
A Shapes based geometric modeler for
Mesh++, API description

Monica Camba (mcamba@crs4.it) Piero Pili (piero@crs4.it) Gianluigi Zanetti
(zag@crs4.it)

Document id:VIVA-1998-7-1

Revision: 0.0.1

Document type:TECHREP

Origin: CRS4

CRS4
Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna

VI Strada OVEST Z.I. Macchiareddu
09010 UTA (CA - Italy)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by P-arch

https://core.ac.uk/display/51249334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Document History
Event Date Actor Reference

CREATION 3/7/98 mcamba@crs4.it

Contents

1 Introduction 2

2 API Purposes 2

3 Modules organization 3
3.1 The gmesh library 3

4 The geometric model 4

5 The hiding algorithm 4
5.1 Attributes 4

5.2 Topological elements dumping 5

5.3 Vertices marking 5

5.4 Edges marking 5

6 Boundary Conditions 5

7 Mesh information 6

8 Input File 6

9 Output File 6

10 Syntax 6
10.1 Usage examples 7

11 Routines description 8

1

1 Introduction

One of the purposes of theViVa Project is the reconstruction of geometrical models from a suitableset of data

provided by non invasive medical analyses like Computed Tomography (CT) or Magnetic Resonance Imaging

(MRI). To do this, we first segment the vessel geometry from the data sets using techniques such as active snakes,

and then reconstruct geometrical models using theXOX SHAPES geometric modeler, and in particular itsMi-
croTopology features. In order to perform blood flow simulation on these models, we need to mesh them, and so

we use theMesh++grid generator to process the models and create a two-dimensional grid for the surfaces and a

three-dimensional one for the vessel lumen.

Mesh++ has his own geometric B-rep modeler inside, and so it is necessary to interface theSHAPES
modeler to the nativeMesh++modeler through an appropriate routines set. This documentdescribes the resulting

Application Procedure Interface (API).

The grid generator andSHAPEScommunicate through files containing a given amount of geometrical and

topological information thatMesh++ can handle. The topology of the geometric model is describedby marking

each of its elements (vertices, edges, faces) by an integer index. The grid generator reads the indices directly from

the topology file and handles all the geometric objects tagged by the indices only through the interface facilities.

The application interface manages the correspondence between indices and geometrical entities (loading a curve

or a surface) and all the evaluations performed by the grid generator on geometries: it allows to compute the value

of a function and its first and second derivatives in a given point of the parameter space, and the projection of a

point over a surface or a curve.

Since the mesher was previously interfaced with another geometric modeler, the same interface has been

maintained; the API routines have been implemented again using SHAPES facilities, in such a way that the

Mesh++code remained the same: the memory areas passed to these functions are now used to allocateSHAPES
objects handled always by the API routines and never directly by the mesher.

Besides, while in the beginning all the topological information about the model were not given by the

geometric modeler, the topology is now extracted directly by SHAPES through suitable routines implemented in

themesh++Topologyprogram.

If we want the mesher deliver a conformal mesh over two adjacent faces, they have to share a single edge,

or a set of consecutive ones. In other words, the topologicaldescription does not allow two edges overlapping

completely or partially. To avoid this event, we choose to modify the model description given to the mesher

instead of the model itself in case of exactly overlapping edges.

2 API Purposes

The mesher has to mesh geometric objects that are given bySHAPES, and it accomplishes this task by performing

evaluations on theseSHAPESobjects, so the API needs a suitable library (gmesh) containing all the routines able

to carry out these tasks.

Besides, it is necessary to write the topology file, that translates the topology of the model in a format the

mesher can treat; this task is executed by running a specialized program (mesh++Topology), while the former

ones must be performed during the mesher execution. In fact,it is important to say that themesh++Topology
program extracts the topology of the model directly from theSHAPES objects, and that this topology does not

match always the topology written out in the mesher format.

There is another set of facilities that are used by both themesh++Topologyand theMesh++program, that

allow to load the topology directly from theSHAPESgeometric objects.

2

3 Modules organization

Themesh++Topologyprogram is able to:

� load a geometric model by aSHAPES input file;

� draw out from the model the topological entities list;

� initialize suitable structures describing the model;

� find out the adjacency relationships between topological objects;

� write in a output file the above information;

� assign to the model default boundary conditions;

� map the default boundary conditions to other ones read by file;

� dump out, for each topological entity, a file containing the mesh information in case ofSHAPES web

geometries.

Thegmeshlibrary implements the following functionalities:

� to load the geometric model from aSHAPESfile;

� to load the topology from a suitable file;

� to perform evaluations on the geometric entities listed in the topology file.

These tasks are so divided into the program modules:

� loadModel.c: initializing and ending theSHAPESwork session, loading aSHAPESgeometric model and

processing its topology;

� attr.c: managing theSHAPESattributes describing the topological model;

� metric.c: distances and lengths computing;

� ais grids.c: performing evaluations on the model;

� mesh++Topology.c: extracting the topology from the model and writing it in theoutput file.

Thegmeshlibrary is composed by theloadModel, attr , metric andais grids object files, while themesh++Topology
program links only the former three.

3.1 The gmesh library

Thegmeshlibrary is the actual interface betweenSHAPESandMesh++; its functionalities are essentially divided

in two blocks:

� loading a geometric model by aSHAPES input file and its topological descpription by a mesh++.input file;

� evaluations performing on the geometrical objects listed in the topology file.

The first goal is executed by theloadModel module, that uses theattr module functionalities to handle the at-

tributes, while the evaluation functions compose theais grids module, using also themetric module facilities.

The evaluation functions perform the following tasks:

3

� loading a curve or a surface from its index read by the mesh++.input file;

� evaluation of the coordinates in the modeling space of a point corresponding to given values of the parame-

ters;

� evaluation of the first and second1 derivatives of a curve or a surface in a given point of its parameter space;

� projection of a point over a curve or a surface.

Since the mesher assumes that all the geometric objects are parameterized in a suitable set of canonical intervals

not corresponding to the actualSHAPESparameterizations, all the above functions contain a remapping of all the

values passed from and to the mesher as input and output.

4 The geometric model

Themesh++Topologymodule has to give toMesh++ the set of data needed, that is aSHAPESfile containing the

geometry of the object to mesh and a file containing its topology.

This file is written in a suitable format that the mesher can read, described in [1]. Actually, theSHAPES
file containing the geometry of the model contains also its topological information, but in a format not directly

available to the mesher.

The mesh++Topologyprogram does not create itself the geometrical model. This is a responsability of

other programs, (tube builder , buildAnastomosis, buildBifurcation), whose aim is in fact the reconstruction of

the geometric model.

Moreover, the mesher cannot guarantee the mesh boundary conformity on a couple of faces sharing two

different overlapping edges, so themesh++Topologyprogram has to hide this eventuality tomesh++.

5 The hiding algorithm

It is an opportune remark to say that the mesher does not guarantee the boundary conformity of the mesh if the

model has two overlapping edges. In order to resolve this problem themesh++Topologyprogram, during the

search for the vertices and edges of the geometry, performs acheck on them and writes on the output file only one

of two overlapping vertices or edges.

This check is aimed to “hide” to the mesher one of the verticesor edges of each couple of overlapping

ones; the hiding of these entities happens while processingthe geometry searching for its topological elements. It

assumes that the correspondence between overlapping edgesis one-to-one and that overlapping edges coincides

exactly (that is, the set of their points in the modeling space is the same).

5.1 Attributes

In order to dump only one of a set of overlapping topological entities, we are going to mark one of them as the

masterand all the other asslaves. Eachmasterelement has an incremental integer index and all itsslaveshave the

same index too. So, the API contains twoSHAPESattribute specifiers to keep track of these relationships:

� an attribute specifiermasterTypewith two attributes:

– master
1Actually, SHAPESdoes not support evaluation of second derivatives of a surface with respect to two different parameters

4

– slave

� an attribute specifierindexType.

For eachmastervertex or edge it is created a newindexTypeattribute with a progressive index stored in.

5.2 Topological elements dumping

The mesh++Topologyprogram processes all the topological elements of a given model, marks them asmaster

or slave, attaches to each anindex attribute, and finally dumps them to the topology file. It processes first the

vertices, then the edges, and after this is ready to write thetopology file. In this procedure, the vertices and edges

are dumped to the topology file differently with respect to its parts: since the topology file is divided intogeometry

keywordsand topology keywords, they can be treated in distinct ways. Thegeometry keywordspart needs the

elements to be listed in incremental order, that is exactly the order matching a global list of elements. This section

allows to dump overlapping elements (the first list is there for future extensions; the current version of the mesher

only uses the second list); it is a task of the second section to make sure that only one of a set of coincident elements

will be used to perform evaluations. This is performed dumping the elements in thetopology keywordspart by

their indexattribute and not by their list index, since theslaves are marked with the sameindexattribute as their

master.

5.3 Vertices marking

The list of all verticesSHAPESxGEOMs is processed, keeping track of already processed vertices (APV). All the

APV are marked with themasterattribute and with an incrementalindexattribute. Once a new vertex is processed,

it is searched for all the APV whether it coincides with one ofthem. The check is performed with respect to a local

tolerance to be passed to the program as an argument; if the check returns true, the processed vertex is marked

asslaveand it is attached to it theindexattribute of itsmaster, otherwise it is marked asmasterand receives an

incrementalindexattribute. In this case it is of course included in the APV list.

5.4 Edges marking

The list of all edgesSHAPESxGEOMs is first of all processed to give each of them a hashing key so defined: let

e be an edge andv
1

andv
2

theindexattributes of its vertices. The key to be associated toe is computed as:

key(e) = min(v

1

; v

2

)hashShift +max(v

1

; v

2

)

wherehashShift is an integer constant. All these keys are stored in a suitable array (allKeys). Then all the

edges are processed in this way: it is created an already processed edges (APE) array, that will contain the position

corresponding to an edge in theallKeysarray. Once an edge is inserted in the APE array, it is marked asmasterand

it is associated to it an incrementalindexattribute. Ife is the current edge to be processed, it is compared with all

the APE: if it has the same hashing key of an edgeE in APE, it is executed a check on the point ofe corresponding

to the middle value of its parameter range: if this point is contained inE, it is clear thate is aslaveof E, and so it

is marked asslaveand it is attached to it theE indexattribute. Ife has not the same key of any of the APE or if

thee “middle parameter” point it is not contained inE, e is inserted in the APE array.

6 Boundary Conditions

The mesh++Topologyprogram is able to detect whether the input geometry has boundary conditions, given as

SHAPESattributes attached to its 1d boundaries. From these attributes, the program can compute default boundary

5

conditions for all the other geometric entities. Otherwise, if the user specified an input labels file, the program

processes it and maps the default values to the ones given by the file.

The input labels file has to contain couples of values like:

defaultValue newValue

The boundary conditions are then dumped into the mesh++.input file.

7 Mesh information

If the input geometry is aSHAPESweb,mesh++Topologycan dump a mesh data file for each topological element.

These files are used byNast++(seeNast++documentation) to perform projections aimed to the grid refinement.

The output file names include a keyword (point,line or surface) and an index that identifies the object in the

mesh++.input topology file.

Every file contains:

� the file name capitalized keyword (POINT, LINE, SURFACE) andthe space dimension (first row);

� the number of the web vertices and the number of the web simplices (second row);

� the point space coordinate and parameter values (for each web vertex);

� the index of each vertex w.r.t. the previous list (for each web simplex).

8 Input File

The input file has to be aSHAPES file containing a single xGEOM or a list of xGEOMs; in the latter case (and

only in this case) the name of the file must contain the string “.gms”. Every geometry in the file is expected to be

a two dimensional geometry. If it is a xGROUP, it must have onesingle child.

9 Output File

The output file describes the topology of the model in the format read by the mesher [1]. This topology does not

match exactly the topology of the input geometry, because the mesher is not able to treat it; so the topology output

file contains the topology obtained from theSHAPESmodel filtered by the hiding algorithm.

10 Syntax

The syntax required to run the mesh++Topology program is:

mesh++Topology --infile=<SHAPESFILE> --outfile=<FILE.INPUT>

--tol=<N> [--labels=<LABELSFILE>] [--mesh] [--help]

where:

� SHAPESFILE is aSHAPESfile containing the geometrical model;

� FILE.INPUT is the target file for the topology;

6

� N is the power of 10 to be used as tolerance for coincident vertices;

� LABELSFILE contains the mapping of the boundary conditions values;

� --mesh

outputs the mesh information for each topological entity;

� --help

prints usage

10.1 Usage examples

� mesh++Topology --infile=cylinder.gm --outfile=cylinder.input

--tol=-3

It reads the geometrical model from thecylinder.inputfile.

It dumps tocylinder.inputtopological information and (if any) default boundary conditions.

It uses10�3 as local tolerance.

� mesh++Topology --infile=cylinder.gm --outfile=cylinder.input

--tol=-3 --labelsfile=myLabelsFile

It dumps tocylinder.inputtopological information and (if any) boundary conditions read frommyLabelsFile.

� mesh++Topology --infile=cylinder.gm --outfile=cylinder.input

--tol=-3 --mesh

It produces a mesh data file for each topological element listed in thecylinder.inputfile.

7

11 Routines description

/***

evps1d

Purpose : It computes position vector and derivatives on a

parametric curve in the tridimensional space.

Synopsis :

int /* R : non-zero on error */

evps1d(

float *xl, /* I : address of the geom to be evaluated */

float *u, /* I : parametric coordinate local to the arc */

float *xp, /* O : position vector r evaluated in u */

float *xd, /* O : first derivative r,u */

float *xdd, /* O : 2nd derivative r,uu */

float *xddd, /* O : third derivative r,uuu */

float *sz, /* O : first derivative modulus ||r,u|| */

int *in /* I : mode for evaluations */

)

Description : This function performs evaluations over a curve.

xl is the address of the geometry to be queried.

It has to be a 1D xCELL and not a xGROUP.

u contains the value of the parameter defining the

evaluation.

The parameter value belongs to a canonical range defined

by the T0 and T1 constants in the file shInterface.h,

and the function evps1d is able to scale it in the SHAPES

parameter range of the geom representing the curve.

xp is the place to store the position vector of the curve

evaluated in the value u of the parameter.

xd is the place to store the first derivative of the curve

evaluated in the value u of the parameter.

xdd is the place to store the secund derivative of the curve

evaluated in the value u of the parameter.

xddd is the place to store the third derivative of the curve

evaluated in the value u of the parameter.

Now it is not used.

sz on output will contains the length of the first

derivative.

in is the mode used to perform the evaluations:

0: position vector, 1st, 2nd and 3rd derivative;

1: only position vector;

2: position vector and 1st derivative;

-1: only 1st derivative;

The function can’t currently evaluate third

8

derivatives, because SHAPES doesn’t support it.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

evsurg

Purpose : Evaluate point position and derivatives corresponding to

the parametric coordinates u,v on a surface.

Synopsis :

int /* R : non-zero on error */

evsurg(

float *aps, /* I : address of the geom to be queried */

float *u, /* I : local parametric coordinates */

float *v, /* I : local parametric coordinates */

int *ndu, /* I : dummy argument */

int *ndv, /* I : dummy argument */

float r[3], /* O : position vector */

float ru[3], /* O : 1st derivatives r,u */

float rv[3], /* O : 1st derivatives r,v */

float ruv[3], /* O : 2nd derivatives r,uv */

float ruu[3], /* O : 2nd derivatives r,uu */

float rvv[3], /* O : 2nd derivatives r,vv */

int *ind /* I : mode for evaluations */

)

Description : This function performs evaluations over a surface.

aps is the address of the geometry to be queried.

It has to be a 2D xCELL and not a xGROUP.

u contains the value of the first parameter defining the

evaluation.

v contains the value of the secund parameter defining the

evaluation.

The parameter values belong to a canonical range defined

by the T0 and T1 constants in the file shInterface.h,

and the function is able to scale it in the SHAPES

parameter range of the geom representing the surface.

ndu is a dummy argument.

ndv is a dummy argument.

r is the place to store the position vector of the surface

evaluated in the values u and v of its parameters.

ru is the place to store the first derivative w.r.t. u of

the surface evaluated in the values u and v of its parameters.

rv is the place to store the first derivative w.r.t. v of

the surface evaluated in the values u and v of its parameters.

9

ruu is the place to store the secund derivative w.r.t. u of

the surface evaluated in the values u and v of its parameters.

ruv is the place to store the secund derivative w.r.t. u and v

of the surface evaluated in the values u and v of its

parameters.

rvv is the place to store the secund derivative w.r.t. v of

the surface evaluated in the values u and v of its parameters.

xddd is the place to store the third derivative of the curve

evaluated in the value u of the parameter.

Now it is not used.

sz on output will contains the length of the first

derivative.

ind is the mode used to perform the evaluations:

-1: only ru and rv

0: all

1: only position vector r

2: only r and 1st derivs r,u and r,v

The function currently can’t evaluate secund

derivatives with respect to u and v, because SHAPES

doesn’t support it.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

xlenst

Purpose : Compute the length of a segment of parametric

curve between the points corresponding to two values

of its parameter.

Synopsys :

float /* R : length of arc between u1 and u2 */

xlenst(

float *xln1d, /* I : address of the geom to be queried */

float *u1, /* I : local parametric coordinate of first point */

float *u2, /* I : local parametric coordinate of second point */

float *eps, /* I : dummy argument */

float *prec, /* I : dummy argument */

int *in, /* I : dummy argument */

int *ierr /* I : dummy argument */

)

Description : This function evaluate the arc length over a curve.

xln1d is the address of the geometry to be queried.

It has to be a 1D xCELL and not a xGROUP.

u1 contains the first value of the parameter defining the

10

evaluation.

u2 contains the secund value of the parameter defining the

evaluation.

The parameter value belongs to a canonical range defined

by the T0 and T1 constants in the file shInterface.h,

and the function is able to scale it in the SHAPES

parameter range of the geom representing the curve.

eps is a dummy argument.

prec is a dummy argument.

in is a dummy argument.

ierr is a dummy argument.

The function returns the length of the arc between

u1 and u2.

/***

locps4

Purpose : Find the closest vertex from a point to a surface.

Synopsis :

int /* R : non-zero on error */

locps4(

int *n, /* I : dummy argument */

int *m, /* I : dummy argument */

int *keypa, /* I : dummy argument */

float *aps, /* I : address of the geometry to be queried */

float *xp, /* I : coordinates of given point */

float *ug, /* O : u parameter of the closest point */

float *vg, /* O : v parameter of the closest point */

float *u10, /* I : dummy argument */

float *u20, /* I : dummy argument */

float *v10, /* I : dummy argument */

float *v20, /* I : dummy argument */

float *r, /* O : found minimum r=r(ug,vg) */

float *z, /* O : r(ug,vg) - xp */

float *dist, /* O : distance ||r(ug,vg) - xp|| */

int *imes, /* I : dummy argument */

int *iter, /* I : dummy argument */

float *xinit[], /* I : dummy argument */

float *utl, /* I : dummy argument */

float *distl, /* I : dummy argument */

float *ftl, /* I : dummy argument */

float *zerom /* I : dummy argument */

)

Description : This routine finds the minimum of the function

11

DISTPS = || r - xp || where xp is a point on the 3d

space and r a point on a surface.

The search is limited to a prescribed interval.

n is a dummy argument.

m is a dummy argument.

keypa is a dummy argument.

aps is the address of the geometry to be queried.

It has to be a 2D xCELL and not a xGROUP.

xp is the address of the array containing the coordinates

in the modeling space of the given point.

ug is the value of the u parameter corresponding to the

point of the surface closer to the given point xp.

vg is the value of the v parameter corresponding to the

point of the surface closer to the given point xp.

The values ug and vg belong to the range defined

by the constants T0 and T1 in the file shInterface.h.

u10 is a dummy argument.

u20 is a dummy argument.

v10 is a dummy argument.

v20 is a dummy argument.

r is the place to store the coordinates in the modeling space

of the point of the surface closer to the given point.

z is the place to store the coordinates in the modeling space

of the vector holding as beginning and ending points the

given point xp and the found point r.

dist on output will contain the distance between the given

point and the point of the surface closest to it.

imes is a dummy argument.

iter is a dummy argument.

xinit is a dummy argument.

utl is a dummy argument.

distl is a dummy argument.

ftl is a dummy argument.

zerom is a dummy argument.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

loas1r

Purpose : Load a curve from a list of edges.

Synopsis :

int /* R : non-zero on error */

loas1r(

12

int *n, /* O : number of nodes of the edge */

int *isn, /* O : number of arcs composing the edges */

float *xln1d, /* O : pointer to the curve geom */

int *is /* I : id of the edge to be loaded */

)

Description : This function sets the current curve of the program

to the one corresponding to a given edge. Any edge

corresponds to an integer id, and this function

writes the edge geom on a given memory area.

n on output will contain the number of nodes of

the edge, that it will be always 2.

A node is a bound point between two different

parameterization intervals of the edge.

isn is the number of arcs composing the edge, that is

always 1.

xln1d is the place to store the edge geom.

On output, it will contain -1 and -1 in its first

and secund location, meaning that the geometry

recorded is a SHAPES geom. In the third location

from xln1d it is written this SHAPES geom.

is is the id of the edge to be loaded.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

loas2r

Purpose : Load a surfaces from a list of faces.

Synopsis :

int /* R : non-zero on error */

loas2r(

int *keypa, /* O : number of patches composing the face */

float *aps, /* O : pointer to the face geom */

int *isur, /* I : id of the face to be loaded */

int *n, /* O : number of nodes in the u direction */

int *m /* O : number of nodes in the v direction */

)

Description : This function sets the current surface of the program

to the one corresponding to a given face. Any face

corresponds to an integer id, and this function

writes the face geom on a given memory area.

keypa is the number of patches composing the face, that is

always 1.

aps is the place to store the face geom.

13

On output, it will contain -1 and -1 in its first

and secund location, meaning that the geometry

recorded is a SHAPES geom. In the third location

from xln1d it is written this SHAPES geom.

isur is the id of the face to be loaded.

n on output will contain the number of nodes of

the face in the u direction, that it will be always 2.

m on output will contain the number of nodes of

the face in the v direction, that it will be always 2.

A node is a bound point between two different

parameterization intervals.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

compu

Purpose : Find the closest vertex from a point to a curve.

Synopsis :

int

compu(

int *n, /* I : dummy argument */

float x[3], /* I : input point */

int *iss, /* I : dummy argument */

int *isn, /* I : dummy argument */

float *xln1d, /* I : address of the geometry to be queried */

float *ug, /* O : global parameter of the closest point */

int *imel, /* I : dummy argument */

float *dist /* O : distance between the given point and the

closer one */

)

Description : This routine finds the minimum of the function

DISTPS = || r - x || where x is a point on the 3d

space and r a point on a given curve.

The search is limited to a prescribed interval.

n is a dummy argument.

x is the address of the array containing the coordinates

in the modeling space of the given point.

iss is a dummy argument.

isn is a dummy argument.

xln1d is the address of the geometry to be queried.

It has to be a 1D xCELL and not a xGROUP.

ug is the value of the parameter corresponding to the

point of the curve closer to the given point x.

14

The value ug belongs to the range defined

by the constants T0 and T1 in the file shInterface.h.

imel is a dummy argument.

dist is the distance between the given point and the

found one.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

gmeshinit

Purpose : Begin the SHAPES session and load a geometric model from

a file.

Synopsis :

void /* R : - */

gmeshinit(

char *file /* I : SHAPES file holding the geometric model */

)

Description : This function begins the interaction with SHAPES and

read a geometric model from a file.

It hides to the client all the SHAPES details,

and the client will simply access the geometric

objects by their indices read from a topology file.

file is the SHAPES file holding the geometric model.

/***

aisclose

Purpose : End the SHAPES session.

Synopsis :

void /* R : - */

aisclose(

void

)

Description : This function ends the interaction with SHAPES.

/***

loadFromFile

Purpose : Load a geometry from a SHAPES file.

Synopsis :

xINT /* R : non-zero on error */

15

loadFromFile(

char *file, /* I : file holding the

geometry to be loaded */

shGEOMETRY *geometry /* I/O: geometry to store the

loaded geoemtry */

)

Description : This function loads a geometry from a SHAPES file and

records it in a shGEOMETRY structure.

file is the file holding the geometry to be loaded.

It must contain the string ".gms" if and only if it

holds a list of xGEOMs.

geometry is the structure to contain the geometry and the

list of its topological elements.

On output, its fields are initialized as:

dataFile points to file;

geom (or geoms) points to the geometric model and

the other to NULL;

isGeom is T or NIL according to the model being

a single xGEOM or a list.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

getTopology

Purpose : Process a geometric model and initialize the list of all

its topological entities.

Synopsis :

xINT /* R : non-zero on error */

getTopology(

shGEOMETRY *geometry /* I/O: geometry to be processed */

)

Description : This function queries a xGEOM for the lists of its

vertices, edges, faces.

geometry is the structure containing the xGEOM to be

queried.

On output, its fields are initialized as:

geomVertices describes the list of the vertices

of the model;

geomEdges describes the list of the edges

of the model;

geomFaces describes the list of the faces

of the model;

The function also initialize the global variables

16

pointing to the list of vertices, edges and faces

of the model.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

checkMidPoint

Purpose : It checks whether the point corresponding to the

middle value of the parameter range of a curve

is contained in another curve.

Synopsis :

xINT /* R : T if edge1 and edge2

share the edge1 "middle

parameter point */

checkMidPoint(

xGEOM edge1, /* I : curve whose "middle

parameter" point is

computed */

xGEOM edge2 /* I : curve searched for

the point containment */

)

Description : This function searches for coincidence of two

curves sharing the same vertices.

edge1 is the curve whose "middle parameter" point

is to be calculated.

It has to be a 1D xCELL.

edge2 is the curve queried for containment of the

"middle parameter" point of edge1.

It has to be a 1D xCELL.

The function returns T if the "middle

parameter" point of edge1 is contained in

edge2 and NIL otherwise.

/***

createEdgeKey

Purpose : It associates to an edge an hashing key based on

its vertices indices.

Synopsis :

xINT /* R : hashing key for edge */

createEdgeKey(

xGEOM edge, /* I : edge whose hashing key

17

is to be computed */

xINT hashShift /* I : multiply constant used

in the hashing key

computing */

)

Description : This function assigns the same hashing code

to edges sharing the same vertices.

edge is the curve whose hashing key is to be

computed. It is computed as

min(v1,v2)*hashShift + max(v1,v2)

being v1 and v2 the indices of edge vertices.

It has to be a 1D xCELL.

hashShift is the multiply constant used in the

hashing key computing.

The function returns the hashing key of

edge.

/***

markEdges

Purpose : It marks the edges of a model in such a way

to make recognizable who are coincident.

Synopsis :

xINT /* R : non-zero on errors */

markEdges(

shGEOMETRY *geometry /* I/O : model to be

queried */

)

Description : It marks the first processed of a set of overlapping

edges as master and all the other ones as slave.

It attachs to each master edge an incremental

index attribute, and to each slave the same index

as its master.

geometry is the model to be queried.

On output its 1skeleton are marked as master

or slave and have attached a suitable index

attribute.

The function returns NIL if successful and T

otherwise.

/***

markVertices

18

Purpose : It marks the vertices of a model in such a way

to make recognizable who are coincident.

Synopsis :

xINT /* R : non-zero on errors */

markVertices(

shGEOMETRY *geometry /* I/O : model to be

queried */

)

Description : It marks the first processed of a set of overlapping

vertices as master and all the other ones as slave.

It attachs to each master vertex an incremental

index attribute, and to each slave the same index

as its master.

geometry is the model to be queried.

On output its 0skeleton are marked as master

or slave and have attached a suitable index

attribute.

The function returns NIL if successful and T

otherwise.

/***

writeTopology

Purpose : Write the topology of a geometrical model in a format

that Mesh++ can read.

Synopsis :

static xINT /* R : non-zero on error */

writeTopology(

shGEOMETRY *geometry, /* I : geometry to be queried

for its topology */

char *file /* I : file to write to */

)

Description : This function processes the lists of the topological

elements of a geometry and outputs them in the format

requested by Mesh++.

geometry is the structure containing the geometrical model.

file is the path of the file to write to. If file already

exists, it is overwritten.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

shInit

19

Purpose : Initialize a geometry structure to describe the

geometric model recorded in a SHAPES file.

Synopsis :

xINT /* R : non-zero on error */

shInit(

xCHAR *file, /* I : SHAPES file containing the geometry */

shGEOMETRY *geometry /* I/O: structure to hold the geometry */

)

Description : This function loads a geometric model from a file

and initialize a geometry structure to describe it.

This is accomplished by calling the loadFromFile

ang getTopology facilities.

geometry is the structure to describe the geometrical model.

On output, the structure will contain:

the model read from file in the field geom or geoms;

the list of its vertices in the field geomVertices;

the list of its edges in the field geomEdges;

the list of its faces in the field geomFaces;

a pointer to the string "file" in the field dataFile.

The field isGeom is 1 if file contains a single

xGEOM and 0 otherwise. In the former case, the model

address is recorded in the field geoms, while in the

latter one it is recorded in the field geom.

file is the pathname of the file to be used.

The function also initialize the heaps memory to

store the SHAPES objects.

The function returns SH_OK if successful and SH_ERROR

otherwise.

/***

shClose

Purpose : Free the memory used to allocate a geometrical model and

terminates the interaction with SHAPES.

Synopsis :

xINT /* R : non-zero on error */

shClose(

shGEOMETRY *geometry /* I : geometry holding the current model */

)

Description : This function deletes all the objects used to describe

a geometrical model and terminates the SHAPES session.

geometry is the structure to be freed;

The function returns SH_OK if successful and SH_ERROR

20

otherwise.

/***

exportGeomToOffFile

Purpose : Dump out a geom to a Noff file.

Synopsis :

void /* R : - */

exportGeomToOffFile(

xGEOM geom, /* I : geom to be dumped out */

char *file /* I : file to be written */

)

Description : This function writes a geom in Noff format.

geom is the geometry to be dumped out.

Are allowed only 2dimensional xGEOMs.

file is the pathname of the file Noff to be written.

Its extension must be .off.

/***

length

Purpose : Compute the length of a vector of a 3D space.

Synopsis :

float /* R : the length of the vector */

length(

float *vector /* I : vector to be queried for its length */

)

Description : This function calculates the lenght of a vector.

vector is the address of the array containing the vector.

The function returns the length of the vector.

/***

euclideanDistance

Purpose : Compute the euclidean distance between two points of a

3D space.

Synopsis :

float /* R : the euclidean distance between p1 and p2 */

euclideanDistance(

float *p1, /* I : first point */

float *p2 /* I : secund point */

)

21

Description : This function calculates the distance between two

points.

p1 is the address of the array holding the coordinates of

the first point.

p2 is the address of the array holding the coordinates of

the secund point.

The function returns the distance between p1 and p2.

/***

addPointsToGeom

Purpose : Join new vertices to a geom.

Synopsis :

xGEOM /* R : modified geometry */

addPointsToGeom(

xGEOM g, /* I : geom to be modified by adding vertices */

xREAL *points, /* I : points to be joined to the geom g */

xINT n /* I : number of points to be joined to g */

)

Description : This function performs a geometric union between a

geom and a given set of points.

g is the geometry to be modified.

points is the address of the array holding the coordinates

in the modeling space of the points to be joined to

the geom.

n is the number of points to be joined to the geom.

The points array has 3*n elements.

The function returns a geometry (a xGROUP)

representing the union between the original geom g

and the given points.

/***

createAttr

Purpose : Create a new attribute of an already existent attribute

specifier.

Synopsis :

xATTR /* R : created attribute */

createAttr(

xCHAR *specId, /* I : specId of attribute

specifier for the

new attribute */

xADDR value /* I : address to be

22

stored in the new

attribute */

)

Description : This function creates a new attribute storing

a given address value.

specId is the identifier string for the attribute

specifier of the attribute to be created.

value is the address to be stored in the data

structure representing the attribute.

The function returns the newly created

attribute.

/***

attachIndexAttr

Purpose : Attach to a geometry an index attribute having

value id.

Synopsis :

xINT /* R : non-zero on errors */

attachIndexAttr(

xGEOM g, /* I/O : geom to be marked

with the index

attribute */

xINT id /* I : integer value of the

index attribute to

be attached */

)

Description : This function creates an attribute of type

index holding a given integer value, and

associates it to a given geometry.

g is the xGEOM to be marked with the index

attribute

id is the integer value of the index attribute

to be associated to g.

The function returns NIL if successful,

and T otherwhise

/***

getIndexVal

Purpose : Get the integer value of the index attribute

of a given geom.

Synopsis :

xINT /* R : index value of g */

23

getIndexVal(

xGEOM g /* I : geom to be queried */

)

Description : This function queries a xGEOM for its

index attribute, and this attribute

for its integer value.

g is the xGEOM to be queried.

The function returns the index value of the

geometry.

/***

isMaster

Purpose : Query a geometry for its master attribute

Synopsis :

xINT /* R : T if g is a master */

isMaster(

xGEOM g /* I : geom to be queried */

)

Description : This function finds whether a geom is

a master or a slave.

g is the xGEOM to be queried.

The function returns the T if the masterType

attribute attached to the geom is master,

and NIL otherwise.

/***

mark

Purpose : Attach to a geometry an existing attribute.

Synopsis :

xGEOM /* R : the modified geometry */

mark(

xGEOM geom, /* I/O : the geometry to be

marked with the

attribute */

xCHAR *string /* I : the string identifying

the attribute */

)

Description : This function associates to a geom an

existing attribute identified by a

string.

24

geom is the xGEOM to be marked with the

attribute.

string is the identifier for the attribute

to be attached.

Currently supported attribute are:

"master" -> master attribute

"slave" -> slave attribute

The function returns the modified geom

25

References

[1] Luca Formaggia, Giovanni Delussu - Mesh++ input description [VIVA-1998-2-10]

26

