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Summary

Comparative studies of methods of reverse time migra-

tion (RTM) show that spectral methods for calculating

the Laplacian impose the least stringent demands on

discretization stepsize; thus with spectral methods, the

grid re�nements often required by other methods can be

avoided. Implemented with absorbing boundary condi-

tions, which are energy-tuned to give good absorption

at the boundaries, these spectral methods can be used

e�ectively for migration, without su�ering the problems

of wraparound which have traditionally plagued them

(Furumyra and Takenaka, 1995).

Introduction

Reverse time migration for poststack imaging is based

on the full 3D d'Alembert wave equation. Other imaging

techniques based on the one-way equation, such as depth

extrapolation, can only propagate partial information

and so cannot achieve the resolution of RTM. For

this reason, RTM poststack migration can produce a

subsurface reconstruction superior to that of most other

poststack migration methods, as has been observed in

industrial applications.

The wave equation can be formulated in Hamiltonian

form as

_

P (x;y; z; t) = Q(x; y; z; t);

_

Q(x;y; z; t) = c

2

r

2

P (x; y; z; t); (1)

for t 2 [0; T ] and (x; y; z) 2 
. Time-marching proceeds

backward from �nal acquisition time T , with homoge-

neous �nal conditions on P and Q, up to time zero, where

the imaging principle describes the subsurface reectiv-

ity. At each time step the stack is imposed as the sur-

face boundary condition. The �nite volume 
, necessary

because the numerical solution requires a �nite compu-

tational bulk and not because @
 represents a physical

barrier, requires boundary conditions that mimic a trans-

parent boundary. Typically some implementation of ab-

sorbing boundary condition is used to force waves to ow

out of 
.

Spectral RTM: stability and accuracy

The most important aspect of our numerical scheme

for solving the Hamiltonian system, Eqn.(1), is the use

of Fourier space for evaluating the Laplacian { using

forward and inverse discrete Fourier transforms (DFT )

(Briggs and Henson, 1995):
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The system is then time-integrated using the following

leap-frog scheme (written without showing the spatial de-

pendencies):
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Equations (3) permit an improvement in accuracy to

fourth order without any increase in memory require-

ments over the central �nite di�erence method, and pre-

serve the time-reversibility of the wave equation (Sexton

and Weingarten, 1992), (R. D. Skeel and Schlick, 1997).

This scheme also gives direct access to the �eld time deriv-

ative Q (the generalized momentum), which will be useful

for implementing absorbing boundary conditions.

Standard Von Neumann analysis yields the following sta-

bility condition:
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Further analysis shows that the stability condition for the

leap-frog scheme allows a time step 1:22 times larger than

that for central di�erences for the time integration.

Eliminating Q from Equations (3), the leap-frog scheme

reduces to

P

n+1

� 2P

n

+ P

n�1

�t

2

= c

2

r

2

P

n

+

c

4

�t

2

18

r

4

P

n

; (5)

and using Fourier transforms to write the overall method

in the (!;

~

k)-domain, we derive the discrete dispersion

relation
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which determines whether di�erent wavelengths propa-

gate at di�erent speeds. In order to maintain accuracy

and mimic the dispersion characteristics of the actual so-

lution, a numerical scheme should give rise to a disper-

sion relation which is \not far" from the continuous one,

!

2

c

�t

2

= �

2

. Fig.1(a) plots the dimensionless frequency

given by the discrete and by the continuous dispersion re-

lations for ! � 0. We thus impose a dispersion condition

requiring that the relative di�erence between the contin-

uous and discrete dispersion relations be bounded by a

tolerance �:

E (�) =

!�t� �

�

� � ; (7)
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where !�t is de�ned implicitly by the discrete dispersion

relation (6) and where, due to symmetry around 0, we

consider only positive values of !, for which E(�) is then

positive, see Fig.1(b). For a given �, �

�

represents the

value of the dimensionless wavenumber for which E(�

�

) =

�; the corresponding dimensionless frequency is (!�t)

�

=

�

�

(1 + �). Due to the monotonicity of E(�), see Fig.1(b),

E(�) � � whenever 0 � � � �

�

, and (!�t)

�

is the largest

dimensionless frequency for which the dispersion relation

error is bounded by �. Since ! � 2�f

max

, where f

max

represents the largest frequency in the band of the seismic

section, we can deduce a limit on �t that guarantees the

dispersion relation tolerance. As long as

�t �

�

�

(1 + �)

2�f

max

; (8)

then !�t � �

�

(1 + �) and the dispersion relation error is

to within the desired tolerance for all frequencies present

in the seismic section.

For � = 1%, we �nd �

�

= 0:83633 for the leap-frog scheme

and �

�

= 0:48336 for central �nite di�erences; thus the

dispersion condition for the leap-frog scheme allows a time

step about twice as large as that for central di�erences.

It is signi�cant that the dispersion analysis leads to a con-

dition on stepsize �t alone. This has been fundamental

to our choice of spectral methods in the space variables.

For other, non-spectral methods in space, the presence of

�x, �y, and �z in the dispersion relations can lead to se-

vere restrictions on these stepsizes when a given tolerance

is imposed on the dispersion relation error. Such restric-

tions can necessitate signi�cant re�nement of the space

grids, increasing by many times the computational size

of the problem. Spectral methods in space can furnish

a dispersion relation tolerance with no spatial re�nement

ever required.

Both the stability and dispersion conditions must be sat-

is�ed. With �x, �y, and �z �xed by the acquisition grid

and the desired resolution in z, the stability condition (4)

is used to de�ne a bound on �t. The minimum between

this and the bound from the dispersion condition (8) is �-

nally imposed on �t. With the spatial discretization and

frequencies typical of seismic applications (for instance,

�x = �y = 25m;�z = 10m;f

max

= 70Hz), it is often

the dispersion condition which is the more stringent.

Energy-tuned absorbing boundary conditions

From the wave equation (1), we can derive the continuity

equation

dH

dt

=

Z
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Jd~� ;

~

J = Q

~

rP (9)

where H(t) is interpreted as the energy inside 
 at time t,

H(t) =

1

2
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and

~

J is the local energy ux density. If

~

J � d~� vanishes

everywhere on the boundary @
, then dH=dt = 0 and en-

ergy is conserved. Otherwise, wherever

~

J points intward,

energy increases locally and wherever

~

J points outward,

energy decreases locally (Broeze and Daalen, 1992). From

these observations follows a necessary energy condition for

absorption at a boundary: dH=dt � 0.

A well-established way of imposing this condition and im-

plementing an absorbing boundary is based on the obser-

vation that an impulse traveling along direction n̂ with

velocity c satis�es the simplest paraxial wave equation

@

t

P � cn̂ �

~

rP = 0: (11)

Imposing equation (11) on @
 and identifying n̂ as the

normal to the boundary, we see that dH=dt � 0 is indeed

true. This does not, however, prevent the existence of

reected waves corresponding to other (non-normal) wave

angles.

Our strategy (Bonomi and Pieroni, 1998) for constraining

all waves to be absorbed by the boundary is based on

imposing

~

J � n̂ � 0 by locally reversing the sign of Q

on the boundary wherever the projection of

~

J along the

normal n̂ is negative:

FOR (x; y;z) 2 @
 WHERE

~

J � n̂ < 0

DO Q(x;y; z; t) � Q(x; y;z; t): (12)

Remark that while the energy evolution is altered by re-

versing the sign of Q, the instantaneous value of the en-

ergy is not, and conservation of energy is intact. In con-

trast to equation (11) alone, this mechanism also pre-

serves the local energy ux strength k

~

J k. Reversing the

sign of Q, the main ingredient of the absorbing boundary

that we propose, can be easily applied using the Hamil-

tonian formulation of wave propagation because the gen-

eralized momentum Q is treated as an independent �eld.

In the actual implementation, we consider a bounded do-

main � which contains 
. The absorbing condition is

now rendered e�ective by extending the Q reversal to

all points of � n
. To evaluate

~

rP , we compute �rst

derivatives of P using second order central �nite di�er-

ences. Numerical experiments con�rm that energy is then

trapped in a strip pattern inside this layer. To dissipate

this unwanted energy, which is a source of numerical error,

we implement the simplest absorbing boundary, equation

(11), discretized with �nite di�erences, on @�.

To summarize, a single time integration step consists of

the following three phases: integrating the Hamiltonian

equations in �, imposing mechanism (12) in �n
, and

damping the residual energy by integrating the paraxial

equation (11) on @�. Because the algorithm constrains

energy not to increase in reverse time, the solution is

guaranteed to be bounded by the initial data, thus ensur-

ing well-posedness of the approach (Ha-Duong and Joly,

1994).
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Results

With absorbing boundary conditions enhanced by Q-

reversal, the spectral approach gives good imaging

results, that is, minimal reection and no-wraparound,

when the �rst derivatives, necessary for the Q-reversal,

are evaluated by second order central �nite di�erences. In

fact, we tested also the evaluation of the �rst derivative

by DFT , or by costly implicit �nite di�erences. In the

�rst case we observed that reection was minimized but

the wraparound still was persistent, while in the second

case we have not noticed any signi�cant improvement

with respect to the fastest central �nite di�erences.

Fig.2 illustrates the e�ect of our Q-reversal mechanism

on the migration of a synthetic data set in the case of a

constant velocity �eld, c = 1500 m/s. The seismic section

is a classical Ricker wavelet in time with time half width

of 25 ms and a Gaussian in space with space half width

of 68 m; time sampling is �t = 5 ms. The spatial mesh

has N

x

= 128, N

y

= 64 and N

z

= 512 equally spaced

points: �x = �y = �z = 17 m. Shown are four snap-

shots of the evolving �eld, for y �xed, taken at timesteps

160, 400, 680 and 1120 for two examples { with and with-

out Q-reversal. The paraxial equation, a component of

the absorbing boundary, is present in both examples to

dissipate energy.

In Fig.2(a) Q-reversal is applied in a layer 8 mesh points

(138 m) thick, trapping energy that would otherwise be

incorrectly reected back into the domain. In Fig.2(b)

Q-reversal is not applied and absorption is obtained by

the paraxial equation alone. The Ricker wavelet is placed

o�-center to facilitate distinguishing between the reected

signal, which is of opposite phase with the incident wave,

and wraparound, which is in phase. As the signal pro-

ceeds, the wave incidence becomes more parallel to the

lateral boundary, and the paraxial equation becomes less

e�cient at absorbing outgoing energy. This e�ect is clear

in Fig.2(b) with the appearance of reections. In addi-

tion, the poor absorption at the boundary, coupled with

the intrinsic periodicity of the DFT , causes misleading

wraparound, also clear in Fig.2(b). On the other hand,

with the Q-reversal mechanism, Fig.2(a), the re-entry of

unabsorbed energy from the boundary is inhibited, cut-

ting down on both reections and wraparound.

Conclusions

With the spectral approach to RTM, the dispersion con-

dition for accuracy requires no further spatial re�nement;

every other method does. The subsequent economy

of problem size for spectral RTM with no-wraparound

boundary conditions makes feasible industrial poststack

migration by solving the full wave equation. RTM, the

most accurate poststack migration method, should be

considered a viable compromise between the cheaper one-

way poststack migration and all-out prestack migration.
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(a)

(b)

Fig. 1: (a) Discrete and continuum dispersion relations for ! � 0;

(b) Relative di�erence between the continuous and discrete disper-

sion relations for ! � 0.

(a)

(b)
Fig. 2: Spectral reverse time migration: (a) energy-tuned absorb-

ing boundary conditions, dashed lines delimit the Q-reversal layer;

(b) absorption at the boundaries imposed by the paraxial equation

(11) alone { no Q-reversal.


