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1 Introduction

In this set of examples we want to show the CASTEM 2000 capabilities to inter-

face with other �nite element analysis or physical simulation software.

CASTEM2000 is a computer code for the analysis of structures by the �nite

element method (FEM). The program was developed by the Department of Me-

chanics and Tecnology (DMT) of the French Atomic Energy Commission (CEA),

it is an high level instrument, that can be used as a support in the design and

analysis of components in the nuclear �eld as in the traditiona industrial sector.

CASTEM 2000 is a complete system integrating not only the functions of calcula-

tion (processing), but also for the construction of the model (pre-processing) and

for the evaluation of the results (post-processing). CASTEM 2000 can analyze

linear or non-linear, static or dynamic problems in structural mechanics, heat

trasfer and so on.

The main di�erence between CASTEM and other Finite Element computer pro-

grams is in that, while the latter allow the user to solve a certain number of well

de�ned but �xed problems, in CASTEM the user is free to de�ne his problem as

he likes, since the program gives him all of the instruments the Finite Element

Method has and is free to use them for the de�nition and solution of the problem,

not being forced to any standard solution [1].

This is one of the major advantages of the CASTEM FEA package, this is possi-

ble due to its extreme exibility, and to the possibility for the user to manipulate

freely objects as meshes and nodal or elemental �elds.

The interface between CASTEM and the other programs can be obtained through

its capability to import and export UCD �le.

UCD is for Unstructured Cell Data, it is a text �le format independent from

the Finite Element program used, with which is possible to exchange data and

results, for example is one of the �le formats used in AVS.

AVS is a powerful and exible tool for the interactive visualization of complex

3D data, its complexity may discourage the occasional or �rst -time user since

its interface has to be visually programmed for each visualization task the user

has. [3]

Although CASTEM 2000 has a visualization tool by itself, it currently does not

cover e�ciently the complete spectrum of visualizations that may be useful in

large and complex 3d industrial applications. Therefore AVS may be used to

make the post-processing of CASTEM results. [2]

A UCD �le contains the information on the mesh of the model, with a list of the

nodes with their nodal coordinates and a list of the elements de�ned with their

type and the connectivity with the nodes. Moreover at the and of the �le, one or

more nodal or elemental �elds may be de�ned, with a list of the nodal (or element)

numbers with one ore more scalar quantities associated with it. These quantities

and these �elds may be the result of a Finite Element Analysis performed inside

CASTEM or a similar program. Therefore they may contain information on the



2 PREPROCESSING IN CASTEM 3

nodal displacements in a particular direction or the stress �eld in the structure or

the temperature �eld, or may come as a result from another simulation package

and be used inside CASTEM as an input.

For example, the result of the calculation of the convection coe�cient on a surface,

performed with a CFD program may be used as an input for a thermal-mechanic

calculation inside CASTEM.

In this report four examples will be described, trying to show not only how to

export data from CASTEM to AVS for the post-processing, but also hot to use

the UCD �les as an interface with other programs, for the pre-processing of the

model and to enhance the analysis capabilities of CASTEM.

It will be shown how to treat the objects that can be read from an UCD �le,

as well as the objects generated by CASTEM itself, to overcome its limits in

pre-processing and to import the results of other simulation software.

The listings are reported in the Appendix.

2 Preprocessing in CASTEM

The �rst program may be useful to demonstrate the capabilities of CASTEM

to mesh a structure with the �nite element paradigm. In CASTEM the mesh

has to be "guided" on the lines, surfaces and volumes, composing the physical

domain of the model. The de�nition of the elements in which a structure has to

be divided must be guided by the operator, who has to de�ne for example the

number of nodes or elements on a line or how they are distributed on a surface.

This practice may appear tedious, but is essential for the quality of the results

that may be obtained with a �nite element program. No automatic mesher may

obtain the same quality of results of a skilled �nite element user.

One of the most interesting things is that the model and the mesh may be fully

de�ned with a set of parameters, and the model may be regenerated immediately

when a dimension has to be changed or is necessary to perform a more accurate

analysis with a �ner mesh. It is not necessary to redraw the model, it is only

necessary to modify the parameters used to describe the structure.

The model in the example is a simple "shell" structure, symmetric with respect

to a central axis. It is formed from a hemispherical shell with an internal radius

RI and an external radius RE connected to a portion of a cylinder of length

LAMBDA. The two surfaces may not have the same center, therefore the thick-

ness of the hemispherical shell may not be necessarily constant. The distance on

the axis between the two centers is DELTA.

RI = 200.E-3;

RE = 210.E-3;

DELTA = -5.E-3;

LAMBDA = -200.E-3;
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The volume of this structure is described with CUB8 elements, a brick with 8

nodes, one at each corner.

One quarter of the structure is modeled taking advantage of the symmetry of the

structure and the loads that will be applied.

The volume of the model must be de�ned starting from the surfaces containing

it, these in turn must be de�ned starting from the lines at their contour and the

lines and the arcs are drawn knowing the position of the start and �nal points.

Therefore it is �rst necessary to de�ne a number of characteristic points in the

structure (A1, B1, ...) then de�ne the arcs and lines (AB1, BC1, ...) and the the

surfaces (SURFI1,SURFI2,...).

A1 = RI 0. 0.;

B1 = (RI * C45) (RI * S45) 0.;

...

AB1 = CERCLE N1 A1 O1 B1;

BC1 = CERCLE N1 B1 O1 C1;

...

SURFI1 = DALLER AB1 BG1 GF1 FA1 SPHER O1;

It could be noted the the point G1 and G2 in the middle of the spherical surfaces

are not strictly necessary to de�ne the surfaces. This point is used to divide the

quarter of the hemisphere in in three di�erent surfaces. So that these smaller

ones could be described with a contour formed by four lines and be easily meshed

with quadrilaterals. If this division shouldn't be performed the surface could be

described with three arcs and its mesh could be made well using triangular ele-

ment and really poorly using quadrilateral elements.

Once the internal and external surfaces are de�ned, the volume VOL1 is de�ned

extruding the internal surface to the external surface and creating a certain num-

ber of planes in the middle. The number of elements in the structure is �xed by

the N1 and N2 parameters changing them is possible to obtain a coarser or �ner

mesh.

VOL1 = SURFI VOLU N2 SURFE;

Finally, for the reasons that will be clearer in the description of the other programs

other surfaces are created, SURFX, SURFY and SURFZ, starting from the lines

at the contour of the volume. These surfaces were not necessary to describe the

volume and once created do not form a part of the volume. This is to say that

are described by di�erent nodes then those used in the volume, with di�erent

node number but with the same nodal coordinates.

SURFYEF = EF1 REGLER N2 EF2;

SURFYFA = FA1 REGLER N2 FA2;

...
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The processor do not know that we want those surface to be part of the volume

previously de�ned, so they are basically treated as if they do not have any con-

nection with the rest of the mesh.

To override this the ELIM procedure is used: the nodes of the surfaces are com-

pared with those of the volume and if the distance between two nodes is smaller

than a �xed value the node in the surface is suppressed and replaced with the

one belonging to the volume, so the geometrical objects, are associated to the

volume even if these surfaces were not used to de�ne it.

ELIM (RI / 10000) SURFX VOL1;

...

Finally the program saves all the geometrical objects, and not only the volume

in di�erent UCD �les.

OPTION SORTIR FINVOL;

SORTIR AVS VOL1;

OPTION SORTIR FINSURX;

SORTIR AVS SURFX;

...

Saving only the main mesh, the one describing the volume,only the geometrical

information on the volume would be saved and the information on the surfaces

surrounding it would be lost.

3 Importing meshes

In the second program a simple thermal analysis is performed on the model

de�ned by the previous program. Of course the instructions of this program may

be attached directly to the previous one in which the mesh had been described,

but the scope of the program is to show how to import in CASTEM meshes and

data from other programs (or from CASTEM itself) and how to manipulate it.

Why doing that? Because the data that may be imported might be the result

of some other simulation software, and because sometimes it could be useful to

make a mesh in some other program. For example, when a CAD drawing is ready

to be meshed, when a mesh is coming from another program where it was used for

some other analysis, or when a complex volume mesh has to be drawn, "manual"

meshing in CASTEM is practically impossible and an automated mesher or a

mesh optimizer is necessary. When CASTEM reads from an UCD-AVS �le stores

the data in an object of TABLE type, it is a structured object with di�erent sub-

objects contained in it. In this case the mesh is stored in the LEMAILLA �eld,

and copied in a MESH object, as VOL1 or SURFX, the names are the same of

the previous program but of course this is not a necessity.
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OPTION LECTURE FINVOL;

TABL = LIRE AVS;

VOL1 = TABL.LEMAILLA;

OPTION LECTURE FINSURI;

TABL = LIRE AVS;

SURFI = TABL.LEMAILLA; ...

If now the program draws the VOL1 object and we look at the geometrical

properties associated to it, we will see that only the volume geometry is associated

with the mesh [Fig. 1]. Drawing together VOL1, SURFI, SURFE, ... we will

Figure 1: Geometry before ELIM

see together all the geometrical objects, but we will see that these objects do not

have common nodes and are not connected one to the other.

To associate again the geometrical properties to the model is necessary that the

di�erent geometrical object share the same nodes, so with the ELIM command

the nodes of the di�erent surfaces are suppressed and replaced with the nodes of

the mesh on the volume.

ELIM PAR1 SURFI VOL1;
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ELIM PAR1 SURFE VOL1;

...

If now the program draws VOL1 again and we look at the geometrical properties

associated to it we will see that not only the volume but all of the surrounding

surfaces are included [Fig. 2]. All of the operations that could be done on the

Figure 2: Geometry after ELIM

VOL1 will be done to its nodes and therefore to the nodes in common with the

surfaces, and all the operations we could do on the surfaces will be done to the

volume through the shared nodes. For example in this program the thermal

isotropic model de�ned on VOL1 and the convection models de�ned on SURFI

and SURFE will share the same nodes and will be connected.

MOD1 = MODEL VOL1 THERMIQUE ISOTROPE;

MOD2 = MODEL SURFI CONVECTION;

MOD3 = MODEL SURFE CONVECTION;

The analysis performed calculates the temperature �eld in the structure with

convection at the internal and at the external surface with ambient temperatures

of 600 inside and 100 outside. The result is a nodal �eld, since temperature is
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Figure 3: Temperature �eld

de�ned at each node of the structure [Fig. 3]. This �eld is exported, together

with the necessary supporting mesh in a new UCD-AVS �le.

OPTION SORTIR FINTEMP;

SORTIR AVS VOL1 TEMP1;

4 Importing data

In the �rst mechanical analysis program the mesh geometry generated by the

�rst program described is imported and used to create a mechanical model.

The procedure used is the same described in the previous example: consists in

loading the di�erent meshes separately and assembling them in a unique mesh

with all of the geometrical characteristics connected to it.

In this program is also imported the nodal temperature �eld generated with the

program previously described.

OPTION LECTURE FINTEMP;

TABL = LIRE AVS;
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CHT1 = TABL.LECHPOIN;

PUNT1 = TABL.MAILSUPP;

In this case the �eld has been generated by CASTEM, but the more interesting

feature we want to stress out is that this �eld could have been generated in any

other way, it is just a mesh with the de�nition of a scalar quantity at each node.

For the scalar �eld the same considerations applied previously for the geometric

objects apply, so the nodal �eld is de�ned generally speaking on a di�erent mesh

with di�erent nodes then VOL1, using the same ELIM command is possible to

suppress the nodes of the mesh on which the �eld is de�ned and to transfer this

nodal �eld on the nodes of the VOL1 object.

ELIM PAR1 PUNT1 VOL1;

The mechanical analysis is quite simple, the material has a linear elastic de�ni-

tion with constant mechanical properties.

The loads are due to the thermal deformations that are not uniform in the struc-

ture, generally speaking any heat ow can generate a stress �eld in a structure.

The procedure to calculate the stresses due to the thermal deformations is to

reduce the problem to a simple static one.

First the stress �eld in an unconstrained structure is derived:

SIGT1 = THET MOD1 MAT1 CHT1;

Then from this nodal �eld, another nodal �eld is derived containing the nodal

forces that are necessary to create that state of stress.

FT1 = BSIGMA MOD1 SIGT1;

Then the structure is constrained and the nodal displacements are calculated

when the nodal loads previously calculated are applied.

DEP1 = RESO RIGCL FT1;

It is now possible to calculate the geometry of the deformed structure and to

calculate the stress �eld, the correct stress �eld is obtained subtracting to this

the one previously calculate for an unconstrained structure.

S2 = SIGMA MOD1 MAT1 DEP1;

S1 = S2 - SIGT1;

For the stress is shown how to manipulate the �elds of the structure to obtain

new and unde�ned �eld directly inside the program.

Here from the element �eld containing all the stress components. Are derived

di�erent element �elds each with a di�erent stress component.

SEXX = EXCO SMXX S1;

...
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Then each of these element �elds are converted to a nodal �eld (it is not necessary,

it is just to show how to do).

SPXX = NOMC S (CHANGER CHPO MOD1 SEXX);

...

Finally from these di�erent nodal �elds, each of them lying on the same mesh

a new nodal �eld is derived, with the Von Mises equivalent stress, not included

among the standard outputs of the program [Fig. 4].

SPT1 = ((SPXX - SPYY)**2) + ((SPYY - SPZZ)**2) + ((SPZZ -

SPXX)**2);

SPT2 = (SPXY**2) + (SPYZ**2) + (SPXZ**2);

SPVM = ((SPT1 + (6 * SPT2))**0.5)/(2.**0.5);

Figure 4: Von Mises equivalent stress

This result can evidently be exported with the same procedure used for the

nodal temperature �eld of the previous program.
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5 Manipulating �elds

Finally in the last program is described one of the more interesting capabilities

of the CASTEM program, that is its ability to manipulate and use nodal and

element �eld, and to be easily programmed for new and di�erent tasks.

The program is essentially identical to the previous one except that here the

modulus of elasticity is supposed to vary with the temperature.

Here as in most of the other �nite element programs is possible to de�ne a law of

behavior of the elasticity modulus with respect to the temperature for example.

Normally this behavior is de�ned in standard linear or polynomial laws; or it is

de�ned with a set of points and the real values are extrapolated from that not

very accurately.

The di�erence is that in CASTEM the modulus of elasticity E as well as any

other characteristic of the material is simply an element �eld and has all of the

possibilities of this kind of object.

Therefore what is done is to derive a new nodal �eld manipulating the nodal tem-

perature �eld imported in the program, convert it in the corresponding element

�eld and simply use it in the de�nition of the properties of the material.

CHPEY1 = 200.E9*(CHT1-(MANU CHPO VOL1 1 T 375.));

CHPEY2 = 100.E9*(CHT1 - (MANU CHPO VOL1 1 T 400.));

CHPEY3 = (CHPEY1 - CHPEY2)/(400. - 375.);

Here the behavior law is simple (linear), but can be what anyone wants. Moreover

it is not �xed the nature and the number of the parameters from which the

element �eld depends, so a lot of really complicated behavior laws for a material

can be obtained, and the description of the material can be as accurate as one

wants, without any unnecessary simpli�cation forced by the limitations of the

program used.

The results of a mechanical analysis are quite di�erent of course [Fig. 5].

The possibility to import any scalar �eld in the model, show the possibility

to describe the behavior of a material depending on parameters that can not

be calculated inside the software or can more easily be calculated with other

dedicated package, for example describing the damage in the material or the

modi�cation in the behavior laws of the material from the exposition of the

structure to a light source, for some plastics; or to the neutron irradiation in

nuclear engineering applications.
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Figure 5: Von Mises equivalent stress
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A Program 1

OPTI LANG ANGLAIS;

OPTI DIME 3 ELEM CUB8;

RI = 200.E-3;

RE = 210.E-3;

DELTA = -5.E-3;

LAMBDA = -200.E-3;

VEC1 = 0. 0. (LAMBDA + DELTA);

VEC2 = 0. 0. LAMBDA;

S45 = SIN 45.;

C45 = COS 45.;

S30 = SIN 30.;

C30 = COS 30.;

N1 = 8;

N2 = 6;

A1 = RI 0. 0.;

B1 = (RI * C45) (RI * S45) 0.;

C1 = 0. RI 0.;

D1 = 0. (RI * C45) (RI * S45);

E1 = 0. 0. RI;

F1 = (RI * C45) 0. (RI * S45);

G1 = (RI * C30 * C45) (RI * C30. * S45) (RI * S30);

H1 = RI 0. (LAMBDA + DELTA);

I1 = (RI * C45) (RI * S45) (LAMBDA + DELTA);

L1 = 0. RI (LAMBDA + DELTA);

O1 = 0. 0. 0.;

AB1 = CERCLE N1 A1 O1 B1;

BC1 = CERCLE N1 B1 O1 C1;

CD1 = CERCLE N1 C1 O1 D1;

DE1 = CERCLE N1 D1 O1 E1;

EF1 = CERCLE N1 E1 O1 F1;

FA1 = CERCLE N1 F1 O1 A1;

FG1 = CERCLE N1 F1 O1 G1;

GD1 = CERCLE N1 G1 O1 D1;

GB1 = CERCLE N1 G1 O1 B1;

GF1 = INVE FG1;

DG1 = INVE GD1;

BG1 = INVE GB1;

AH1 = DROITE N1 A1 H1;

LC1 = DROITE N1 L1 C1;

HI1 = AB1 PLUS VEC1;

IL1 = BC1 PLUS VEC1;

SURFI1 = DALLER AB1 BG1 GF1 FA1 SPHER O1;

SURFI2 = DALLER BC1 CD1 DG1 GB1 SPHER O1;

SURFI3 = DALLER DE1 EF1 FG1 GD1 SPHER O1;

SURFI4 = (AB1 ET BC1) TRAN N1 VEC1;

A2 = RE 0. DELTA;

B2 = (RE * C45) (RE * S45) DELTA;

C2 = 0. RE DELTA;

D2 = 0. (RE * C45) ((RE * S45) + DELTA);

E2 = 0. 0. (RE + DELTA);

F2 = (RE * C45) 0. ((RE * S45) + DELTA);

G2 = (RE * C30 * C45) (RE * C30 * S45) ((RE * S30) + DELTA);

H2 = RE 0. (LAMBDA + DELTA);

I2 = (RE * C45) (RE * S45) (LAMBDA + DELTA);

L2 = 0. RE (LAMBDA + DELTA);

O2 = 0. 0. DELTA;

AB2 = CERCLE N1 A2 O2 B2;

BC2 = CERCLE N1 B2 O2 C2;

CD2 = CERCLE N1 C2 O2 D2;

DE2 = CERCLE N1 D2 O2 E2;
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EF2 = CERCLE N1 E2 O2 F2;

FA2 = CERCLE N1 F2 O2 A2;

FG2 = CERCLE N1 F2 O2 G2;

GD2 = CERCLE N1 G2 O2 D2;

GB2 = CERCLE N1 G2 O2 B2;

GF2 = INVE FG2;

DG2 = INVE GD2;

BG2 = INVE GB2;

AH2 = DROITE N1 A2 H2;

LC2 = DROITE N1 L2 C2;

HI2 = AB2 PLUS VEC2;

IL2 = BC2 PLUS VEC2;

SURFE1 = DALLER AB2 BG2 GF2 FA2 SPHER O2;

SURFE2 = DALLER BC2 CD2 DG2 GB2 SPHER O2;

SURFE3 = DALLER DE2 EF2 FG2 GD2 SPHER O2;

SURFE4 = (AB2 ET BC2) TRAN N1 VEC2;

SURFI = SURFI1 ET SURFI2 ET SURFI3 ET SURFI4;

SURFE = SURFE1 ET SURFE2 ET SURFE3 ET SURFE4;

VOL1 = SURFI VOLU N2 SURFE;

SURFYEF = EF1 REGLER N2 EF2;

SURFYFA = FA1 REGLER N2 FA2;

SURFYAH = AH1 REGLER N2 AH2;

SURFXLC = LC1 REGLER N2 LC2;

SURFXCD = CD1 REGLER N2 CD2;

SURFXDE = DE1 REGLER N2 DE2;

SURFZHI = HI1 REGLER N2 HI2;

SURFZIL = IL1 REGLER N2 IL2;

SURFY = SURFYEF ET SURFYFA ET SURFYAH;

SURFX = SURFXLC ET SURFXCD ET SURFXDE;

SURFZ = SURFZHI ET SURFZIL;

ELIM (RI / 10000) SURFX VOL1;

ELIM (RI / 10000) SURFY VOL1;

ELIM (RI / 10000) SURFZ VOL1;

OPTION SORTIR FINVOL;

SORTIR AVS VOL1;

OPTION SORTIR FINSURX;

SORTIR AVS SURFX;

OPTION SORTIR FINSURY;

SORTIR AVS SURFY;

OPTION SORTIR FINSURZ;

SORTIR AVS SURFZ;

OPTION SORTIR FINSURI;

SORTIR AVS SURFI;

OPTION SORTIR FINSURE;

SORTIR AVS SURFE;
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B Program 2

OPTION LANG ANGLAIS;

OPTION DIME 3 ELEM CUB8;

PAR1 = 0.0001;

OPTION LECTURE FINVOL;

TABL = LIRE AVS;

VOL1 = TABL.LEMAILLA;

OPTION LECTURE FINSURI;

TABL = LIRE AVS;

SURFI = TABL.LEMAILLA;

OPTION LECTURE FINSURE;

TABL = LIRE AVS;

SURFE = TABL.LEMAILLA;

OPTION LECTURE FINSURX;

TABL = LIRE AVS;

SURFX = TABL.LEMAILLA;

OPTION LECTURE FINSURY;

TABL = LIRE AVS;

SURFY = TABL.LEMAILLA;

OPTION LECTURE FINSURZ;

TABL = LIRE AVS;

SURFZ = TABL.LEMAILLA;

ELIM PAR1 SURFI VOL1;

ELIM PAR1 SURFE VOL1;

ELIM PAR1 SURFX VOL1;

ELIM PAR1 SURFY VOL1;

ELIM PAR1 SURFZ VOL1;

MOD1 = MODEL VOL1 THERMIQUE ISOTROPE;

MOD2 = MODEL SURFI CONVECTION;

MOD3 = MODEL SURFE CONVECTION;

MAT1 = MATER MOD1 K 52.;

MAT2 = MATER MOD2 H 750.;

MAT3 = MATER MOD3 H 500.;

FLU1 = CONV MOD2 MAT2 T 600.;

FLU2 = CONV MOD3 MAT3 T 100.;

COND1 = COND MOD1 MAT1;

COND2 = COND MOD2 MAT2;

COND3 = COND MOD3 MAT3;

CONDTOT = COND1 ET COND2 ET COND3;

FLUTOT = FLU1 ET FLU2;

TEMP1 = RESOU CONDTOT FLUTOT;

PDV = -1000. 0. 500.;

TRAC CACH PDV VOL1 TEMP1;

OPTION SORTIR FINTEMP;

SORTIR AVS VOL1 TEMP1;
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C Program 3

OPTION LANG ANGLAIS;

OPTION DIME 3 ELEM CUB8;

PAR1 = 0.0001;

OPTION LECTURE FINVOL;

TABL = LIRE AVS;

VOL1 = TABL.LEMAILLA;

OPTION LECTURE FINTEMP;

TABL = LIRE AVS;

CHT1 = TABL.LECHPOIN;

PUNT1 = TABL.MAILSUPP;

OPTION LECTURE FINSURI;

TABL = LIRE AVS;

SURFI = TABL.LEMAILLA;

OPTION LECTURE FINSURE;

TABL = LIRE AVS;

SURFE = TABL.LEMAILLA;

OPTION LECTURE FINSURX;

TABL = LIRE AVS;

SURFX = TABL.LEMAILLA;

OPTION LECTURE FINSURY;

TABL = LIRE AVS;

SURFY = TABL.LEMAILLA;

OPTION LECTURE FINSURZ;

TABL = LIRE AVS;

SURFZ = TABL.LEMAILLA;

ELIM PAR1 SURFI VOL1;

ELIM PAR1 SURFE VOL1;

ELIM PAR1 SURFX VOL1;

ELIM PAR1 SURFY VOL1;

ELIM PAR1 SURFZ VOL1;

MOD1 = MODEL VOL1 MECANIQUE ELASTIQUE ISOTROPE;

MAT1 = MATER MOD1 YOUN 200.E9 NU 0.3 RHO 7860. ALPHA 1.E-5;

SIGT1 = THET MOD1 MAT1 CHT1;

FT1 = BSIGMA MOD1 SIGT1;

CLX = BLOQ SURFX UX;

CLY = BLOQ SURFY UY;

CLZ = BLOQ SURFZ UZ;

CLTOT = CLX ET CLY ET CLZ;

RIG1 = RIGIDITE MOD1 MAT1;

RIGCL = RIG1 ET CLTOT;

DEP1 = RESO RIGCL FT1;

DEF0 = DEFO VOL1 DEP1 0. BLAN;

DEF1 = DEFO VOL1 DEP1 BLEU;

S2 = SIGMA MOD1 MAT1 DEP1;

S1 = S2 - SIGT1;

SEXX = EXCO SMXX S1;

SEYY = EXCO SMYY S1;

SEZZ = EXCO SMZZ S1;

SEXY = EXCO SMXY S1;

SEXZ = EXCO SMXZ S1;

SEYZ = EXCO SMYZ S1;

SPXX = NOMC S (CHANGER CHPO MOD1 SEXX);

SPYY = NOMC S (CHANGER CHPO MOD1 SEYY);

SPZZ = NOMC S (CHANGER CHPO MOD1 SEZZ);
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SPXY = NOMC S (CHANGER CHPO MOD1 SEXY);

SPXZ = NOMC S (CHANGER CHPO MOD1 SEXZ);

SPYZ = NOMC S (CHANGER CHPO MOD1 SEYZ);

SPT1 = ((SPXX - SPYY)**2) + ((SPYY - SPZZ)**2) + ((SPZZ - SPXX)**2);

SPT2 = (SPXY**2) + (SPYZ**2) + (SPXZ**2);

SPVM = ((SPT1 + (6 * SPT2))**0.5)/(2.**0.5);

TRAC CACH DEF1 SPVM;
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D Program 4

OPTION LANG ANGLAIS;

OPTION DIME 3 ELEM CUB8;

PAR1 = 0.0001;

OPTION LECTURE FINVOL;

TABL = LIRE AVS;

VOL1 = TABL.LEMAILLA;

OPTION LECTURE FINTEMP;

TABL = LIRE AVS;

CHT1 = TABL.LECHPOIN;

PUNT1 = TABL.MAILSUPP;

OPTION LECTURE FINSURI;

TABL = LIRE AVS;

SURFI = TABL.LEMAILLA;

OPTION LECTURE FINSURE;

TABL = LIRE AVS;

SURFE = TABL.LEMAILLA;

OPTION LECTURE FINSURX;

TABL = LIRE AVS;

SURFX = TABL.LEMAILLA;

OPTION LECTURE FINSURY;

TABL = LIRE AVS;

SURFY = TABL.LEMAILLA;

OPTION LECTURE FINSURZ;

TABL = LIRE AVS;

SURFZ = TABL.LEMAILLA;

ELIM PAR1 PUNT1 VOL1;

ELIM PAR1 SURFI VOL1;

ELIM PAR1 SURFE VOL1;

ELIM PAR1 SURFX VOL1;

ELIM PAR1 SURFY VOL1;

ELIM PAR1 SURFZ VOL1;

CHPEY1 = 200.E9*(CHT1-(MANU CHPO VOL1 1 T 375.));

CHPEY2 = 100.E9*(CHT1 - (MANU CHPO VOL1 1 T 400.));

CHPEY3 = (CHPEY1 - CHPEY2)/(400. - 375.);

MOD1 = MODEL VOL1 MECANIQUE ELASTIQUE ISOTROPE;

CHMEY1 = CHANGER CHAM (NOMC YOUN CHPEY3) MOD1;

MAT1 = MATER MOD1 YOUN CHMEY1 NU 0.3 RHO 7860. ALPHA 1.E-5;

SIGT1 = THET MOD1 MAT1 CHT1;

FT1 = BSIGMA MOD1 SIGT1;

CLX = BLOQ SURFX UX;

CLY = BLOQ SURFY UY;

CLZ = BLOQ SURFZ UZ;

CLTOT = CLX ET CLY ET CLZ;

RIG1 = RIGIDITE MOD1 MAT1;

RIGCL = RIG1 ET CLTOT;

DEP1 = RESO RIGCL FT1;

DEF0 = DEFO VOL1 DEP1 0. BLAN;

DEF1 = DEFO VOL1 DEP1 BLEU;

S2 = SIGMA MOD1 MAT1 DEP1;

S1 = S2 - SIGT1;

SEXX = EXCO SMXX S1;

SEYY = EXCO SMYY S1;

SEZZ = EXCO SMZZ S1;
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SEXY = EXCO SMXY S1;

SEXZ = EXCO SMXZ S1;

SEYZ = EXCO SMYZ S1;

SPXX = NOMC S (CHANGER CHPO MOD1 SEXX);

SPYY = NOMC S (CHANGER CHPO MOD1 SEYY);

SPZZ = NOMC S (CHANGER CHPO MOD1 SEZZ);

SPXY = NOMC S (CHANGER CHPO MOD1 SEXY);

SPXZ = NOMC S (CHANGER CHPO MOD1 SEXZ);

SPYZ = NOMC S (CHANGER CHPO MOD1 SEYZ);

SPT1 = ((SPXX - SPYY)**2) + ((SPYY - SPZZ)**2) + ((SPZZ - SPXX)**2);

SPT2 = (SPXY**2) + (SPYZ**2) + (SPXZ**2);

SPVM = ((SPT1 + (6 * SPT2))**0.5)/(2.**0.5);

TRAC CACH DEF1 SPVM;
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