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The CRS4 Virtual Vascular Project (ViVa) is aimed to the development of software
tools for hemodynamic specialists and cardiovascular surgeons in order to study
and interpret the information produced by non-invasive imaging equipment. The
computational kernel of the ViVa system is a solver of the Navier-Stokes equa-
tions for viscous incompressible fluid, which govern the blood flow in large vessels
(e.g. arteries). The computational strategy is based on the domain decomposi-
tion with the mortar element method. The mortar element method provides high
encapsulation on the level of subdomain computations, i.e. subdomain meshes,
matrices, preconditioners can be treated completely independently. This feature
allows to implement the mortar method efficiently within the frames of the object
oriented approach and C++ programming language. Thanks to the modularity of
the code, in different subdomains we can use different meshes (hexagonal, tetra-
hedral), different matrix storage schemes (band, sparse), different preconditioners.
The flexibility in the choice of the subdomain numerical technique makes it possible
to construct computationally “optimal” applications, for instance, to use multigrid
subdomain preconditioners, or to exploit coarser meshes, where the solution is s-
mooth, etc. Thus a library of C++ classes has been developed, which can be used
to build a required numerical model.

1 Introduction

In this paper we present a program, Nast+-+, specifically developed for
the simulation of blood flow and passive scalars transport in large arteries.
Nast++ is designed as a part of a larger project (ViVa), 2 being carried out
at the Center for Advanced Studies, Research and Development in Sardini-
a (CRS4). The aim of ViVa is to develop tools for the modern hemody-
namicist and cardiovascular surgeon to study and interpret the constantly
increasing amount of information being produced by noninvasive imaging e-
quipment. In particular, the system should be able to process and visualize
three-dimensional medical data, reconstruct the geometry of arteries of spe-
cific patients, and simulate blood flow in them.

Nast++ is structured as a toolbox containing blocks (mapped to C++
classes) which can be composed to address a wide scope of applications requir-
ing the solution of series of elliptic (Poisson, Helmholtz) equations. Nast++
computational approach is based on the division of the physical space in sub-
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domains connected together by mortar elements. The latter computational
method takes advantage of the weak continuity condition on interfaces be-
tween subdomains to allow for a flexible description of the computational
procedure within each subdomain. In particular, it makes possible to have
non conforming meshes in different subdomains.

The clinical relevance of blood flow simulation in large arteries is crucial-
ly based on the capability of running the simulation on realistic geometrical
models of the vessels of the patient treated. In general, and even more so in
the pathological cases, there is a large variability in vessels geometries and
this, in turn, results in a wide variation of possible blood flow behaviors. The
mortar elements approach provides a powerful framework in this applicative
context because it allows to increase grid resolution where it is needed, typ-
ically close to bifurcation regions, and to substitute parts of the geometry,
for instance to simulate the effect of a angioplastic procedure, without the
need of rebuilding the grids for the whole computational domain. The mortar
domain decomposition method can be implemented very effectively using OO
techniques and, moreover, is particularly well suited for parallelization. !

In recent years there has been a general effort to use object oriented
programming techniques for the numerical solution of partial differential e-
quations (PDEs) using the finite element method. %' Although the object
oriented approach makes it easier to develop, modify and adapt a program to
a particular application, we found, as already reported by other authors, that
it is a non trivial task to write a computationally efficient C++ code while
maintaining a object oriented design.

The content of this paper is the following. In the section 2 we present
the problem, give the weak formulation of the Navier-Stokes equations for
the incompressible flow, and formulate the methods to solve the problem
numerically, such as the Lagrangian-Galerkin/projection method for the time-
dependent Navier-Stokes equations, and the mortar finite element method.
We also give here a brief sketch of the methods used to solve the resulting
algebraic system. Section 3 is devoted to the data structure implemented in
the code and demonstrates some numerical results of blood flow simulation in
prototypical geometries.

2 Problem and Methods

Blood is a complicated fluid with a complex rheology. ' However, in the
specific case of blood flow in large arteries, the length scales and time scale
characterizing the flow are such that it is appropriate to describe it as an
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incompressible Newtonian fluid, 2° governed by the following equations

%—VV(Vu)—(u-V)u-I—Vp:f
V-u=0 (1)
xeN, t>0

where u = (u1,u9,us) is a velocity field, p is a pressure, v is an average value
for blood kinematic viscosity. a viscosity coefficient, f is a volumic external
force.

In principle, this model is incomplete because it neglects the interaction
between blood flow and the elastic behavior of the arterial walls. In typical
applications, however, this interaction is considered a secondary effect and
thus ignored. 2* Nast++ is designed to provide support for fluid-structure
interaction modeling, but this feature will be reported elsewhere.

We consider boundary conditions of two types. Assume that the boundary
of the domain 2 is composed of two parts:

Q=ToUTy, where Ty = ]S
k

On Ty the velocity is prescribed: u = U(x,t), x € Ty, ¢ > 0, whereas on I'y
the mean pressure boundary condition is applied, '* that is:

1
ISkl /s,

where Py (t) is a prescribed scalar function. In the case of the blood flow
problem T’y represents a vessel wall boundary, and Sj are artificial upstream
and downstream section boundaries. The system (1) along with the boundary
conditions (2) does not result in a well-posed problem, and thus it is necessary
to prescribe additional boundary condition in order to close the system. 4
Besides the boundary conditions (2), it is possible to prescribe also a total
pressure or a net flux on the upstream and downstream artificial boundaries
Sk- 6,14
A weak formulation of the system (1) reads as follows

pds = Py(t), (2)

(%,v) + (wVu,Vv) — (p,Vv) = (f,v) —Zk:Pk(t)/v-ndS

(V-u,q) =0 > )

V(v,q) eVUQ
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D 0
where Fltl =5 (u-V)u is the total (material) time derivative, and V

and () are suitable functional spaces.

To integrate in time the Navier-Stokes equations we have implemented
a combination of the fractional step projection method '':!3:19:22 and the
Lagrange-Galerkin (characteristic) method, '® although the package provides
the tools to implement other time advancing schemes. Therefore the prob-
lem is reduced to a series of linear elliptic equations with symmetric operators:
three Helmholtz equations for the velocity components, and the Poisson equa-
tion for the pressure. This time scheme is conditionally stable, although the
condition on the time step to guarantee convergence is not very restrictive. 4

The spatial approximation implemented in the Nast++ package, is based
on the mortar finite element domain decomposition method. 82! We assume
that the physical domain 2 is decomposed into several non-overlapping sub-
domains, @ = (J, Q;, in such a way that a non-empty intersection between
two subdomains can be either a point, or a curve, or a plane. In the latter
case we call the intersection a mortar interface.

Thanks to the weak continuity condition on the interfaces between sub-
domains, we have more freedom to choose mesh and approximation in each
subdomain, i.e., the meshes can be nonmatching on the interfaces, and we
can use different finite elements in different subdomains. The Nast++ pack-
age provides the choice between tetrahedral and hexahedral meshes, and in
the latter case the mesh can be unstructured or structured, i.e. “topologically
equivalent” to a Cartesian grid. In any case it is assumed that each mesh is
derived using several levels of uniform refinement, from a given coarse mesh.

A formulation of the mortar element method with Lagrange multipliers ”
as applied to an elliptic linear equation gives rise to an algebraic saddle point
problem with the matrix

Ay 0

e ()

where each matrix A; corresponds to a subdomain problem. To solve a linear
algebraic problem with the matrix (4), an iterative method is implemented,
with a block diagonal preconditioner, containing subdomain preconditioners,
spectrally equivalent to the matrices A4;. V> To make full use of the mul-
tilevel structure of subdomain meshes, we have implemented the multigrid
preconditioner 2 for Nast++.
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3 Program Structure and Numerical Results

A typical Nast++ main routine has the following structure
void main(int argc, char *xargv) {

NS_Equations problem(argv([1]);

problem.makeBoundaryConditions () ;
problem.makeTimeScheme() ;
problem.runTimeScheme () ;

}

where NS_Equations is a C++ class, implementing the numerical methods
and the corresponding data structure. On the “highest” level of the package
we tried to take advantage of this approach as much as possible.
stance, the class NS_Equations is derived (inherited) from the template class
Domain<Operator_type>, which is a base for development of applications. It
contains basically the information on the geometrical properties of the prob-

lem and is defined approximately as follows:
template<Operator_type> class Domain {

protected:
VECTOR<Geom_subdomain> geom_subdomains_;
VECTOR<Variable> variables_;
};
NS_Equations
Convection Domain<OperaTl>
Characteristic Variable<Operal>
Subdomain Mortar
Preconditioner Matrix Mesh MortarMatrix SurfaceMesh

Figure 1. Structure of the Nast++ package.
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The data member VECTOR<Variable> variables_ indeed represents actual
variables of the problem in a “mathematical” sense. For example, in the case
of NS_Equations class variables_[0] represents a velocity component, and
variables_[1] - a pressure.

The general structure of the Nast++ package and its basic component
are shown on Figure 1. In this section we present some simulation results
obtained on prototypical geometries. The main purpose of these simulation is
to show that Nast++ is actually able to drive flows using the average pressure
boundary conditions described above and that the subdomain decomposition
used does not introduce unphysical discontinuities in the resulting flow. Figure
2 is a model ® for an aneurism, a local, pathological enlargement of a vessel.
The computational domain is split in 3 regions, with one characterized by a
high resolution grid in the aneurism region. The adjacent figure shows the flow
resulting by an assigned pressure difference between the inlet and the outlet
surfaces. The geometry and the in flow, out flow conditions are the same
specified in °, and the resulting flow is, within numerical errors, consistent
with what reported there. As can be glimpsed from the image, and proved
by more accurate checks, the flow discontinuities are within the numerical
approximation errors. The geometry of the second example is described in
Figure 3. Here we consider a simplified bifurcation model. Again the geometry
is partitioned in several subdomains each with different resolution grids, and,
as before, we are using an higher resolution grid in the bifurcation region.
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Figure 2. Finite element mesh and velocity profile for the aneurism problem: 3 tetrahedral
meshes.
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The resulting flow, driven by assigned pressure differences, is consistent with
what found in the literature for similar geometries and it does not appear to
be affected by the domain decomposition.

4 Conclusions

We have presented Nast++ , a package specifically developed for the efficient
numerical simulation of blood flow in large arteries. Nast++ is based on a
marriage between an algorithmic framework — the mortar element domain
decomposition — and a software technology — object oriented programming —
that are well suited to each other. As we hinted in this article, the result
is a computationally efficient and flexible tool that is well adapted to the
simulation of blood flow in large arteries.

In this paper, we have mainly discussed some of the technological aspects
of Nast++. In a forthcoming article we will report on its application to the
simulation of blood flow in realistic, and clinically relevant, arterial geometries.
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Figure 3. Finite element mesh velocity profile for the bifurcation problem: 4 hexahedral
and 1 tetrahedral meshes.
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