteration on the global domain (in parallel)
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end do

solve Step 3 for the unknown q in each of the N

p

sub-domains

exchange boundary conditions among the N

p

sub-domains

end do

10 Mesh Adaption

The use of unstructured grids for the numerical approximation of partial di�erential equa-

tions of applied mathematics has two great attractives. The one most commonly claimed

is the geometrical exibility, that is the capability to handle computational domains with

complicated boundaries of problems that would be almost impossible to solve by a struc-

tured approach. However, there is a second aspect of unstructured grids that has even

more relevance: the possibility to re�ne the computational mesh where needed, in order

to minimize the computational error in some proper sense. Suitable indicators of the

accuracy of the solution allow to re�ne the mesh where the numerical error is large and

to coarsen it where the error is small, in order to optimize the quality of the computed

solution for a given computational e�ort. [22]

Mesh adaption techniques have been used since many years ago in several �elds of

computational uid dynamics, but adaptivity has not yet much explored in the framework

of free surface hydrostatic ow. At out knowledge only a very recent paper [23] compares

and discusses the use of high order polynomial basis (p adaption) for discretization of

the shallow water equations versus local mesh re�nement, where the the order of the

polynomial approximation is kept unchanged (h adaption).

The mesh adaption technique adopted, (see section 10.2) is based on the use of a

background grid (see for example [24], [25]). The numerical simulation starts on a grid,

possibly composed by few nodes, which is the coarsest mesh used in the computation: its

nodes are neither moved nor suppressed. Successive levels of re�nement and coarsening lie

on the background grid. This technique has been adopted because of the very complicated

geometry of the boundary that characterizes environmental applications in river, coastal

areas and so on. By keeping a background grid, the information about the position of

the boundaries and bathymetry can be preserved and is not lost by further interpolations

due to node movements. Remarkably, a relevant by-product of the mesh adaption is that

poor care has to be used in de�ning the initial grid: "with adaption, any initial grid will

be transformed into a near optimal discretization". [26]

A peculiar aspect of the mesh adaption for shallow water ow is the necessity to

devise proper indicators of the numerical error that should drive the grid re�nement and

de-re�nement. In the present paper three possibilities are proposed and investigated: the

second order derivative of the elevation �eld, the second order derivative of the magnitude

of the velocity and the local mass conservation in a speci�c sense. Every error indicator has
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a mathematical basis or is suggested by numerical or physical reasons. The performance

of these error estimators is discussed together with the numerical results in the last section

of the paper.

10.1 Error estimate and error indicators

The mesh adaption technique requires some a posteriori estimate of the error of the

numerical solution based on the computed solution itself: it is necessary to state locally

how much the numerical solution di�ers, in a proper sense, from the exact solution of

the di�erential problem. In this section we propose a few ways to determine where the

computational mesh should be re�ned or coarsened.

1. For linear elliptic problems it is possible to estimate rigorously the numerical error

in terms of the second derivative of the exact solution. Let u be the exact solution of the

elliptic problem : ru = v; that is, in weak form

(ru;rv) = (b; v) (80)

for all v belonging to a suitable space and where ( ; ) indicates the usual internal product

in L

2

. Then, given a triangulation with maximum side length h, it can be shown [27] that

the distance between the exact and the computed solution linear u

h

in H

1

is bounded as

follows:

(r(u� u

h

);r(u� u

h

)) = k r(u� u
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) k

2
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� h
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max

ij

j

u

x

i

x

j

j (81)

As the computational kernel of the numerical scheme adopted in section 4 is an elliptic

equation for the elevation of the water �, in the re�ning{coarsening stage we can use

the estimate (81), where the right hand side has to be calculated using the computed

solution u

h

. The error estimate (81) suggests to de�ne the following non{dimensional

error indicator:

�

1;m
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�
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max
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j (82)

where 
 is the computational domain and �

k

is the k-th linear basis function.

2. From a more physical point of view, considering the whole shallow water equations

system, it can be foreseen that there are typical behaviors of the ow�eld that the error

indicator �

1

could not be able to detect properly. For instance, shear layers between
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parallel velocities, as may happen at inow of branches into a channel, could not be

detected by the indicator (82). To this aim, it would be more useful to use an indicator

of the gradients of the solution depending on the velocity magnitude. Extending in a

heuristic way the de�nition (82) to the velocity �eld, we propose

�

2;m

= max

ij

j

X

k

v

k

Z




�

k

x

i

�

m

x

j

d
j (83)

where v is the magnitude of the velocity v.

3. An important feature that a numerical scheme for shallow water ow should possess

is mass conservation. This property is accomplished by the scheme described above, as

the discrete equations are obtained from the continuity equations, and are then consistent

with it. However. the �nite element scheme illustrated above does not ensure mass

conservation in a �nite{volume cell{centered sense: the mass variation inside a triangle

during a time step is not exactly equal to the ux through the edges of the triangle itself.

The reason of this is twofold. On one hand the use of quadratic polynomials to approx-

imate the discharge q yields to larger computational stencil than when using a linear

representation. Mass conservation checking must be done an a stencil consistent with

the stencil of the scheme. The mass conservation, triangle by triangle, can be properly

advocated only for �nite elements of mixed type, when a special mass lumping is used.

In fact, �nite elements of mixed type RT0 just recover the cell{centered �nite volume

technique [28].

Secondly, we observe that the substitution of the momentum equation into the continuity

equation, that leads to eq.(53) involves a new spatial derivation. This is a usual approach

in the �nite elements context [29], but does ensure local mass conservation. Conversely, in

the �nite di�erence-�nite volumes framework, such a substitution is usually carried out at

an algebraic level: equations (51-52) are �rst discretized in space and then the substitution

is carried out, without further derivatives. This ensures local triangle-by-triangle mass

conservation [30].

The considerations above suggest to use the check of local mass balance as an error

indicator for the present scheme. We de�ne then

�

3;e

= j

1

�t

Z

e

(�

n

� �

n�1

)d
 +

I

e

q � d�j (84)

Here � is the contour of the e-th element and �

3;e

is the mass defect in the e-th element.

10.2 The mesh re�nement technique

Any error estimator among the ones described in the section above allows to identify a

set of elements of the mesh to be re�ned (or coarsened). Several techniques can be used
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to this aim [26].

1. Repositioning of the mesh (r-methods): local re�nement of the mesh is obtained

moving nodes, in order to minimize the distribution function of the error. Of course,

this local re�nement generates de-re�nement in the remaining part of the domain.

Since topology of the mesh does not change during repositioning, this strategy is easy

and cheap to implement: the connectivity of the grid is unchanged. Nevertheless

it is a strategy not often used, because of the constrain of using a �xed number of

elements.

2. Enrichment of the mesh (h-methods): the triangles of the grid are divided in

elements of lower average side length h. As the error of the numerical solution

behaves like ch

�

, with c and � constants, these methods, if used in a proper way,

ensure �-power convergence. For this reason h-methods are most popular. although

their implementation is more complex because, at every subdivision, the topology

of the mesh changes. The splitting of the elements can be made essentially in two

ways:

1. edge bisection: midpoint of an edge marked to be re�ned is joined with the

vertex opposite to this edge.

2. standard re�nement: a marked triangle (father) is subdivided into four similar

triangles (sons) joining midpoints of the edges of the father. The number of

edges and triangles increases for a factor four and the local length of triangles

is halved.

3. Re-meshing (m-methods): to produce a highest quality triangulation, creation, de-

struction and repositioning of the nodes is allowed. This is a more general procedure

but also heavier from a computational point of view.

The choice of the more suitable mesh adaption procedure depends on the problem

at the hand. For example, regularity of the element size length and shape can be a

requirement or not. In compressible ow simulations, very stretched elements are useful,

because where shocks are located, the ow direction is strongly biased. Adapted grids for

these problems are in general very irregular both in side length and in shape ([22]). The

more appropriate strategy for these kind of problems seems to be the h-method 2.1.

In the present paper we chosed to use the re�nement technique 2.2 of the h-method.

Main reason for this choice is that the h-methods keep the information on the original grid

unchanged. When a new node is added in the middle of an edge, bathymetry, velocity

and water elevation in it are obtained by interpolating the values in the element. In this

way the original values of the bathymetry and of the physical unknowns in the initial

mesh are never abandoned and the degradation of the solution due to the interpolation

is minimized.
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Figure 4: Red Re�nement (standard or regular) and green of a triangle.

Moreover, when simulating subcritical shallow water ow, regions are more suitable

to be re�ned instead of lines (see results in section 11.5). So, in the present work the

computations are started on a mesh as regular as possible, then re�nements and de-

re�nements are accomplished in such a way to preserve regularity.

In Figure 4 is shown the subdivision technique known as standard or regular or red

re�nement [31]. The marked elements are �rst divided in standard way. The surrounding

triangles have then one, two or three edges sub-divided. The nodes in the midpoint of

the edges of the elements not yet re�ned are called \hanging nodes". Elements having

hanging nodes must be re�ned in a proper way to ensure consistency of the triangulation.

Among the possible strategies, we have chose the one described in the following, in C-like

form:

for (i=0;i<NEL;i++)

if(Err(i)>thresh) StandRef(i);

for (i=0;i<NEL;i++)

if((NHang(i)>1) || (NHang(i)==1 EType(i)==green)) StandRef(i);

if StandRef has been called at least one time in the last block then

it is re-executed;

for (i=0;i<NEL;i++)

if(NHang(i)==1) MakeGreen(i);

Err(i) is a function evaluating the error on the triangle i with one of the described

methods. StandRef(i) re�nes the triangle i in standard way; if the triangle is \green",

it and the sibling are substituted by the father before re�nement. When executing �rst

for-block only elements which have an error greater than a �xed error threshold thresh

are re�ned. NHang(i) and EType(i) are functions which respectively return number of

hanging nodes and type (standard or green) of the triangle i. In the second for-block

triangles which have more then one, or green ones which have at least one hanging node

are standard re�ned. If some element has been re�ned maybe some other hanging node

has been created and for this reason this last block is re-executed till possible. In the last

block MakeGreen green-re�nes triangles which have an hanging node, to ensure consistency
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of the mesh.

This algorithm converges in a �nite number of iterations; at most all the elements of the

initial grid will be standard re�ned. The grid re�ned with the algorithm listed above has

a minimum number of green elements, which are the elements deteriorating the quality

of the initial mesh.

10.2.1 Pre-re�nement and mesh enhancement

If some of the characteristics of the solution of a given problem is known a{priori it is

possible, in principle, to decide some sort of pre{re�nement of the mesh. For this reason

a package named prere�ne has been prepared which read the initial mesh (in SWEET

format) and a vector of integers containing ags to the elements to be re�ned and re{write

a �le (in the same format) with the new mesh pre{re�ned.

As already mentioned, the re�nement technique here adopted, generates at the bound-

aries of a re�ned area elements of poor quality. When pre{re�ning the initial mesh such

drawback can be avoided improving the overall mesh quality by means of an algorithm

known as \Laplacian smoothing".

Given a generic node P of the mesh not in the boundary, we will call patch around P

the polygon formed by all the elements which have this point in common. The information

about elements which constitute the patch is contained in the structure VVER (see section

14. Smoothing of Laplace consists in moving every internal point of the triangulation to

the baricentrum of the patch around this point. This can be done without problems when

the patch is convex. When instead the patch is concave the algorithm must be modi�ed

in order to avoid that the node movement would produce an inconsistent triangulation.

The modi�ed Laplace Smoothing used in the pre{re�ne module is described in detail in

[32].

Re�ning and coarsening

When designing a practical strategy of mesh re�nement-coarsening, it would be very

useful to state �rst an acceptable numerical error and then use it as a yardstick: coarsen

the mesh where the error indicator is lower than the reference one, re�ne when larger.

Unfortunately, the error indicators described above only give, at best, estimates of the

numerical error, or hints about where the error is larger: they do not ensure any absolute

evaluation of its magnitude.

When computing steady ows, this di�culty is overcome stating �rst the computational

resource that can be addressed, that is the maximum number of nodes to be used in the

numerical simulation. Then, starting with a quite coarse mesh, it is re�ned until that the

desired number of nodes is reached.

When dealing with unsteady ow, also coarsening is useful. In this paper we are addressing

smooth ow, that is subcritical shallow water ow or, at most, locally transcritical ow.

In such regime there are no discontinuities in the physical variables and, typically, the
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time-dependency is due to the change of boundary conditions which is smooth in time

and has a period of 12-24 hours. As time goes by, the ow�eld changes and a proper mesh

adaption strategy should modify the mesh, re�ning it in a optimal way with respect to

the adopted error indicator. In this framework, instead of keeping constant the number

of nodes, as was the case of steady ow, it is more signi�cative to keep constant the

maximum error indicator of the grid at any time. This ensure a constant control of the

error all along the simulation.

11 Test Cases

To validate the numerical scheme and its sequential and parallel implementation, we

consider di�erent examples. The �rst two test problems have been speci�cally designed

to test the discretization of the nonlinear terms in the equations and the mass-conservation

property of the numerical scheme. In addition, they are used to test for the presence of

spurious oscillations arising due to the boundary conditions. The third example is a

demonstration of the parallel performance of the code.

11.1 Jet in a Circular Reservoir

The �rst problem is the simulation of a steady jet in a circular reservoir; the details of this

classical test case as well as the experimental results can be found in [19]. The geometry

of the boundary and the computational grid are shown in Figure 5. We use an eddy

coe�cient � = 2:5 10

�4

m

2

=s and a time step of 2 s. The computed velocity �eld is shown

in Figure 6. The solution does not di�er much from the one shown in [6] and [19]; the

location of the gyre centers are su�ciently well described, but the maximum computed

velocities in the gyres are underestimated, mainly in the region near the inow. Such a

discrepancy is due to three-dimensional e�ects, and not to the staircase boundary that

characterizes the �nite di�erence contours used in the cited references.

11.2 Hydraulic Jump

The second test case that we consider is the steady 1D ow in a prismatic channel, without

di�usion and bottom friction e�ects. Under these hypotheses the SWE reduce to

q = (Q; 0) h = h(x) (85)

d

dx

 

Q

2

h

!

+ gh

dh

dx

= gh

dh

0

dx

(86)

where Q is the (constant) unit-width discharge. If the bottom �eld is de�ned as:
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Figure 5: Jet circulation in a reservoir: computational mesh

0.05 m/s

Figure 6: Jet circulation in a reservoir: velocity �eld
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where H and  are constant values, it can be easily veri�ed that the equation (86) has

the following exact solution:

h(x) = H + x; q(x) = Q: (88)

This test case allows for the veri�cation of the accuracy of the scheme when a strong

gradient is present in the bathymetry, as often occurs in rivers.

The computation for this test has been carried out using an inow depth H = 4, an

inow unit-width discharge Q = 4 and a bottom slope  = 0:06. Although this test is

essentially one-dimensional, an analogous case for the 2D code has been run on a channel

300 m. long and 4 m. wide. The computational mesh is almost regular, it is composed

by 580 elements and a detail of it may be seen in Figure 7.

110.2 120 130 140
−4.949

0

9.786

Figure 7: A detail of a regular mesh used in test case 2.

For the boundary conditions, the value of Q has been imposed at the inow whilst

the value of � has been imposed at the outow. Figure 8 contains two graphs: a plot of

the exact elevation versus the computed elevation and a plot of the computed unit-width

discharge. The former plot evidences the good accuracy of the scheme for the elevation

as well as the ful�llment of the mass conservation property with a small loss of 0.5% for

this mesh.

It should be mentioned that a very large number of time steps were required to reach

the steady state solution, since no mechanism to dissipate the spurious components of the

initial conditions is present in this computation.

37



50.0 100.0 150.0 200.0 250.0
x (m)

-0.010

0.000

0.010

0.020

0.030

0.040

el
ev

at
io

n 
(m

)

exact
computed

0.0 100.0 200.0 300.0
x (m)

3.960

3.980

4.000

4.020

4.040

di
sc

ha
rg

e 
(m

*2
/s

)

Figure 8: Water elevation and unit-width discharge for the 1D test case.

11.3 Parallel Computation on a Complex Geometry

The parallel code has been used for the simulation of the marine circulation in the Bocche

di Bonifacio, the strait separating the Corsica and Sardinia islands in the Mediterranean

sea. In this model, it is assumed that no strati�cation occurs and that the water circulation

is essentially driven by the tidal boundary conditions, the wind stress and the Coriolis

force. This hydrodynamic problem is characterized by a substantial complexity of the

geometrical data.

We have used a mesh composed of 75053 elements and 38303 vertices. The total

unknowns of the problem are 38303 elevation nodal values and 151661 discharge nodal

values (for every component). The size of this problem does not �t into the memory of a

single processor (with 128 MB of RAM), and a minimum of two processors of an IBM-SP2

must be used.

We �rst analyze the numerical behavior of the Schwarz algorithm with respect to the

number of sub-domains. In Figure 10 is shown the CPU time required by one global

CG iteration versus the number of sub-domains N

s

, for a �xed number of processors.

The Schwarz algorithm runs faster when a large number of sub-domains is used, until

the communication overhead for the global CG becomes relevant, eventually preventing

further time savings.

To evaluate the overall code performance, this result has to be considered together

with the result shown in in Figure 11, where we illustrate how the number of global CG

iterations varies with the number of sub-domains. The preconditioning capability of the
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SARDINIA

CORSICA

Figure 9: On the left: the computational domain for the Bocche di Bonifacio test case. On the

right: a detail of the computational mesh for the zone indicated in the left �gure. The entire

mesh has 75053 elements.
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Figure 10: Schwarz preconditioning: CPU time required by one global CG iteration versus the

number of sub-domains N

s

, using two processors. Here, the coarse grid correction is used; the

case without correction present the same curve, since the inversion of the coarse system does

not take a signi�cant amount of time (around 2% for the case with 240 sub-domains).
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original Schwarz algorithm degrades when the number of sub-domains increases. However,

the algebraic coarse grid correction halts this degeneration completely when more than

ten sub-domains are used. By joining the results shown in Figures 10 and 11 we obtain

the curve for the total CPU time needed to solve the linear system, versus the number

of sub-domains, for a �xed number of processors (Figure 12). The best performance for

the present test case has been obtained with 200 sub-domains. This result demonstrates

the usefulness of choosing the number of sub-domains independently from the number of

processors actually used in the calculation.
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Figure 11: Schwarz preconditioning: number of global CG iterations required to reach conver-

gence versus the number of sub-domains N

s

.

We now examine the parallel performance of the code, by varying the number of

processors and keeping �xed the number of sub-domains for the Schwarz preconditioner;

in the present case, we have used the partition of 200 sub-domains.

In Figure 13 the total speed-up of the shallow water code is shown. As it can be noticed,

both the Lagrangian integration and the Step 2 integration (which are explicit) show a

speed-up which is very near to the ideal one. The speed-up of the implicit step, while not

being ideal, is however satisfying. Since this step has the major computational cost, its

behavior reects largely on the total speed-up (continuous line). The odd behavior of the

curve (the �rst derivative does not decrease monotonically, as it would be expected), is

due to the particular setup of sub-domains we use: the shape of the sub-domains for the

preconditioning step changes every time the number of processors changes, even if their

number and size do not. Thus, since the speed and the preconditioning properties of the

Schwarz algorithm can be inuenced also by the shape of the sub-domains, we can need

di�erent numbers of iterations for the global CG to reach the given convergence threshold.

In order to further test the behavior of the Schwarz algorithm, we have run the same
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Figure 12: Schwarz preconditioning: CPU time required to achieve convergence of the conjugate

gradient solver versus number of sub-domains N

s

, using two processors.
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Figure 13: Speed-up of the whole shallow water code, for the mesh composed by 75053 elements.

Due to memory requirements, this problem runs on a minimum of two processors, so the speed-

up are normalized by the two processors value; the ideal speed-up for 16 processors is thus

8.
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problem on a coarser mesh, to have the possibility of also performing the simulation on a

single processor. The sequential code has been run using an e�cient preconditioner, that

is an Incomplete LU decomposition (ILUT). The reduced mesh is composed by 39170

elements and 20169 vertices. We have done both serial and parallel runs, using a RISC

processor of the system IBM-SP2, with 128 MB of RAM. In Figure 14 we report the timing
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Sequential: ILUT prec.
Schwarz + coarse grid prec.

Figure 14: Implicit step: time for the solution of the linear system, on a mesh of 39170 elements.

The horizontal line refers to a sequential run, using an ILUT preconditioner. The other curve

refers to parallel runs, on 2, 4, 6 and 8 processors, with the Schwarz preconditioner.

for the solution of the linear system at the implicit step. The horizontal line represents

the time needed by the scalar run, for the case with ILUT preconditioning. We can see

that the Schwarz preconditioning gives better performance with respect to the sequential

ILUT algorithm when more than three processors are used.

11.4 Abrupt enlargement of a channel; the k � � model

To validate the k � " model described above, it has been chosen the test case discussed

in [35], corresponding to the ow in an abrupt enlargement of a prismatic channel. The

geometry of the problem may be seen in �g.1; it has been supposed that the channel is

4 meters deep and the incoming ow has unit width discharge of 3 square meters per

second. The ow is expected to separate at the edge of the enlargement, with consequent

recirculation.

The most interesting aspect to be compared with experiments is the length of the re-

circulation zone: the reattachment length for a geometry as the one showed in in �g.15

should be slightly less than six times the width of the enlargement, if the ratio of the

width of the former part of the channel over the depth is nearly one [36]. It is worthwhile
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to remark that such an estimate assumes no dependence of the reattachment length on

the roughness of the channel and on the inowing velocity.

The velocity �eld plotted in �g.17 shows that the computed solution has a reattachment

length which is smaller then the expected one. This is accordance with the results showed

in [35].

The use of wall functions, at least when using a mesh not stretched at the boundary,

yields to a negligible production of turbulent quantities at the wall. The turbulent kinetic

energy is essentially produced at the enlargement of the channel, because of the transversal

stresses in the uid. In such region is the maximum of turbulent kinetic energy, which is

about 0.03 square meters per square second. The poor performance showed by the k � "

model is in accordance with the well known inability of the method to simulate separated

ows.
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Figure 15: Prismatic channel with an abrupt enlargement: computational mesh.

11.5 Automatic Mesh Adaption: steady state case

To investigate numerically the performance of the mesh adaption strategy outlined above,

it has been chosen a test case involving several characteristic features of shallow water

ow.

In �g.21 may be seen the geometry of the channel and the initial computational mesh used

for the present calculations. The test is designed to collect in a sketchy fashion a number
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Figure 16: Prismatic channel with an abrupt enlargement: water elevation.
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Figure 17: Prismatic channel with an abrupt enlargement: velocity �eld.
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Figure 18: Prismatic channel with an abrupt enlargement: turbulent kinetic energy.
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Figure 19: Prismatic channel with an abrupt enlargement: rate of dissipation of turbulent

kinetic energy.
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Figure 20: Prismatic channel with an abrupt enlargement: turbulent viscosity.

of typical situations that occur in river ow. The main channel is 2 kilometers long and

100 meters large, it has an abrupt enlargement that doubles its width, a smaller inowing

branch, a square island in the middle. In the initial part the bottom of the channel has

a constant depth of 3 meters, in the �nal part the depth rapidly becomes 6 meters. The

inow boundary conditions of the main channel and of the secondary channel are 300 and

100 cubic meters per second, respectively. At the outow a constant water elevation is

imposed.

The initial computational mesh is intentionally quite coarse, being composed by 120

nodes only. In �g.22 it is shown the velocity �eld computed on the background grid. The

simulation performed on the initial grid does not reveal recirculations neither behind the

abrupt enlargement nor behind the island.

It has been chosen to re�ne the initial grid adaptively up to three levels of re�nement,

the �nal mesh being composed by about 370 nodes. In �gg.23-25 are shown the re�ned

meshes obtained by using di�erent error indicators.

The use of the error indicator �

1

, based on water elevation derivatives, leads to the mesh

plotted in �g 23. It can be seen that the shear layer at the left corner of the inow of the

smaller channel is not devised by the error indicator as a zone to be re�ned. The channel

enlargement, the right corner between channels and the bottom jump are slightly re�ned,

but most of the new triangles are posed around the island, mainly behind.

When using the error indicator �

2

, the secondary channel inow, the bathymetry slope
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and the region around the stagnation point are not detected as zones to be re�ned. The

re�nement is deserved for regions around detachment points, that is zones with larger

velocity shear.

The error indicator �

3

, based on local mass conservation, re�nes all the regions that the

other error indicators detect one by one. The global mass error performed by the coarse

initial mesh, de�ned as the di�erence between the inowing and the outowing water,

was about 3%. By using the grid re�ned as driven by the �

4

indicator, the mass defect is

reduced to 1%.

Figure 21: Background mesh.

To get a quantitative evaluation of the quality of the adaptively re�ned meshes, the

shallow water code has been run on a grid obtained re�ning uniformly three times the

background grid, up to a �nal number of elements which is 64 times the initial one. The

numerical solution computed on the �nest grid is then taken as the reference one: the

truncation error is evaluated comparing the water elevation and velocity computed on the

�nest mesh and the values computed on the adaptively re�ned meshes. The �gs.26-27

show plots of the error, de�ned as

�̂

�

=

(

�

� � �)

�

�

; �̂

v

= �v � v; (89)

where

�

�; �v is the reference solution computed on the �nest grid. The absolute value of the

velocity error is considered, not to overestimate the contribution due to the stagnation
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Figure 22: Velocity �eld computed on the background mesh.

Figure 23: Re�ned mesh obtained using the error indicator �

1

.
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Figure 24: Re�ned mesh obtained using the error indicator �

2

.

Figure 25: Re�ned mesh obtained using the error indicator �

3

.
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points.

Generally speaking, in all the simulations the bigger error is located around the island,

that is the region mostly re�ned in all the the adapted meshes. Moreover, the results

plotted in �gs.26-27 show that both globally and locally the error indicator �

3

performs

better in computing the water elevation and gives better global results in computing the

velocity �eld.

error indicator � (%) v (m/s) v direction (rad)

none 6.1 0.17 0.22

�

1

3.1 0.06 0.08

�

2

2.6 0.08 0.18

�

3

0.5 0.03 0.03

Table 1: Average error of the computed solution.

The maximum relative error in the water elevation is 5 % and is located behind the island;

this value is lower than 8 % and 10 % obtained by the other criteria. In particular, the

error indicator �

1

show large errors both at the corner of the enlargement and at the left

inow corner. The error indicator �

2

show a large error at the left inow corner The global

behavior of �

3

is even better, showing in most of the domain an error of 0.5 %, versus 2-5

% given by the other criteria.

The error in the magnitude of the velocity suggest more or less the same remarks. The

maximum error induced by the criteria �

1

is slightly larger than the others, but it is

strongly con�ned around the island. The other indicators lead to a relevant error also

near to the right inow corner of the secondary channel.

The numerical tests show that mesh adaption is a very reliable tool for numerical simula-

tion of shallow water steady ows. Any error indicator yield to numerical results that are

strongly improved with respect to a uniform mesh, with a minor increase in the compu-

tational e�ort. The mesh re�nement-coarsening technique is almost decoupled from the

numerical integration aspects. Last, but not least, the initial mesh generation does not

require any a priori knowledge of the ow�eld, as any quite regular background grid is

automatically re�ned to an almost optimal one.

Although the numerical results have been obtained for a test case that has been thought to

include more scenarios, general conclusions can be hardly drawn. However, it is possible

to say that all error indicators do their own job, detecting regions where truncation error is

relevant. The local mass conservation criteria performs better in the considered test case,

yielding always to lower error in a global sense. The reason of this behavior is probably
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Figure 26: Relative error in the water elevation value obtained by using the re�ned grids

of �gures 23-25.
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Figure 27: Absolute error in the magnitude of the water velocity obtained by using the

re�ned grids of �gures 23-25.
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that only mass defect check involves both the unknowns (velocity and elevation) of the

problem.

11.6 Automatic Mesh Adaption: unsteady state case

To further investigate the performance of the error indicators and of the adaption proce-

dure in the case of unsteady ow, we chose a case of circulation in a closed basin induced

by a tidal current. This kind of problem, commonly studied using SWEs, have a great

environmental interest. An example is the coupling of a SW code with a transport model

of nutrients, as nitrogen and phosphorus, enable to recognize conditions leading to eu-

trophication and then to anoxic crisis, in basins characterized by a long time of retention

[33].

The domain used is the same of the steady state case (see Fig. 21); this time the

two inowing branches to the left are closed, and the elevation, measured in meters and

imposed on the right open boundary, is given by the following expression:

�(t) =

1

2

[cos

2�t

24

+ cos

2�t

12

] (90)

This BC simulates the ideal case of a tide of about one meter of amplitude, typical of

the Mediterranean area, with a period of 48h due to the superimposition of a period of

12h and one of 24h (see Fig. 28).

Some general considerations can be made about the solutions of such a problem. First

of all, the values of the elevation �eld will be very high almost all the time because they

are imposed in all the domain by the amplitude of the tide (� m). On the contrary the

values of the velocity, and therefore of discharge, will be very small because the tidal

current varies very slowly (� 12h).

To have an idea of the amplitude of the true error of the numerical solution, we

performed a run using the background mesh of Fig. 21 (�ne0 solution), and then another

run using the grid obtained by uniformly re�ning three times the previous one (�ne3

solution). These grids are the same we described in the previous section.

Using �ne3 as reference solution, we calculated the maximum relative deviation be-

tween the two solutions as:

�

max

rel

= max

x;y;t

abs(�ne3 (t)� �ne0 (t))

max

x;y

abs(�ne3 (t))

(91)

where �ne can be either � or q.

The more interesting result is that the maximum deviation for the elevation is very

small (' 10

�4

) but that of the module of the discharge is not negligible (' 0:33). The

fact that the deviation of � is so small makes very di�cult, if not useless, the location of
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the elevation errors, in this particular case. The deviation of the module of the discharge

is instead consistent, but -as already- remarked absolute values of discharge in this test

are very small. These observations should highlight the capability of the chosen test case

to assess the goodness of the error estimators and of the whole adaption procedure.

If with the re�nement of the background mesh the numerical solution is converging

toward the exact one, and �ne3 can be considered a good estimate of the exact solution,

then �

max

rel

can be thought as an estimate of the maximum relative error of the �ne0 solu-

tion. A qualitative proof of the convergence of the numerical solution has been obtained

comparing the solutions �ne0 and �ne3 and those obtained re�ning the background mesh

uniformly one and two times (�ne1 and �ne2 solutions). The maximum deviation for

the module of the discharge of the solutions �ne1 and �ne2 are respectively ' 0:12 and

' 0:06. This seems indicate with good certainty that with the progressive uniform re-

�nement of the mesh the solution is converging and that �ne3 represents a quite accurate

solution. For this reason from now on with the sentence "estimated true error" we will

refer to the di�erence between a generic and the �ne3 solution, evaluated on the nodes of

the background mesh.

To verify the performance of the three error estimators proposed we have calculated

the spatial correlation between these and the corresponding "estimated true error" for the

solution �ne0. The correlation is practically zero for the elevation due to the fact that the

errors of the solution for this variable are negligible (see Fig. 28). The temporal evolution

of the correlation for the module of the discharge, appears to be more interesting: this

value generally being equal to about 0.8, but periodically falling to very low values. In

the same �gure we show the temporal evolution of the imposed elevation: periods of low

correlation are in correspondence with periods of stagnation of the tide (d�=dt = 0). Near

to these instants, velocity of the water, already very small is practically zero. For this

reason, the fact of having obtained a low correlation should not be surprising, nor of

concern: when the correlation is low all the estimated errors has a minimum (see also

Figs. 29,30). Spatial correlation for the other two estimators (not shown) give similar

results and for this reason we will use in the following tests only the estimator �

3

. The

criteria adopted during the adaption procedure is that described in section 10.2.1 with a

call every 13 minutes. In addition we added the constraint of a maximum number of P1

nodes about 360. Temporal evolution of the mean value of the "estimated true error" of

the module of the discharge is showed in �gure 28. In the same �gure we also show the

errors of the solutions �ne0, �ne1 and �ne2.

The average errors for the adapt case are very near to those of the solution �ne1 (see

also Table 2). Moreover, after about the �rst six hours of integration, during which there

is a slow relaxation of the initial condition to the imposed boundary conditions, errors of

the adapt solutions are between those of the solution �ne1 and the solution �ne2. In Table

2 the errors, averaged spatially and temporally excluding the �rst six hours of integration,

are shown. As can be seen, although mean number of nodes used in the adapt run is lower

than that of the �ne1 run and about one �fth of that in the �ne2 run, the global errors
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Figure 28: Spatial correlation between the �
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error estimators and the \estimated true

error" as a function of the integration time. Dotted line is the imposed elevation expressed

in meters.
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Figure 29: Average \estimated true error" of the discharge module as a function of the

integration time; solutions �ne0, �ne1, �ne2, adapt.
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time; solutions �ne2 and adapt.
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Figure 31: Number of P1 nodes as a function of integration time in the adapt case.

run name �

�

� (10

�4

m) �

q

� (10

�2

m

2

=s) �

v

� (10

�3

m=s) NV

�ne0 2:2 3:1 9:7 120

�ne1 1:2 1:5 4:6 403

�ne2 1:2 0:9 2:7 1458

adapt 0:9 1:3 4:6 310

Table 2: Average maximum and average \estimated true error" of elevation �, module of

discharge q and of velocity v. NV is the number of P1 nodes in each of the meshes used;

in the adaption case NV is the average number during all the integration. Only solutions

after the �rst six hours are used in the temporal averages.

of the adapt solutions are between those of the other two. Another indication that the

adaption procedure is working correctly can be deduced from Fig.31: the number of P1

nodes as a function of the integration time is proportional to the error (see also Figs. 29,

30).

The estimated true error of the elevation has instead a more complicated course; every

time the mesh is changed and the interpolation procedure is executed, a high frequency

component of unphysical noise is introduced in the solution. This has been also veri�ed

performing a run during which, at �xed time intervals of 13 minutes, we interpolate the

discharge over P2 nodes without changing the mesh. Once more, in the case of tidal

currents, this is not of concern, because relative errors of the elevation are very small; to

verify whether this could be a real problem for the adaption procedure, an unsteady test

case, in which the mean value of the elevation is smaller, should be conceived. Therefore,

although the mean global error of the adapt solution is also smaller than that of �ne2

(Tab. 2), we cannot say in general that the elevation �eld of the �rst solution is more

accurate than the one of the second solution.
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Part III

User Manual

12 Structure of the Code

SWEET is partly written in Fortran 90. The use of the new Fortran standard allows to

exploit some relevant features at the programming level. However, in order to maintain

as much as possible the structure of the code, only the dynamic memory allocation is

currently used in SWEET.

SWEET is composed by a main routine plus nearly sixty subroutines; some of them are

optional or mutually exclusive, their execution depending from the ag set in the datin

�le. The role of each subroutine is described in the following list:

Subroutines of SWEET

Initialization

DATAREAD reads the datin input �le

MESHREAD reads the mesh input �le

REREAD reads the restart �le

READBATI reads the bati input �le for bathymetry (if bati=1)

NORMBOUND computes the versors normal to the open boundary

INISPYSTORY initializes the output �les for time dependent problems

INITVAR initializes the unknowns

INITFE initializes the �nite element machinery

INIGLOSTIFF initializes the sti�ness matrix

LISTBOUNDNODE builds the list of the nodes that belong to regions of the open

boundary characterized by di�erent values of the index inod

LISTNEAREL builds the topological lists useful to recover the pathline when

performing the lagrangian integration

SPERELEVBOUND reads the input Fourier amplitudes and frequencies of the elevation

at the open boundary

ELEVBOUND computes the elevation to be imposed as boundary condition

Step 1

LAGRAN computes the momentum transport by the lagrangian method

EVALUATE evaluates the value of the velocity in a given point of the element
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Turbulence Model

KEPS IMPL the k � " turbulence model module

KEPS WALL boundary wall function for the k � "

KLOCSTIF local sti�ness matrix for the k

K RHS rhs for k

KEPS DIRBOUND boundary condition for k and "

EPSLOCSTIF local sti�ness matrix for "

EPS RHS r.h.s. for "

Step 2

STEP2 the Step 2 of the fractional step procedure in the case of consistent

mass matrix (see eq. (50))

Q1LOCSTIFF computes the local sti�ness matrix for discharge at Step 2

QKNOWN computes the right-hand side in the equation for discharge at Step 2

Step 2 (lumping)

STEP2L the Step 2 of the fractional step procedure in the case of

lumped mass matrix (see eq. (50))

QKNOWNL computes the right-hand side in the equation for discharge at Step 2

in the case of lumped mass matrix

Step 3 elevation

STEP3XI the Step 3 of the fractional step procedure for the elevation

unknown (see eq. (53))

XILOCSTIFF computes the local sti�ness matrix for elevation at Step 3

XIKNOWNTERM computes the right-hand side term in the equation for elevation

XIDIRBOUND inserts the Dirichlet boundary conditions for elevation in the

linear system

Step3 discharge

STEP3Q the Step 3 of the fractional step procedure for the unit-width

discharge unknown when mass consistency is adopted (see eq. (51))

Q2LOCSTIFF computes the local sti�ness matrix for discharge at Step 3

ELEVGRAD computes the right-hand side in the equation for discharge at Step 3

WALLNOSLIP introduces the no-slip boundary conditions at the wall in the

linear system

WALLSLIP introduces the free-slip boundary conditions at the wall in the

linear system

QDIRB inserts the Dirichlet boundary conditions for discharge in the

linear system
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Step3 (lumping)

STEP3QL the Step 3 of the fractional step procedure the unit-width

discharge unknown when mass lumping is adopted (see eq. (51))

Passive scalar

SCALAR IMPL the passive scalar model

SC LOCSTIF local sti�ness matrix for the tracer

SC RHS rhs for the tracer

SC DIRBOUND boundary conditions for the tracer

Common routines

CGPREC conjugate gradient iterative solver with diagonal preconditioning

BICGPREC biconjugate gradient iterative solver with diagonal preconditioning

GLOSTIFF inserts the local contributions into the global matrix

Output

SPYSTORY writes the value of the unknown in the spy nodes (if steady=0)

BOUNDISCH computes the discharge through the open boundaries

REWRITE writes the restart �le

Mesh Adaption

INIVARS some variables used in the adaption module are initialized.

It must be called once before any other call

BUILDSTRUCTURES build all data structures (see section 14)

ERRESTIMATE one of the error indicators is used to estimate

the error of the numerical solution

ADAPTION is the main module that calls all the others

MARKGRID an integer ErrorFlag, based on the error estimate

is assigned to each triangle of the mesh

STOREOLDXYAND- all �elds and nodes coordinates are stored

FIELDS to be used to interpolate �elds on the new mesh

ADAPT de-re�nement of triangles where ErrorFlag< 0,

re�nement of triangles where ErrorFlag> 0

REFINE re�nement of triangles where ErrorFlag6= 0

DEREFINE de-re�nement of triangles where ErrorFlag6= 0

UREFINE all the triangles of the mesh are standard re�ned
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INTERPOLATE- All physical �elds in the new P1 nodes are obtained using

FIELDSON- values on the old P2 nodes. If a new P1 node was

P2NODES not an old P2 node then the value is obtained

with the proper interpolation.

ADDALLP2NODES all P2 nodes are queued to vel

DEREFINEALL the mesh is completely de-re�ned.

The �nal mesh will be the background mesh

STANDARDREFINE standard sub-division of an element

GREENREFINE green subdivision of an element

GREENREREFINE a green element is replaced with one standard re�ned

MAKEGREEN a standard element is green-re�ned (midpoint of an edge

is joined with the vertex opposite to it).

STANDARDEREFINE central triangle of a standard re�ned element is deleted

and replaced by the father

GREENDELETE a green pair of triangles is replaced by the father

GREENDEREFINE replacement of a standard re�ned element with the

pair of green triangles which have generated it

In addition to the routines listed above, the parallel version of the code has several

new routines. Mainly they are parallel versions of corresponding sequential routines:

in this case their name is simply pa � or � pa , where � stands for the name of the

sequential routine. The parallel code has also some new routines, related to the Schwarz

preconditioner for the conjugate gradient at Step 3. These routines will not be explained

in detail.

PA MAKELIST build the communication lists

COMM ensemble of communication routines

PARINIT initializes the parallel environment

MULT TEST RUN access the parallel CG code (substituting PA CGPREC)

12.1 Flow Chart

In Figure 32 it is shown a schematic ow-chart of SWEET, sketching the structure of

the main program. The �gure refers to the sequential code, being the ow-chart of the

parallel code very similar.

13 List of the Vectors

The role of many vectors of the code SWEET is explained in the code. However, for sake

of simplicity, we list here a short description of the principal vectors that are introduced

in the main of the code. The names of the vectors follow the standard Fortran rule:
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tracer = 1

INITIALIZATION

LAGRAN

Keps_impl

STEP2 STEP2L

STEP3XI

STEP3Q STEP3QL

lump1 = 1

lump1 = 0

turbo = 1

lump2 = 1lump2 = 0

DO  1....niter

END

REWRITE

Scalar_impl

Figure 32: Flowchart of the code SWEET
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the names beginning with i,j,k,l,m,n are integer*4, the others are real*8. All the

physical quantities are measured in SI unit system.

x(k,j) k-th coordinate of the node j

slmax(j) maximum side length of the triangles surrounding the node j

slmin(j) minimum side length of the triangles surrounding the node j

h0(j) depth of the bottom in node j

lne(k,j) list of the elements surrounding the node j

nen(j) number of the triangles surrounding the node j

lee(k,i) list of the elements surrounding the triangle i

nel(i) number of the elements surrounding the triangle i

area(i) area of the element i

dphi1(k,j,i) derivative along the coordinate j of the

k-th P1 basis function in the element i

dphi2(k,j,l,i) derivative along the j-th coordinate of the

k-th basis function of the element i evaluated

in the quadrature node l

reint(i,j) integral of the product of the phi01(i)*phi02(j) shape

functions divided by the area

phi01(i,j) P1 basis function i on the reference triangle evaluated

in the quadrature node j

amas1(j,k,i) P1 mass matrix contribution of the element i in column j

and row k

amas2(j,k,i) P2 mass matrix contribution of the element i in column j

and row k

aloc(j,k) local mass matrix

vn(k,j) component k of the versors normal to the boundary node j

alump(j) lumped mass matrix in node j

h(j) total depth of the water in node j

xi(j) elevation of the water in node j

xiold(j) elevation of the water in node j at the previous time step

xipo(j) elevation to be imposed on the j-th part of the boundary

v(k,j) component k of the velocity in the node j

qx(j),qy(j) components of the unit-width discharge in the node j
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qxold(j),qyold(j) components of the unit-width discharge in the node j

at the previous time step

qxhalf(j),qyhalf(j) components of the unit-width discharge in the node j

at Step 2 of the previous time step

he(i) average bottom depth in element i

inod(j) type of boundary of the node j; the convention is as follows:

0 internal node

10001 wall

10002 discharge imposed

2000x (x=3,4..) elevation imposed

3000x (x=3,4..) corners between wall and elevation imposed

boundary: velocity is zero but elevation is assigned

e(j) error estimate of the numerical solution in the j-th element

estory(i) average of the error estimate at time step i

In the parallel version of the code, the two components of the discharge vectors are

collected in a unique vector, called qxy. Nodes belonging to overlapping elements have

negative inod values.

14 Data structures

When implementing algorithms of grid re�nement and de-re�nement, an important role

in determining computational e�ciency is played by the data structures used.

In particular, when implementing the algorithm described in Section 10.2 one has to

use e�cient structures to determine which elements are adjacent to a given one, which

edges delimit it and which side has given vertices. This information can be obtained using

complex structures such as lists, trees, tables etc. [34]. Here we chose to use structures

(see Table at the end of this section) as simple as possible taking into proper account the

computational e�ciency.

In the discussion which follows a general survey, complete but deliberately simpli�ed,

of the whole adaption module is given.

Information about which nodes must be re�ned is contained in a vector of integers

named IERR(NEL). If IERR(i)>0 element i will be re�ned in standard way, creating a

new node at midpoint of each of the edges of the element in hand. Coordinates of these

new nodes are queued to the vector XV and the number of nodes is incremented. As one

or more of these nodes could be already created when re�ning an adjacent element it is

very convenient to dispose of structures that contain elements adjacent to a given one

and containing the edges delimiting it. To build these structures in an e�cient way we

start with an array that is used in SWEET too, to solve the Lagrangian part of time step

here named VVER(MAXAD,NV). This structure contains for every vertex of the mesh all the

elements which have this vertex in common (MAXAD is the maximum number of elements
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adjacent to a node).

Starting from VVER we built the array VSID(2,NSID) which contain for every side

of the mesh indices of its ending points (NSID is the number of sides in the grid). To

make an e�cient search of an edge, given the indices of the ending points, sides in VSID

are speci�ed in such a way that VSID(1,i)<VSID(2,i), and VSID(1,i),i=1,NV is or-

dered in increasing order. A simple hash table can be realized using a vector of pointers

(PVSID(NV)) to VSID, that contains for every vertex the pointer to the �rst side to which

this vertex belong. Search of a side s of given ending point v

1

and v

2

can be made or-

dering index v

1

and v

2

in such a way that v

1

< v

2

and search of v

2

is started from the

position VSID(2,PVSID(v

1

)). Disposing of VSID and PVSID, SEL(3,NEL)which contains

for every triangle indices of its three sides, can be easily calculated. Lastly, EEL(3,NEL)

which gives for every element indices of adjacent elements, is calculated.

With these structure at our disposal, the re�nement procedure does not present great

di�culties because as already mentioned new nodes are added to the queue of the array

coordinates XV and indices of new triangles to the queue of the VEL array.

The procedure of de-re�nement is a little more complicated because, generally, when

vertices and triangles are eliminated, holes are created in the structures which describe

the triangulation. To avoid such a problem we have adopted a de-re�nement procedure

that, every time it is executed, re-builds the mesh, starting from the background mesh,

excluding those elements marked to be de-re�ned. In this way the same structures and

procedures used for the re�nement can be used also in the de-re�nement part of the code.

In order to be able to re-build the mesh one has to know exactly its \history", that

is for every element which does not belong to the background mesh one has to know of

which element it is son, and eventually of which element it is the father. Data structures

more suitable to store such information is tree. In our code this structure, called HISTORY,

is a vector of integers where the beginning of every re�nement step is labeled by a zero.

Re�nement operations are listed sequentially in HISTORY storing indices of the elements

created. The end of the re-re�nement step, that is eventually the beginning of another,

is labeled by a zero. Since a given element can be divided either in a standard way (four

elements) or in a green way (two elements), these last case is distinguished storing indices

of the new elements with negative sign (etype). The major drawback of this procedure is

that when re-building the mesh, di�erent indices, in the old and new mesh, can be given

to the same triangle.

To avoid this problem we conceived a procedure of identi�cation of the elements that

on the basis of an integer permits us to locate the position and the relatives with the other

elements. In fact, since the background grid is never modi�ed, all the NELI elements of

the initial grid can be indexed in a unique way. At the end of the �rst step of re�nement,

since a single triangle can generate only four, two or zero new triangles, the mesh can

have at maximum 4�NELI elements. It is possible then to identify in a unique way every

triangle created (�rst level triangles) dividing a triangle of the background grid (zero level

triangles) assigning to it a number between NELI+1 and 5�NELI. Similar considerations
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can be applied to triangles of the second level, obtained from a triangle of the �rst level.

These triangles will be identi�ed using an integer between 5�NELI+1 e 21�NELI, and so on

for the other levels of re�nement.

Every time a new P1 node is created, all the physical �elds are interpolated in the

new position and the type of the node is determined. When the re�nement procedure

ends, with the eventual creation of green elements, the P2 nodes are created and they

are queued to P1 nodes. Every time a new node is created an e�cient search of the

coordinates of this node is made between the coordinates of the nodes of the old mesh.

If the new node was already in the old mesh then the old values of the �elds are used,

otherwise the proper interpolation is executed (quadratic interpolation for velocity and

linear for the other �elds).

Follows a summary of the principal data-structures used in the adaption module.

VVER(MAXAD,j) elements adjacent to vertex j

VSID(2,j) ending points of side j VSID(1,j)<VSID(2,j)

PVSID(j) pointer to the the �rst side on VSID

which has vertex j as �rst extreme

SEL(3,j) sides of the element j

EEL(3,j) elements adjacent to the element j

HISTORY tree where history of the grid is stored

E ID(j) identi�er of the element j

ETYPE(j) level of re�nement of the element j.

if ETYPE(j) < 0 the element is green.

15 Sequential Input and Output

In the SWEET package, it has been added an example application that is thought to be

useful for starting up in using the code. In this Section we comment on which are the

input and output �les that are necessary to run SWEET and which is their format. We

suggest to read this Section comparing to what is written in the given example and then

running the example itself.

15.1 Input

The input �les read by the code SWEET are

datin It is an ASCII �le where are stored the informations concerning the di�erent

options that are to be run in the code. The content of this �le is shown in the

subsequent tabular. The format of the �le can be deduced from the source of the

code of from the enclosed example.
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dt time step

niter number of time steps

turbo if 1, k � " turbulent model is used.

In this case, lump1 is switched to 0 (implicit di�usion).

visc0 eddy viscosity. If turbo=1 it is an initial value.

Strickl Strickler coe�cient

tracer if 1, passive tracer model is activated

viscT if tracer=1, passive tracer di�usion coe�cient

bati if 1, reads bathymetry from the bati �le (1),

else assumes the uniform h0 value

rest if 1, reads the initial conditions from the �le restart.tem,

else uses xi0,qx0 and qy0 initial conditions

steady if 1, steady state calculation, else unsteady (�les elev.time,

disch.time, spy.nodes must then be provided)

wx,wy wind velocity components

Coriolis Coriolis parameter

h0 constant bottom depth (when bati=0)

xi0 constant elevation of the water (when rest=0)

qx0,qy0 initial value of the discharge (when rest=0)

xiX elevation to be imposed at the X-th boundary (when steady=1)

qX discharge to be imposed at the X-th boundary (when steady=1)

rk number of steps to be used to determine the pathline

in the lagrangian integration of momentum

itmax maximum number of iterations that can be performed to solve

the linear systems

tol maximum value of residual to stop the linear solver

precond ignored by the sequential code.

For the parallel code: if 1, Schwarz preconditioning is used,

else diagonal preconditioning is used in the CG for the elevation.

tolan maximum tolerance to recover the pathline in the lagrangian step

(in percentage with respect to the average area of the triangles)

teta degree of implicitness of the scheme;

it must have a value between 0.5 and 1 (usually equal to 1)

outbc type of boundary conditions to be imposed at the outow

lump1 if 1, sti�ness matrix is lumped at Step 2, else consistent matrix is used.

This ag is automatically set to 0, whenever turbo=1

lump2 if 1, sti�ness matrix is lumped at Step 3, else consistent matrix is used

slip if 1, free-slip boundary conditions are applied on the wall,

else, no-slip conditions are used.

warn four verbosity levels for the output. Values range from 0 to 3.

video frequency of output on the standard output

rewrite frequency of the restart �le. A restart �le is always written at the end

of the calculation.
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iref time interval (in time steps) between two calls to the

adaption procedure; if 0, the adaption is skipped

adtype adaption type; if -1, uniform re�ne; if 0, re�ne;

if 1, dere�ne; if 2, adaption;

eetype error estimator; if 1, second derivative of �

if 2, second derivative of v; if 3, mass defect;

(see sect. 10.1)

reftol error tolerance fraction respect to the maximum error

permitted during the adaption procedure (0 < reftol < 1)

refmax maximum number of elements permitted during the adaption

procedure as a multiple of the elements of the

background mesh (1 < refmax)

procs ignored by the sequential code. Number of processors for the parallel run.

subd ignored by the sequential code. Number of subdomains for the Schwarz

preconditioner (if precond=1)

coarse ignored by the sequential code. If 1, coarse correction for the Schwarz

preconditioner (if precond=1)

ilut ignored by the sequential code. If 1, ILUT acceleration for the Schwarz

preconditioner (if precond=1)

mesh It is an ASCII �le, where the informations about the mesh are contained. The

data structure is the standard one: position of the nodes and list of the connections

among the nodes. The informations contained in the mesh �le are

ne number of elements

nv2 total number of nodes

nv1 number of P1 nodes

x(k,j) k-th coordinate of the node j

inod(j) type of the node

lel(k,i) list of the nodes belonging to element i

These informations are given in the mesh �le in the following order:

ne,nv2,nv1

x(1,1),x(2,1),inod(1)

x(1,2),x(2,2),inod(2)

_

..

x(1,nv2),x(2,nv2),inod(nv2)

lel(1,1),lel(2,1),

_

..,lel(6,1)

lel(1,2),lel(2,2),

_

..,lel(6,2)
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_

..

lel(1,ne),lel(2,ne),

_

..,lel(6,ne)

In the list of the nodes, the P1 are grouped in the upper part of the list; in the

connection list, the �rst three nodes are the P1 nodes listed in counterclockwise

sense.

6 

1 2

3

4

5

Figure 33: Order of the numbering of the nodes in a triangle.

bati This �le is read only if bati=1 in the datin �le. It contains the bathymetry of

each node, when the bottom is not at. The �le is composed by a number of rows

equal to the number of nodes, and in each row it is written the water depth of the

respective node. In case of constant bathymetry, the depth value is speci�ed in the

datin �le, with the variable h0.

elev.time This �le is read only if steady=0 in the datin �le. It contains the Fourier

components of the elevation value to be imposed on the boundary.

disch.time This �le is read only if steady=0 in the datin �le. It contains the Fourier

components of the discharge value to be imposed on the boundary.

spy.nodes This �le is read only if steady=0 in the datin �le. It contains the list of the

spy nodes, that is the nodes for which the value of the transient solution is printed.

tracer.data This �le is read only if tracer=1 in the datin �le. It contains the list of

nodes in which the scalar is not zero, together with the corresponding value, and

the list of nodes in which the sources are located, together with the value of the

sources.
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15.2 Output

Output on Video

The output on the standard output of SWEET is printed every video iterations. The

value of video is set in the datin �le. The standard output of SWEET is the screen, for

the sequential code, and the �le proc0.output for the parallel code. A typical output

can be as the following:

TIME 20. sec.; STEP NUMBER = 1

Step 2: residual= .478D-06 iterations= 62

Step 3: residual= .958D-06 iterations= 138

residual= .760D-06 iterations= 103

Error Max 0.543D-03 Min 0.271D-03 Average 0.520D-03

xires=.7783D-02 qxres=.8256D-01 qyres=.5788D-01

vxmax=.2823D-01 vymax=.2107D-01 qxmax=.2264D+00 qymax=.1689D+00

cflmax=.6588D-01 frmax=.3184D-02

-18.787 -.154 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

-18.9417

The meaning of the displayed control parameters is as follows:

residual is the maximum of the absolute values of the residual; it is always

lower than the desired tol value

iterations is the number of iterations of the linear solver which have been

necessary to reach the desired residual

Error Max, Min, Average are the maximum the minimum and the

mean value obtained from the chosen error estimator

xires maximum value of the magnitude of the di�erence between the

new elevation and the one computed at the previous time step

qxres maximum value of the magnitude of the di�erence between the new

x-component of the unit-width discharge and the one computed

at the previous time step

qyres maximum value of the magnitude of the di�erence between the

new y-component of the unit-width discharge and the one computed

at the previous time step
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vxmax maximum value of the magnitude of x-component of the velocity

vymax maximum value of the magnitude of y-component of the velocity

qxmax maximum value of the magnitude of x-component of the

unit-width discharge

qymax maximum value of the magnitude of y-component of the

unit-width discharge

cflmax maximum value of the velocity CFL number

frmax maximum value of the Froude number

In the last row of the text displayed on the video, the discharges referring to the open

boundaries of the domain are listed. Namely, they are ordered in such a way that the

discharges relevant to the 20003, 20004, 20005, 20006, 20007, 20008 type bound-

aries are listed in the �rst row, the discharges relevant to the 10003, 10004, 10005,

10006, 10007, 10008 type boundaries are listed in the second row. The value on the

last row refers to the sum of the all discharges. Negative values indicates ow entering

the computational domain.

It is possible to have additional informations on some numerical and computational

features of the code: this is done by setting the warn ag value in the datin �le, according

to the following table :

WARN OUTPUT

0 All the indication written above, plus averaged execution times

Parallel run will give also con�rmation of the correct starting of

all the processors (on standard error unit)

1 As with warn=0 plus an indication at the end of every

temporal iteration (on standard error unit)

2 As with warn=1 plus execution times for every temporal

iteration. Warning on any pathline out of boundary are also

given on standard error

In a parallel run, every processor will produce an output �le

3 As with warn=2 for a sequential run.

Convergence indication for the Schwarz Additive preconditioner

are added in every proc.output �le

4 As with warn=2 for a sequential run.

Detailed (and heavy) indications for the Schwarz Additive

preconditioner are added in every proc.output �le

Output on File

The output of SWEET is condensed in a unique unformatted �le. This �le will be written

every rewrite iterations, with the name restart.tem.<iteration number>. This �le

contains :
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the physical time at which the values refer to

nv2 values of the x-component of the discharge (qx)

nv2 values of the y-component of the discharge (qy)

nv1 values of the elevation (xi)

If tracer=1, nv1 values of the passive tracer concentration

If turbo=1, nv1 values of the k quantity

If turbo=1, nv1 values of the " quantity

In order to visualize all these quantities, and other of interest, an interactive interface

program has been written, named sweetmtv. As its name suggests, this program writes

the data of the restart.tem �le in the MTV format, and it visualizes them through the

PlotMTV [20] program.

In the case of unsteady computations, SWEET also produces some output relative

to the values of the solution as computed in some reference nodes, that have been listed

in the spy.nodes �le. This output is contained in �les that are numerated progressively

starting from 1001 and on: 1002, 1003, ....

When the adaption is used (iref > 0), every time the mesh is changed, a �le containing

the new mesh, one containing the new bathymetry and a restart �le are created. The

names of this �les are: mesh.iter, bati.iter and restart.tem.iter; where iter is the

time step index. The content of the last two �les has already been described. In the �rst

�le are contained all the informations of a usual mesh �le, and in addition informations

about how to rebuild the �nal mesh starting from the background mesh.

The additional informations in the mesh.iter �le, are given in brackets, as follows:

ne,nv2,nv1

x(1,1),x(2,1),inod(1)

x(1,2),x(2,2),inod(2)

_

..

x(1,nv2),x(2,nv2),inod(nv2)

lel(1,1),lel(2,1),

_

..,lel(6,1) [ETYPE(1),E ID(1)]

lel(1,2),lel(2,2),

_

..,lel(6,2) [ETYPE(2),E ID(2)]

_

..

lel(1,ne),lel(2,ne),

_

..,lel(6,ne) [ETYPE(ne),E ID(ne)]

[*****************************************************************]

[** END OF STANDARD MESH FILE; WHAT FOLLOWS IS THE HISTORY FILE **]

[*****************************************************************]

[NELI,NVI,NELF,NVF,LAST LEVEL,PHISTORY]

[0 0 0 THIS IS THE 1 .TH LEVEL OF REFINEMENT]

[phistory,e1,e2,e3,e4,e1 id,e2 id,e3 id,e4 id]

[0 0 phistory THIS IS THE 2 .TH LEVEL OF REFINEMENT]

[phistory,e1,e2,e3,e4,e1 id,e2 id,e3 id,e4 id]

_

..
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where the ETYPE(i) is the type of the i.th element and E ID(i) its identi�er; NELI

and NVI are number of elements and of P1 nodes in the background mesh; NELF and

NVF are number of elements and of P1 nodes in the new mesh; PHISTORY is the pointer

to the last element contained in the history tree; phistory is the pointer to the current

element in the history tree; e1,e2,e3,e4 are indices of the four elements obtained from a

standard sub-division of an element and e1 id,e2 id,e3 id,e4 id are the corresponding

identi�ers. For a more detailed description of these variables see sect. 14.

16 The Parallel Setup

In this Section we illustrate how to setup the input for a parallel run, starting from

the input for the sequential version of SWEET. The parallel code needs much more

informations than the sequential code, so the input system is more elaborated. However,

it has been followed the strategy to maintain some crucial input and output �les, like

the restart.tem restart �les, so to have the maximum compatibility with the sequential

input.

16.1 Partitioning the Mesh

In order to partition the mesh, we make use of a public domain software call Chaco [9].

Other packages are available, for example Metis [11] and TopDomDec [10]; the user can

freely chose the software he prefers. It must be noted that Metis uses the same input

and output format used by Chaco and so the two programs are freely interchangeable,

while TopDomDec adopts a di�erent data format. We will refer, in the following, solely

to the Chaco package. Any partitioning algorithm contained in Chaco can be used. It

is particularly hard to say if an algorithm works better than the others, the behaviour

depending much on the shape of the original integration domain. As a tendency, we have

noted that good partitions are created by the Spectral Bisection and by the Kernighan-Lin

algorithms. The Chaco program works using informations on the graph of the mesh. To

build the input �le for Chaco, we must �rst run a program called before, which creates

a �le called graph in the Chaco input format. The program before reads as input the

datin and the mesh input �les of the scalar code. The Chaco package creates a �le whose

name must be partition. The same �le is read by the program after, which creates

the input �le for the parallel SWEET code analogous to the mesh �le for the sequential

version of the code. The �le is thus called pa mesh, with clear signi�cance.

The pa mesh �le contains indication only on the �rst level of subdomains (the one on

which act all the explicit steps). To create the second level of partition and the relative

informations, we must use di�erent preprocessing codes. First of all, we must use the code

matrix, which creates the �les to be used by the subsequent program setup. The program

setup reads the number of subdomains for the second level-partition in the �le datin.

72



The program setup creates a series of input �les for the di�erent processors involved in

the calculations. The total number of these �les depends on the number of processors,

and their size depends on the total number of sub-domains. When a large number of

sub-domains is requested, the time needed by the setup code can be quite long, up to

several minutes. This time depends also on the total number of nodes of the global mesh.

Now we have all the input �les for a run of our code: let's briey summarize what the

program needs:

� datin �le

� bati �le, if needed (bati=1 in datin)

� pa mesh �le, created by after

� dat*.tmp �les, created by setup

� elev.time, disch.time and spy.nodes if needed (steady=0 in datin)

� restart.tem if requested (rest=1 in datin); this �le can be created both by the

sequential and the parallel version of SWEET

Every time that one wants to change the initial conditions of the problem, or the output

level of the code, or the choice of the preconditioning, then the �le datinmust be modi�ed,

by hand.

Every time that one wants to change the number of the subdomains for the second-level

partition, he must modify the rc.run vars �le and rerun the setup code.

Every time that one wants to change the number of the subdomains for the �rst-level

partition, he must rerun the chaco code, and then the after and the setup codes.

Every time that one wants to change the mesh, then he must recreate the whole input

system, starting from the matrix code.

A sketch of the dependency relations of the input �les is given in Figure 34.

To deal with the managing of the input �les, the Unix make command is of great help;

with a simple makefile �le like the one shown in the following, it will be necessary only

to launch make and the entire cascade of programs will produce in few seconds all the

input �les needed by the program, without any other external intervention.

all : rhs.dat graph partition dat mtrx m01 p001.tmp pa mesh

rhs.dat : mesh

matrix

graph : mesh

before

partition : graph
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rc.run_vars

BEFORE MATRIX

METIS

AFTER SETUP

mesh
datin

graph
*.dat

partition

pa_mesh dat_*.tmp

datin  (bati, elev.time, spy.nodes)

SWEET

Figure 34: Relations between the input �les and the pre-processing programs for the SWEET

code. Programs are represented in boxes, plain names refers to input/output �les.
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chaco

dat mtrx m01 p001.tmp : partition rc.run vars

setup

pa mesh : partition

after

17 The Parallel Run

The SWEET code use the PVM message passing library, so the PVM procedure for

running a PVM code must be followed. See Appendix A for a PVM resume.

It is not possible to run the parallel code on a single processor. The minimumpartition

is composed by 2 �rst-level subdomains and 2 second-level subdomains, running on two

processors. It must be kept in mind that the number of �rst-level subdomains must be

equal to the number of processors and that the number of second-level subdomains must

be equal or greater than the number of processors.

Before running a long simulation, the behaviour of the selected combination of para-

meters, both physical as well numerical, must be checked. The speed of the code can be

strongly inuenced by the number of subdomains used in the Schwarz preconditioning and

by the quality of the partition. Sometimes, a bad partition of the original mesh can lead

even to non-convergence of the global CG, in dependence of the chosen preconditioner.

If a problem is too big to �t on the selected pool of processors, other processors must

be added to the pool, when possible. The code is capable to run about 25000 nodes per

processor, in double-precision, considering 128 MB of RAM per node (i.e. the standard

IBM/SP2 con�guration).

Some error messages are redirected to the standard error, some other are signaled in

the output �les: check both the devices to monitor the run.

When the run is completed, always wait for the

PVMe: new epoch

signal to access the output �les.

17.1 The Parallel Output

Warning: this section only contains the di�erences between the sequential and parallel

output. Please read �rst the Section 15.2, to understand the output informations of the

SWEET code.

There are some di�erences between the output �les produced by the sequential and the

parallel version of SWEET. This is primarily due to the fact that every processor produces

distinct output �les. However, when some global informations have to be collected into a
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�le, like the restart.tem.* �les, the parallel program will produce unique �les, just like

the sequential program.

All the output �les are written in the working directory.

The restart.tem.* restart �les are fully compatible with the ones produced by the

scalar one.

The �les to monitor the spy nodes have the same format than the sequential ones, but

with di�erent names: while the name in the sequential code are 2001,...2020, after a

parallel run the �les will have names like XXYY where XX indicates which processor has

written the �le (from 1 to 99), and YY is the number of the spy node (from 1 to 20).

When a spy node is shared between two processors, then two identical �les are produced

(with di�erent names).

The standard output of the sequential run is now directed to a �le called proc0.output.

This �le is always written, even when the output level (iwarn ag in datin �le) is set

to zero. When iwarn is greater than one, each processor writes an output �le, named

procX.output, where X is the processor number.

18 Practical Remarks

We add here some practical remarks about the questions that can arise when using

SWEET to simulate real-life ows.

18.1 Hints

Which time step should I choose?

From strictly physical arguments we can say that the time step dt should not necessarily

be larger than 10

�1

�10

�2

times the characteristic time of the phenomena we are interested

in. From a numerical point of view, an upper bound can be imposed because of stability

reasons. In particular, if mass matrix lumping is adopted at Step 2, it must be veri�ed

that

2�t�

�x

2

< 1. Moreover, for the lagrangian integration of the convective terms, it must

be ensured that cflmax<rk, that is the pathline must not require more than rk steps

to be reconstructed. For steady state computations the time step should be chosen only

according to stability reasons.

Pathline out of boundary: what does it mean?

This message (given on the standard error only if warn is greater than one), indicates

that the lagrangian integration is failed on a given node. Thus, it can be considered as

an inaccuracy indicator. The tolerance for this kind of inaccuracy is left to the user, in

the sense that it is the user himself that has to judge on how many nodes it is possible to

ignore the advection contribution.

It is possible to augment the accuracy by increasing the rk value, that is the number

of steps in which the lagrangian integration is performed, and/or by decreasing the dt
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value.

Which eddy viscosity and Strickler coe�cient should I choose?

In a 2D approach, the stress on the bottom can be only modeled and not actually simu-

lated. The Strickler coe�cient depends on the nature of the bottom, and standard tables

yield values experimentally deduced, typically ranging between 30 and 100. Usually the

eddy viscosity coe�cient has a secondary importance in the equations, not being neces-

sary to use its stabilizing numerical e�ect in the SWEET approach; typical values for

it are 0.1-2 for simulations in river, few hundreds for simulations in large areas (coastal

regions). The eddy viscosity is usually tuned by comparison of the numerical results with

experimental measures. For numerical reasons, it is necessary that the eddy viscosity is

not zero when mass matrix lumping is adopted.

Remember that if the k�" model is used (turbo=1), then the value for the eddy viscosity

is changed through the calculation, according to the model.

How do the results of the simulation depend on initial conditions?

The initial conditions are often unknown in real life simulations. When one is interested

in the steady state behavior, any initial condition can be used, unless it is not so extreme

to yield to instabilities in the computation. When considering unsteady ow, for instance

because the boundary conditions change in time, usually the only reasonably initial con-

dition is to start from the steady state solution related to the boundary conditions at

time zero.

Which is the minimum tolerance of the residual to get acceptable results?

The residual compared with tol is the maximum value of the absolute value of the

residual. As an error of 1% can be usually accepted in this kind of simulations, that

involve uncertainty for a lot of physical parameters and assumptions in the chosen model,

it is suggested to imposed a value of tol which is one thousandth of the typical value

of the unknown. For instance, if the elevation of the water is expected to change in the

computational domain for few centimeters, a tolerance of 10

�4

can be con�dently used.

What di�erence in the results is expected to be found when using mass matrix lump-

ing?

The numerical results computed using mass matrix lumping are less accurate than when

using consistent mass matrix. This is because mass matrix lumping corresponds to using

a lower order quadrature rule in evaluating integrals. Moreover, mass lumping involves

explicit discretization of the di�usive term, so that the limitations

2�t�

�x

2

< 1 must be

observed. It is suggested to perform preliminary calculations by lumped approach, in

such a way to tune appropriately the parameters, and then to use the consistent mass

matrix for �nal computations.

Which kind of parallel preconditioner should I use for the solution of the linear

system?

Since there is not an universal choice, the code asks for speci�cation about the parallel
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preconditioner. Two possibilities are implemented in the parallel SWEET code: a diago-

nal preconditioner and an additive Schwarz preconditioner. The Schwarz preconditioner

is always the most e�ective algorithm in reducing the number of global CG iterations.

However, its computational cost is high, and it can be slower than the diagonal pre-

conditioner. This latter situation occurs when the matrix of the linear system is not

enough ill-conditioned to represents a di�cult task for the global CG. Low number of

unknowns, smooth bathymetry, small time steps, are all indices of relatively \easy" prob-

lems; nevertheless, the only mean to determine the best choice is always to test both the

preconditioners on the given problem. The choice of the preconditioner can be inuenced

also by the particular parallel hardware on which the code runs. In a very schematic

way, we can say that the Schwarz preconditioner is particularly suitable when the parallel

system has poor communication performances relatively to its computational speed, since

the Schwarz algorithm greatly reduces the amount of communication requested by the CG

algorithm. The diagonal preconditioning is in principle a better choice when the proces-

sors are connected through a very e�cient network, so that communication overhead is

small.

18.2 When Everything Else Fails...

...please contact:

Luca Paglieri

e-mail : luca@crs4.it

Phone : 39 - 70 - 2796316

Fax : 39 - 70 - 2796302

CRS4 : Centre for Research, Development and Advanced Studies in Sardinia

via N. Sauro, 10

09123 Cagliari

Italy
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A PVM Quick Guide

This is a quick guide to PVM [17]: it deals only with the case of PVMe 2.1 on a IBM/SP2

system, with 4.1 Operative System Level.

PVM is a system composed by a message-passing library and an underlying software

running on every machine of the parallel system. In order to be able to use PVM, the

software must be started on the chosen set of processors, and the library must be linked

to the other object �les to form the executable.

PVM is a public software. PVMe is a proprietary version of PVM, made by IBM

for its hardware systems. It is nearly fully compatible with PVM, and, on the parallel

systems SPx, it has been designed so to use the High Performance Switch, to enhance its

performance. Di�erently from PVM (which runs on the IBM systems as well), PVMe runs

on the SPx nodes in an exclusive way: only a single PVMe daemon can run on a node.

Thus, only a user at a time can access the speci�ed node(s). For this reason, the PVMe

daemon must be stopped when one is not going to use it for some time, since otherwise

the nodes on which the daemon runs will remain unaccessible to the other users.

A.1 Starting PVMe

The �rst thing to do is to select a pool of nodes and create a �le named, as example,

hostfile, containing the names of the chosen nodes, one per row, without any blank

row.

Example:

isp1n1.sp2.cris.enel.it

isp1n4.sp2.cris.enel.it

isp1n5.sp2.cris.enel.it

At this point, run

pvme hostfile

You should have an output like the following:

PVMD:

Assuming default as control workstation.

PVMD:

Trying to get 3 nodes.

PVMD: Using isp1n1 with dx=/usr/lpp/pvme/bin/pvmd3e, ep=/u/sweet/pvm3/bin/RS6K.

PVMD: Using isp1n4 with dx=/usr/lpp/pvme/bin/pvmd3e, ep=/u/sweet/pvm3/bin/RS6K.

PVMD: Using isp1n5 with dx=/usr/lpp/pvme/bin/pvmd3e, ep=/u/sweet/pvm3/bin/RS6K.

PVMD:

Ready for <3> hosts.
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The name

/usr/lpp/pvme/bin/pvmd3e

indicates the full path of the PVMe daemon, while

/u/sweet/pvm3/bin/RS6K

indicates the directory containing the PVM executables.

Now the pvme console is started, and you should have the prompt

pvme>

this is the PVMe-console prompt, it is not a shell prompt, and only PVM special com-

mands can be executed from this prompt. If, in the starting operation, any error message

appears, type immediately from the PVMe prompt the command

halt

and restart the PVMe. If the message persists, then consult your system administrator.

Let's suppose that you have successfully started the PVMe console and that now you

have the PVMe prompt. Try to type

help

this will show you all the PVMe special commands, together with a brief explanation.

The main commands that you will probably encounter are:

� quit : exits the PVMe console, returning to the unix prompt. This operation leaves

the PVMe daemon (pvmd3e) running in batch mode on all the nodes contained in

the hostfile �le. You will have the message

pvmd still running

indicating that everything is ok. PVMe is a software which normally runs in batch

mode, so this is the standard operational mode. From ANY unix prompt on ANY

node of the partition you can reactivate the PVMe console (and thus the PVMe

prompt) by simply typing

pvme

After this, you must have the message

pvmd already running

indicating that the PVMe daemon is already alive. If you do not receive this mes-

sage, then, for some reasons, the daemon has been killed. If this is the case, type,

from the PVMe prompt, the command

halt

and re-run the command

pvme hostfile

to start again the daemon on every node of the partition.

� halt : stops the PVMe daemon on all the nodes of the partition, and then stops

the PVMe console. It stops also every PVM process running on the nodes. After

this, you must rerun the PVMe daemon from the start.

� reset : kills all the PVMe jobs running on all the nodes of the partition, leaving

untouched the PVMe daemon. Use this command every time that your PVM job
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aborts for any reason. You should have the signal

New epoch <number>

indicating that everything is ready for a new PVM job.

When the PVMe daemon is properly running on the partition, it is possible to run

the application. Consider that if you don't give an absolute path for the executable, then

PVM assumes that the executable is in the

$HOME/pvm3/bin/RS6K/

directory.

A.2 PVM Messages

Both PVM and the speci�c program that use PVM can give some messages during the

execution of the run. A PVM job will run on every node of the partition: we thus have to

think to have several programs running together, but completely independent one from

the another (except that for communications). When one runs the application, a single

program on a given node is started. This program then \spawn" the other programs, one

for each of the remaining nodes of the partition. The standard output and the standard

error for the \father" program are the shell from which it has been executed. For the

other programs, the output and error go to the shell from which the PVMe console has

been started. Note that the two shell can be the actually the same (this is the normal

situation), so all the output will be mixed together. Usually, PVMe puts an indication

of the node that gives a particular output, by writing the name of the node before the

message.
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