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Abstract

The coupling of hydrological distributed models to numerical weather

predictions outputs is an important issue for hydrological applications

such as forecasting of ood events. Downscaling meteorological predic-

tions to the hydrological scales requires the resolution of two fundamental

issues regarding precipitation, namely: 1) understanding the statistical

properties and scaling laws of rainfall �elds; 2) validation of downscaling

models that are able to preserve statistical characteristics observed in

real precipitation. In this paper we discuss the �rst issue by introducing

a new multifractal model that appears particularly suitable for random

generation of synthetic rainfall. We argue that the results presented in

this paper may be also useful for the solution of the second question.

Statistical behavior of rainfall in time is investigated through a high

resolution time series recorded in Genova (Italy). The multifractal anal-

ysis shows the presence of a temporal threshold, localized around 10�20

hours, which separates two ranges of anomalous scaling laws. Synthetic

time series, characterized by very similar scaling laws to the observed one,

are generated with the multifractal model. The potential of the model

for extreme rainfall event distributions is also discussed. The multifrac-

tal analysis of GATE radar �elds have shown that statistical properties

of rainfall in space depend on time durations over which precipitation

is accumulated. Further analysis of some rainfall �elds produced with a

meteorological limited area model exhibited the same anomalous scaling

as the GATE �elds.

Correspondence to: Roberto Deidda
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1 Introduction

In the last 30 years much research and many contributions have been focused both

on statistical analysis of extreme events distributions and on stochastic modeling of

rainfall in time and space. Current atmospheric numerical modeling makes opera-

tional rainfall �eld prediction feasible with signi�cant short-range reliability. The

problem of \downscaling" of the precipitation �elds is now very topical as it rep-

resents a natural link between the scales of meteorological applications and those

of surface hydrologic modeling. Meteorological centers for numerical weather pre-

diction distribute forecasts of precipitation �elds with grid-size spatial resolutions

ranging from 10

4

km

2

(general circulation models, GCMs) to 10

2

km

2

(limited area

models, LAMs). For hydrological applications we need, instead, to have precipita-

tion predictions at the smaller spatial and temporal scales of basins. Thus, given

average precipitation depths at large scale, e.g., those from meteorological models,

accurate downscaling to enable simulation of precipitation �elds over smaller scales,

preserving correctly the statistical properties observed on real signals across the

di�erent scales, would be very useful.

Past research on space-time stochastic modeling of precipitation has addressed

mainly two classes of models: cluster-based and fractal/multifractal models. A

common assumption of cluster-based models is that the rainfall process be orga-

nized in a preferred hierarchy of scales in space and time. This hierarchy of scales

would represent, with more or less detail, the process of rainband arrival, the clus-

ter organization of cells within a rainband, and the life-cycle of cells belonging to

each cluster. LeCam [1961] can be considered the precursor of cluster-based models,

while the most popular implementation of such models is represented by the WGR

model [Waymire et al., 1984]. Following the second line of research, more recent pa-

pers deal with multifractal models based on random cascades [Gupta and Waymire,

1993; Hubert et al., 1993; Kumar and Foufoula-Georgiou, 1993; Ladoy et al., 1993;

Lovejoy and Schertzer, 1992; Schertzer and Lovejoy, 1987; Tissier et al., 1993]. Many

of the multifractal models proposed for simulation of synthetic precipitation �elds

were �rst applied to simulate anomalous scaling of velocity �elds in turbulent ows
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[Benzi et al., 1984].

At the moment the multifractal theory represents the most powerful approach

to nonlinear phenomena such as turbulent velocity uctuation or intermittency of

precipitation. The multifractal formalism allows a robust statistical control over

any moment of a given distribution of measures, if some kind of similarity holds

over a range of scales. Analysis and comparison between real signals and simulated

ones must address the behavior of high moment distributions over di�erent scales

of interest, rather than, for example, the fractional coverage of wetted areas or rain

duration. Two reasons for this are: 1) fractional coverage can be biased by the

discrete sampling of data, especially for smaller scales, and, more importantly, 2)

the strongest events can be correctly captured only if we are able to reproduce higher

order moments.

From the analysis of statistical properties of rainfall in time or in space, such

as presented in this paper, it is clear that precipitation is a strongly intermittent

and nonlinear process: multifractal analysis shows indeed that rainfall �elds are

characterized, both in space and in time, by anomalous scaling laws, whose scaling

exponents can be expressed as convex, and so nonlinear, functions of the moments.

This means that simple fractal models like the �-model proposed 20 years ago by

Frish et al. [1978] for turbulence intermittency, and recently by Over and Gupta

[1994] for generation of rainfall, are not the best way to create synthetic �elds of

precipitation, because scaling exponents of fractal models depend linearly on the

moments.

In this paper we review briey the multifractal theory and a new general concept

of scaling [Benzi et al., 1996], and we point out the important role that in�nitively

divisible distributions (i.d.d.), such as log-Poisson, have on multiplicative processes.

We then present the main features of a recently developed multifractal model [Dei-

dda, 1997], that can be applied to rainfall downscaling problems. The model recalls

some ideas from Benzi et al. [1993a], but it is based on an expansion of positive

de�nite wavelets with coe�cients belonging to a stochastic cascade. In such a way,

we are able to construct positive de�nite multifractal measures in spaces of any di-

mension. The analytical derivation of the theoretical anomalous scaling laws of the
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generated signal is also presented. In view of possible application of this model for

generating synthetic rainfall, we discuss some examples of simulations in one and

two-dimensional spaces that illustate the good agreement between the theoretically

expected scaling laws and those obtained from Monte Carlo simulations.

Results of multifractal analysis of a high resolution (1 minute) time series of

precipitation recorded in Genova over 8 years have shown the existence of two ranges

of anomalous scaling for time smaller and longer than a duration threshold. The

physical meaning and explanation of the threshold is addressed later in the paper.

However, within each range, the analysis of moments of signals displays a nonlinear

behavior that justi�es the multifractal approach. In order to test the ability of

the model to generate time series of precipitation we have compared scaling laws of

synthetic time series with those of the observed one. Additional veri�cation of model

performance was conducted on rainfall yearly maxima at di�erent time duration:

extreme event distributions of synthetic signals were successful compared with those

of the observed time series. The positive results of this comparison enables us, when

no measure is available at small scales, to use models for stochastic downscaling of

precipitation to transfer information from time series at larger scales.

We also discuss in this paper the analysis of statistical properties of precipitation

in space. Results on spatial �elds of rainfall are based on radar observations during

the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment,

often referred as the GATE experiment, and on some precipitation �elds obtained

by a numerical simulation at very high resolution (10 km) performed with a LAM.

We show that the anomalous scaling laws of rainfall in space depend strongly on the

time scale over which precipitation is accumulated. To demonstrate this we have

analyzed the GATE �elds not only at their original resolution of 15 minutes, but

also the �elds accumulated over 30 minutes, 1 hour and up to 24 hours. As expected,

rainfall is characterized by a stronger intermittency for shorter accumulation times.

The LAM precipitation �elds also show anomalous scaling in the range from 10 to

160 km, but the most interesting result is that the statistical properties of the LAM

precipitation, stored every 6 hours of simulation, are very close to that found for

GATE at the corresponding 6-hour accumulation time.
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This paper is organized as follows: in section 2 a review of recent developments in

the scaling theory of three-dimensional turbulent ows is presented and connections

with rainfall data analysis are emphasized; a new multifractal model for random

generation of synthetic rainfall and theoretical derivation of scaling laws are pre-

sented in section 3; statistical behavior of a high resolution time series observed at

the University of Genova and some applications of the multifractal model for gen-

eration of synthetic rain time series are discussed in section 4; the spatial statistical

properties of rainfall �elds are investigated through GATE campaign data-sets and

from precipitation �elds produced by a limited area model simulation in section 5.

Finally, a summary and conclusions of this research are drawn in section 6.

2 Scale covariance and generalized scaling

We review recent developments in the multifractal theory of fully developed tur-

bulence. Our aim is to introduce the concepts of generalized scaling and of scale

covariance [Benzi et al., 1993b, 1995, 1996], which will be used in the present paper

to analyze and simulate the statistical properties of rainfall in time and in space.

We will formulate our review directly in the language useful for multifractal analysis

of rainfall data.

Let us consider a positive random �eld P (x) (P (x) � 0) de�ned on the set x 2

[0; L]. Without loss of generality, P (x) is normalized to 1, i.e.

R

L

0

P (x)dx = 1,

for any realization. Our primary interest is to discuss the scaling properties of the

quantity:

Z

x+r

x

P (y)dy � �

x

(r) (1)

P (x) is said to display anomalous scaling properties if:

< [�

x

(r)]

q

>� r

�(q)

(2)

where �(q) is a nonlinear function of q. The scaling exponents �(q) are also referred

to as multifractal exponents of P (x). In equation (2) < � � � > stands for both

x-average and ensemble average.

5



It is useful to introduce another quantity strictly connected to �

x

(r), namely:

�

x

(r) =

1

r

Z

x+r

x

P (y)dy =

�

x

(r)

r

(3)

It follows that, if equation (2) holds, one obtains:

< [�

x

(r)]

q

>� r

�(q)�q

(4)

Hereafter we shall also use the notation � (q) = �(q)� q. Because of the normal-

ization

R

L

0

P (x)dx = 1 we have:

�(1) = 1 ; � (1) = 0

(5)

Note that equations (5) are true independently of the (anomalous) scaling prop-

erties of P (x).

A way to give a physical interpretation of (2) and (4) is based on the multifractal

formalism. One assumes that �

x

(r) � r

�

, in a suitable range of r, with probability

Q

r

(�) � r

d�D(�)

, where D(�) is the fractal dimension, at scale r, where the local

scaling condition �

x

(r) � r

�

holds, and d is the dimension of the embedded space

(in our case d = 1).

It then follows that:

< [�

x

(r)]

q

>�

Z

r

q�+d�D(�)

d� = r

�(q)

(6)

Applying a saddle point estimate of the above integral we obtain � (q) = inf

�

[q�+ d �D(�)].

Let us remark that, in the multifractal formalism, both �

x

(r) and Q

r

(�) are assumed

to exhibit scaling behavior with respect to r.

A simple way to build up a multifractal �eld P (x) is to use a cascade model based

on random multipliers. Let us consider a set of length scales r

n

� 2

�n

L and let us

de�ne a generator �

i

to be:

�

x

(r

i

) � �

i

�

x

(r

i�1

) (7)

Then it follows that:

�

x

(r

n

) =

n

Y

i=1

�

i

�

x

(L) (8)
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Let us also suppose that the set of �

i

are identically distributed independent

random variables, with �

i

� 0. Then we have:

< [�

x

(r

n

)]

q

>�

n

Y

i=1

< �

q

i

>< �

x

(L)

q

> (9)

Because �

x

(L) = 1=L, we obtain:

< [�

x

(r

n

)]

q

>= L

�q

< �

q

>

n

= L

log

2

<�

q

>�q

r

� log

2

<�

q

>

n

= C(q)r

� log

2

<�

q

>

n

(10)

Using (6) and (10) we can identify � (q) = � log

2

< �

q

>. Because � (1) = 0, we

must require < � >= 1.

The result obtained in (10) relies upon the fact that n = � log

2

(r

n

=L) and that

all �

i

are independently identical distributed. In general one can de�ne r

n

= L�

�n

,

where � � 2 is called branching number. Alternatively one can write (8) as a

production of n(r) random multipliers �

i

, where n(r) = � log

�

(r=L). This tells us

that, for a given probability distribution of �

i

, the probability distribution of �

x

(r)

depends on the branching number �.

Let us now consider three arbitrary scales r

1

> r

2

> r

3

and let us de�ne the

random multiplier �

ij

through the relation:

�

x

(r

i

) = �

ij

�

x

(r

j

) (11)

By (11) we have:

�

13

= �

12

�

23

(12)

Equation (12) is true regardless of the ratios r

1

=r

2

and r

2

=r

3

are. Let P

ij

be the

probability distribution of �

ij

. Now we are interested in the probability distribution

P

ij

which is functionally invariant under transformation (12) or the equivalent:

log �

13

= log �

12

+ log �

23

(13)

Thus our search is restricted to probability distributions that are stable under con-

volution. For independently distributed random variables a solution to this problem

can be given in complete form. If the variables are correlated the problem becomes
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much more di�cult to solve, as is well known from the modern theory of second

order phase transition. For the time being we shall restrict ourselves to independent

random variables. In this case, for instance, the Gaussian and the Poisson distri-

bution are well known examples of probability distributions that are stable under

convolution.

Equivalently, a simple solution to this problem is given by all probability distri-

butions P

ij

such that:

< �

p

ij

>=

M

Y

k=1

"

g

k

(r

j

)

g

k

(r

i

)

#



k

(p)

(14)

for any function g

k

and 

k

. We remark that equation (14) represents the most

general solution to the problem, independently of the scale ratio r

i

=r

j

. Probability

distributions satisfying (14) will be referred to as scale covariant.

In order to understand clearly the meaning of (14) we want to give an example

based on a random log-Poisson multiplicative process. Namely we assume that:

�

ij

= A

ij

�

y

ij

(15)

where � < 1 is a constant parameter, A

ij

is a scale dependent parameter, and y

ij

is

a Poisson process with scale dependent parameter C

ij

(E[y

ij

] = c

ij

):

P (y

ij

= m) =

C

m

ij

e

�C

ij

m!

(16)

This example also provides a link between equation (14) and the case of probability

distributions that are stable under convolution.

By using (16) we obtain:

< �

p

ij

>= A

p

ij

exp [C

ij

(�

p

� 1)] (17)

Assuming 

1

(p) = p and 

2

(p) = �

p

� 1, equation (17) is equivalent to (14) if

we write A

ij

= g

1

(r

j

)=g

1

(r

i

) and expC

ij

= g

2

(r

j

)=g

2

(r

i

). Moreover, because of the

constraint < �

ij

>= 1, we also have A

ij

exp [C

ij

(� � 1)] = 1, or in terms of g

1

and

g

2

:

g

1

(r

j

)

g

1

(r

i

)

=

"

g

2

(r

j

)

g

2

(r

i

)

#

(1��)

(18)
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Finally we obtain:

< �

p

ij

>=

"

g

2

(r

j

)

g

2

(r

i

)

#

[p(1��)+�

p

�1]

(19)

Equation (19) implies:

< [�

x

(r)]

p

>� g

2

(r)

�[p(1��)+�

p

�1]

(20)

which is described by (14) with M = 1.

Only if we assume:

g

2

(r) = r

A

(21)

can we recover a scaling law for < �

x

(r)

p

>.

This example highlights an important point in our discussion: the scaling of

�

x

(r) with respect to r is not a necessary consequence of a cascade model based on

random multipliers. A scaling law is observed only by assuming that the parameters

describing the random multipliers show scaling with respect to r.

In the case of the scale covariance random multiplicative cascade model (hereafter

referred as the scale covariance model) we can observe for M = 1 a new kind of

generalized scaling, hereafter referred to as extended self similarity (ESS). Indeed

by (14) and (20) we have < �

x

(r)

p

>= g(r)

�(p)

. Therefore, even if g(r) does not

show any scaling in r, we have:

< �

x

(r)

p

>=< �

x

(r)

q

>

(p)

(q)

(22)

for any p 6= q and p 6= 1, q 6= 1. Equation (22) highlights the fact that the �eld

�

x

(r) is characterized by anomalous scaling, where the word anomalous refers to

dimensional counting.

By using the log-Poisson case as an example, we can provide a physical meaning

to the scale covariance model and extended self similarity (22).

Let us �rst assume that the scaling with respect to r holds as for (21). In this

case we have � (p) = A [�p (1� �)� �

p

+ 1]. For p ! 1 the asymptotic form of

� (p) is:

� (p)! �A (1 � �) p +A (23)
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Using the analog to equation (4), but for d-dimensional spaces, we must write

�(p) = � (p) + pd; so the asymptotic form of the multifractal exponents is �(p) !

p [d �A (1 � �)] + A. Following the multifractal interpretation we can de�ne A in

terms of the fractal dimension D

1

, de�ned as the fractal dimension of the set where

the strongest events take place:

A = d �D

1

(24)

Finally we obtain:

�(p)! p [D

1

+ � (d�D

1

)] + (d �D

1

) (25)

It is interesting to observe that, by using (24), equation (21) implies that g

2

(r)

is the probability distribution for the most extreme events. Such a probability

distribution shows a scaling behavior only if a geometrical interpretation, in terms

of fractal dimension, holds. Generalizing the concept of multifractals, we can think

of D

1

as the fractal dimension of the most intense uctuation at scale r:

D

1

= d �

log g

2

(r)

log r

(26)

where now g

2

(r) is not scaling in r. In this case, we lose the scaling properties of

�

x

(r) and we recover the ESS generalized scaling (22).

We make two important remarks in closing this review. The �rst has to do with

the extension of generalized scaling of the quantity �

x

(r). Using (3) we see that:

< �

x

(r)

p

>= r

p

< �

x

(r)

p

> (27)

Thus generalized scaling seems not to hold for �

x

(r). In fact we can de�ne a

dimensionless quantity R

p

(r) as:

R

p

(r) =

< �

x

(r)

p

>

< �

x

(r)

n

>

p

n

(28)

where n � 2. By using (28), (27) and (22) we have:

R

p

(r) =

< �

x

(r)

p

>

< �

x

(r)

n

>

p

n

=< �

x

(r)

p

>

1�

p(n)

n(p)

= R

q

(r)

h

(p)�

p

n

(n)

(q)�

q

n

(n)

i

(29)
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For the log-Poisson example we have for n = 2:

R

p

(r) = R

q

(r)

h

(1��

p

)�

p

2

(1��

2

)

(1��

q

)�

q

2

(1��

2

)

i

(30)

Equation (29) holds for any scale covariant model with M = 1. Note that the

scaling exponent of (30) does not depend on the function g

2

(r). Equation (30) can

also be considered as a generalized form of extended self similarity (GESS).

The second point concerns the role of the log-Poisson distribution or, more gen-

erally, the role of in�nitively divisible distributions (i.d.d.). As far as independent

random multipliers are used, the choice of an i.d.d. can be done in such a way to

satisfy scale covariance. So far, all published models for random multipliers based

on i.d.d. can be generalized in the form (14) with M = 1. Therefore, for those

models, generalized scaling (22) or (29) should hold.

Finally let us also comment about the fact that most emphasis has been addressed

on the universal value, if any, of the scaling exponents � (p). In light of the discussion

in this section we can state that the exponents � (p) may not be universal while their

ratios � (p)=� (q) may show universal values. This question will be addressed in the

following sections.

3 A model for synthetic rainfall

In this section we develop a simple model to simulate a synthetic, positive de�nite,

rainfall �eld with prede�ned anomalous scaling exponents. As we shall see, the

model can be adjusted to show any set of anomalous exponents explained by a

random multiplicative process. Moreover, it can be easily generalized to include

generalized scaling such as ESS (22) or GESS (29). We point out that the comparison

between synthetic rainfall �elds against observed ones will be extremely useful in

order to understand whether observed features of rainfall data, such as extreme

events, are correctly reproduced by synthetic �elds. In subsection 3.1 we discuss

our main theoretical result. In subsection 3.2 we show, using the example of the

log-Poisson distribution, how to include the concept of generalized scaling in the
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framework of the synthetic �eld. In subsection 3.3 we discuss some examples of

anomalous scaling obtained using numerical simulations.

3.1 Construction of signals and anomalous scaling

Let us consider a positive de�nite �eld �(x) with x 2 [0; 1] and let us de�ne the

structure functions S

q

as:

S

q

(r) =<

"

Z

�+r

�

�(x)dx

#

q

> (31)

where < � � � > is now a spatial average, de�ned as an integral over all possible

starting points �: < f >= c

R

fd�. We want to show how to construct the random

�eld �(x) showing anomalous scaling in the structure functions S

q

, namely

S

q

(r) � r

�(q)

(32)

where the symbol � is used to indicate quantities that di�er for a multiplicative

constant.

The generation of the signal �(x) is based on the following \wavelet" decomposi-

tion with coe�cients belonging to a dyadic stochastic cascade:

�(x) =

N

X

j=0

2

j

�1

X

k=0

�

j;k

 

j;k

(x) (33)

where j is an index for cascade level, varying from 0 (�rst element) to N (number of

cascade levels); k is the position index, varying from 0 to 2

j

� 1 in the j-th cascade

level;  

j;k

(x) is the wavelet on k-th position on level j; while �

j;k

is the coe�cient

extracted from the stochastic cascade.

The wavelets  

j;k

(x) are normalized in modulus and are obtained by stretching

and shifting of the same basis wavelet 	(x) that is positive de�nite and integrable

for x 2 [0; 1] and zero elsewhere:

 

j;k

(x) = 2

j

	(2

j

x� k) (34)

Using this de�nition it is easy to show that the normalization in modulus of

wavelets  

j;k

(x) can be derived from the norm of the basis function 	(x):

Z

1

0

 

j;k

(x)dx =

Z

1

0

	(z)dz = 1 (35)
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The following Gaussian distribution is an example of a basis wavelet:

	(x) =

8

>

<

>

:

c exp

�

�

1

2

�

x��

�

�

2

�

x 2 [0; 1]

0 x 62 [0; 1]

(36)

where � =

1

2

, � = 0:15 � 0:2 and c

�

=

1

�

p

2�

is a normalization constant. Figure 1

shows the basis function (36), with � = 0:15, and wavelets  

j;k

(x) obtained using

relation (34) over the �rst two levels.

The stochastic cascade (Figure 2) is derived by a multiplicative process: each son

�

j;k

at the j-th level is obtained multiplying the corresponding father at level j�1 by

an independent and identically distributed random variable �, called the generator:

�

j;k

= �

j�1;

k

2

�

j;k

(37)

The moments of the random variable �

j;k

do not depend on the position index k

and can be evaluated by (38), where the bar denotes ensemble average:

�

q

j;k

= �

q

j

= �

q

0

�

q

j

(38)

The �rst term �

0

of the random cascade can be obtained by substituting equations

(33), (35) and (38) into the integral of the signal I =

R

1

0

�(x)dx:

�

0

=

I

P

N

j=0

2

j

�

j

(39)

The �rst order structure function S

1

of the signal (33) can be written:

S

1

(r) =

N

X

j=0

2

j

�1

X

k=0

�

j;k

<

"

Z

�+r

�

 

j;k

(x)dx

#

>� r

�(1)

(40)

where linear operators <>,

P

and integral symbols were exchanged. Introducing

an integral function F (u) =

R

u

0

	(x)dx, we can substitute the integral in square

brackets of the previous equation by the following expression:

Z

�+r

�

 

j;k

(x)dx = 2

j

Z

�+r

�

	(2

j

x� k)dx = F (2

j

� + 2

j

r � k)� F (2

j

� � k) (41)
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We can now de�ne a distribution G

1

(r) =< F (�+ r)�F (�) >, that is a function

of the scale r, as the variable � is saturated from the spatial average <>. The G

1

distribution allows us to evaluate the new quantity in square brackets:

<

h

F (2

j

� + 2

j

r � k)� F (2

j

� � k)

i

>= 2

�j

G

1

(2

j

r) (42)

Finally the �rst order structure function S

1

can be estimated using the last two

equations, together with (38) and (39):

S

1

(r) =

N

X

j=0

2

j

�1

X

k=0

�

j;k

2

�j

G

1

(2

j

r) =

N

X

j=0

2

j

�

j

2

�j

G

1

(2

j

r) = I

P

N

j=0

�

j

G

1

(2

j

r)

P

N

j=0

�

j

2

j

(43)

where summation over k gives 2

j

terms, as the statistics of the coe�cients � do not

depend on the position index k.

For large N , the following relation holds between scales r and 2r:

S

1

(2r) = I

P

N

j=0

�

j

G

1

(2

j+1

r)

P

N

j=0

�

j

2

j

= 2I

P

N

j=0

�

j+1

G

1

(2

j+1

r)

P

N

j=0

�

j+1

2

j+1

= 2S

1

(r) (44)

This implies, as expected, that S

1

(r) � r, that is equation (40) where:

�(1) = log

2

 

S

1

(2r)

S

1

(r)

!

= 1 (45)

Note that (45) is consistent with (5) that states a form of conservation of measures

over di�erent scales.

The scaling of structure functions for any moment q can be computed in a sim-

ilar way. Substitution of signal (33) into (31), exchanging integral and summation

symbols, yields:

S

q

(r) =<

2

4

N

X

j=0

2

j

�1

X

k=0

�

j;k

Z

�+r

�

 

j;k

(x)dx

3

5

q

> (46)

The cumulant function, namely the connected part S

c

q

(r) of the structure function

S

q

(r), has the following expression:

S

c

q

(r) =

N

X

j=0

2

j

�1

X

k=0

�

q

j;k

<

"

Z

�+r

�

 

j;k

(x)dx

#

q

>� r

�

c

(q)

(47)

14



The integral in square brackets of equation (47) can be substituted using the

integral functions F of equation (41). Moreover, introducing another distribution

G

q

(r) =< [F (� + r)� F (�)]

q

>, the following relation can replace the spatial aver-

age in equation (47):

<

h

F (2

j

� + 2

j

r � k)� F (2

j

� � k)

i

q

>= 2

�j

G

q

(2

j

r) (48)

After elimination of summation over index k, and substitution of equations (38)

and (39), the cumulant functions S

c

q

(r) take the following expression:

S

c

q

(r) = I

q

P

N

j=0

�

q

j

G

q

(2

j

r)

h

P

N

j=0

�

j

2

j

i

q

(49)

and over a scale 2r:

S

c

q

(2r) = I

q

P

N

j=0

�

q

j+1

G

q

(2

j+1

r)

h

P

N

j=0

�

j+1

2

j+1

i

q

2

q

�

q

�

q

= S

c

q

(r)

2

q

�

q

�

q

(50)

We can �nally estimate the exponent �

c

(q), which exhibits the anomalous scaling

of the cumulant functions S

c

q

, as a function of the moments of the generator:

�

c

(q) = log

2

 

S

c

q

(2r)

S

c

q

(r)

!

= q (1 + log

2

�)� log

2

�

q

(51)

It is possible to show that functions S

c

q

give the leading contribution to structure

functions S

q

(r). The second order structure function can be written as a summation

of two terms (the �rst one is the connected part and the second one is proportional

to the square of the �rst order function): S

2

(r) = A

2

r

�

c

(2)

+B

2

r

2�(1)

� r

�(2)

, where

A

2

and B

2

are constants. Using convexity of �

c

(q), the second term on the right-

hand side can be neglected for r << 1: the behavior of the second order structure

function is S

2

(r) � r

�

c

(2)

. Inductively it can be shown for any moment q that the

scaling (32) holds with �(q) � �

c

(q) for r << 1.

In Appendix A we generalize the model presented here for the construction of

multifractal measures �(x

1

; � � � ; x

d

) with x 2 [0; 1]

d

embedded on d-dimensional

spaces. For these measures we derive the theoretical expectation for exponents �(q)

that characterize the scaling of structure functions S

q

:

S

q

(r) =<

"

Z

�

1

+r

�

1

dx

1

� � �

Z

�

d

+r

�

d

dx

d

�(x

1

; � � � ; x

d

)

#

q

>� r

�(q)

(52)
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where

�(q) = q (d+ log

2

�)� log

2

�

q

(53)

3.2 Using the log-Poisson generator

We have already noted in section 2 that the log-Poisson distribution is suitable to

include generalized scaling. Here we want to highlight how GESS can be introduced

in synthetic rainfall data as discussed in subsection 3.1.

First of all, following the notation used in the previous subsection, we can intro-

duce the log-Poisson distribution (15) by assuming that the random multiplier �

j;k

satis�es:

�

j;k

= A

j;k

�

y

j;k

(54)

where A

j;k

and � are parameters, while y

j;k

is a Poisson distributed random variable

(16) with expectation C

j;k

.

In order to display generalized scaling in a synthetic rainfall �eld, we assume that

A

j;k

= g

1

(2

�j

)=g

1

(2

�(j+1)

) and expC

j;k

= g

2

(2

�j

)=g

2

(2

�(j+1)

), where g

1

and g

2

are

two smooth functions whose properties have already been discussed in section 2. We

remark that the quantity 2

�j

should be considered equivalent to the \scale" r

j

.

The expected scaling of signal �(x) or more generally of �(x

1

; � � � ; x

d

) can be

evaluated using equations (53) and (17):

�(q) = qd+ c

q (� � 1)� (�

q

� 1)

ln 2

(55)

where the exponent �(q) depends only on parameter � and on parameter c = C

j;k

that may be scale dependent.

By using the above de�nitions for the scale dependent random multiplier, we

achieve the construction of a scale covariant synthetic rainfall data. As discussed in

section 2, the structure functions S

q

(r) may not show scaling in r. However, we can

observe GESS introducing the dimensionless structure functions R

q;n

(r):

R

q;n

(r) =

S

q

(r)

[S

n

(r)]

q

n

� r

�

n

(q)

(56)
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where �

n

(q) = �(q)� �(n)q=n. Properties of GESS can be now recovered by:

R

p;n

(r) � R

q;n

(r)

�

n

(p;q)

(57)

where the exponents �

n

depend only on the � parameter that can be assumed scale

invariant:

�

n

(p; q) =

�

n

(p)

�

n

(q)

=

p

n

(�

n

� 1) � (�

p

� 1)

q

n

(�

n

� 1)� (�

q

� 1)

(58)

The discussion presented in this section can be generalized for all in�nitively

divisible distributions.

3.3 Examples of synthetic �elds

Examples of application of the wavelet model for generation of multifractal synthetic

�elds in R and R

2

are presented. The log-Poisson distribution was assumed for the

random multipliers. Our aim is to compare the anomalous exponents, as predicted

by the theory described in previous sections and in Appendix A, against anomalous

scaling behavior observed in numerical simulations.

3.3.1 One-dimensional generations

Using the model described in 3.1, we have generated 64 synthetic samples �(x)

for x 2 [0; 1], each one truncated after the 23rd cascade level, that is N = 23.

Parameters of log-Poisson distribution (54) were A

j;k

= 1, � = 0:4 and C

j;k

= c =

0:5. The Gaussian function (36), with � =

1

2

and � = 0:15, was the basis function

	(x). Figure 3 shows an example of synthetic signals between the 64 samples, that,

for graphical reasons, is represented with a 2

�12

resolution: the integral from x = 0

to x = 1 was scaled to one before plotting.

Structure functions S

q

for moments q = 1; 2; � � � ; 10 were estimated on each of the

64 sample signals using de�nition (31), where averages < � � � > where applied to

disjoint intervals. The exponents �(q) in (32) were then obtained by linear regres-

sions in the log-log plane of structure functions versus spatial scales. In Figure 4 are

plotted with error bars the average and the standard deviation of exponents �(q)
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on the 64 sample generations; in the same Figure the continuous line represents the

theoretical expectation based on equation (55) with d = 1.

This last Figure gives evidence of the good agreement between theoretical pre-

dictions of the anomalous scaling laws of signals and the statistical properties of

samples generated using Monte Carlo simulations.

3.3.2 Two-dimensional generations

The generalization of the wavelet decomposition in multi-dimensional spaces derived

in Appendix A was used to generate 64 synthetic samples �(x; y) in the domain

(x; y) 2 [0; 1]

2

. The generator of the multiplicative process of coe�cients � was

a log-Poisson distribution (54) with parameters A

j;k

= 1, � = 0:4 and c = 0:7:

with this choice of parameters, the expected scaling (55) for synthetic �elds is very

close to the scaling found in rainfall �elds produced by numerical simulations with

a meteorological model (this case is analyzed in section 5). The basis function 	(x)

was again a Gaussian function (36) with parameters � =

1

2

and � = 0:15.

Each of the 64 generations was truncated after the 10-th cascade level (N = 10).

Figure 5 shows a typical section of a synthetic �eld at full resolution 1024�1024,

while in Figure 6 is plotted a sample �eld at reduced resolution 128�128 (the reduc-

tion was made only for graphical reasons). Before plotting the �gures, the signals

were scaled to have unit integrals in the domain (x; y) 2 [0; 1]

2

.

Structure functions S

q

(r), de�ned by equation (52) where d = 2, were estimated

for moments q = 1; 2; � � � ; 10. Exponents �(q) of equation (52) were then estimated

using linear regressions of logarithms of structure functions versus logarithms of

spatial scales. In Figure 7 are plotted with error bars the average and the standard

deviation of exponent �(q) of the 64 sample generations, together with a continuous

line that represents the theoretical expectation based on equation (55).

As for the one-dimensional case, the statistical properties of synthetic �elds in

R

2

, generated using the wavelet model, are in optimal agreement with the analytical

derivation.
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4 Statistical properties of rainfall in time

4.1 Analysis of Genova time series: the \external scale"

We now turn our attention to observed rainfall data. In this subsection we want

to discuss the statistical properties of precipitation in time and discuss possible ap-

plications of the model described in the previous section on generating synthetic

rainfall. With this aim we have analyzed the multifractal behavior of a high resolu-

tion rain time series observed at the University of Genova, where a tipping-bucket

rain-gauge is sited. The series has a resolution of one minute in time and 0.2 mm of

equivalent rainfall depth. The measurements are available from 1988 to 1995, with

some small periods of inactivity, for a total of 2607 rainy and not rainy days.

We �rst investigate the statistical properties of the time series recorded in Genova.

Next we show that a log-Poisson model gives a good �t to the observed scaling

exponents. In the next subsection we generate synthetic signals with similar behavior

of the structure functions and compare the extreme events distribution against the

observed ones.

We de�ne the time structure functions S

q

(� ) as:

S

q

(� ) =<

"

Z

�+�

�

P (t)dt

#

q

>� �

�(q)

(59)

where < � � � > is an average operator over all possible disjointed sample of integrals

at scale � of the rainfall signal P (t).

The structure functions S

q

of the �rst 10 natural moments q of the observed signal

P (t) were computed at di�erent time scales and plotted logarithmically in Figure 8

for time scales � varying from 2 minutes to 2

14

minutes (about 11 days) in powers

of 2. From the Figure it is apparent that in the time series of Genova rainfall a

threshold is located around 2

10

minutes ( ' 12�20 hours). These results clearly

reveal the presence of \external scale" in the scaling properties of S

q

(r).

In order to explain the presence of this \external scale", let us note that many

authors have pointed out the description of the spatial and temporal variability of

rainfall within the synoptic scale in terms of hierarchical structures [Austin and

Houze, 1972]: from little rainfall cells that are aggregated in clusters within small
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mesoscale areas (SMSA), up to the large mesoscale areas (LMSA). Many attempts to

classify rain rates, velocities of storms, and durations that characterize the di�erent

spatial scales of the hierarchical process can be found in the literature [Rodriguez-

Iturbe, 1986; Rodriguez-Iturbe et al., 1984; Waymire et al., 1984]. See for example

Figure 9 in which a typical fall storm of high intensity is described using geosyn-

chronous satellite infrared images: the spatial dimension of precipitating clusters in

the synoptic area is L � 300 km and the velocity of advection of these structures is

U � 15-30 km/h. The duration in a �xed system between the beginning and the end

of whole event is about L=U � 10-20 hours. The average duration of extreme storms

is in accordance with the threshold found on structure functions, which characterize

di�erent statistical behavior of the signal in time under this cut, where the structure

functions are determined by the rainfall pattern internal to the storm, and over this

cut, where the interarrivals of storms control the process.

A very interesting result can be obtained by looking at the generalized extended

self similarity (57), namely by looking at the self scaling properties of the dimen-

sionless structure functions R

q

(� ) = S

q

(� )= [S

4

(� )]

q=4

. In Figure 10, we plot in a

log-log plane the dimensionless structure functions R

q

of moment q = 7 versus those

of moment q = 3. First of all, we remark that a scaling relation is observed for all

ranges of available time scales � . Indeed, a threshold scale is no longer present in

Figure 10, which clearly shows that the rainfall �eld is a self-similar process at any

scale, in the range from 2 to 2

14

minutes, and reects the property of generalized

extended self similarity discussed in section 2. Recalling equations (57) and (58),

this result seems to state that synthetic rainfall time series can be generated using

a time scale invariant � parameter in the log-Poisson generator (54). With this

interpretation the e�ect of the \external scale" in the scaling behavior of structure

function S

q

, observed in Figure 8, can be modeled only by di�erent values of the

scale dependent parameter c of the Poisson distribution, as explained in section 3.2.

The exponents �(q) of equation (59) were estimated by a least square best �t

between the logarithms of structure functions S

q

and logarithms of the time scales

for the two ranges, storm inner scales and storm external scales. In Figure 11

the estimations of �(q) are plotted for small scales from 2 minutes to 17 hours
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and for large scales from 17 hours to 11 days. In the same Figure the theoretical

expectation for exponent �(q), based on equation (55), for a log-Poisson generator

with parameters � = 0:30 c = 0:37 for small scales and � = 0:30 c = 0:95 for large

scales are also displayed by a continuous line.

4.2 Anomalous scaling of synthetic rainfall time series and extreme events distri-

butions.

We now discuss the capability of the one-dimensional wavelet decomposition model

to reproduce the rainfall depth process in time. For this purpose, by using the

procedure discussed in section 3, we have generated a number of synthetic time

series rainfall data, each one characterized by the same statistical properties, length,

and resolution of those observed in Genova during the 2607 days between 1988

and 1995. Each daily generation was truncated at the 16-th cascade level on a 24

hour domain, which corresponds to a time resolution of about 1.32 seconds. The

integral of each daily signal was then rescaled in order to have the same amount of

precipitation observed on the corresponding day, making it dimensional. The time

series were then obtained by joining each daily independent dimensional wavelet

decomposition into the �nal sequence of 2607 days. After that the time series was

\dressed" by reducing the time resolution to 1 minute, as the original series, and

�ltering the synthetic signal with a �ctitious tipping-bucket rain-gauge: in such a

way the simulated rainfall depth process was discretized every 0.2 mm like the real

world process.

The e�ect of the \external threshold" was also investigated: two procedures in

fact were used. In procedure I1, the threshold was supposed to be at 12 hours: the

log-Poisson generator with parameters � = 0:30 and c = 0:95 was used on the �rst

cascade level, and a second one with parameters � = 0:30 and c = 0:37 was used

on the other 15 cascade levels. In procedure I2 the threshold was supposed to be at

24 hours and so a unique log-Poisson generator with constant parameters � = 0:30

and c = 0:37 was used on all the cascade levels.

A set of 30 synthetic time series was produced by using procedure I1 and a second

set of the same size was produced for I2. In Figure 12 a sample of two realizations
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of synthetic precipitation are compared with the observed one on the same day.

The direct veri�cation of the model was performed by estimating, from each series,

the exponents �(q) with a least square best �t between the logarithms of sample

structure functions and the logarithms of time scales. In Figure 13 the exponents

�(q) estimated from the observed signal are compared with the mean and standard

deviation of �(q) estimated from the sets of 30 series generated with procedure

I2. Results with hypothesis I1 were very similar. Figure 13 give evidence of the

capability of our model to reproduce the observed statistical properties of rainfall

time series.

A quite interesting indirect validation was made by comparing the extreme values

of the original series with those obtained by the synthetic ones. In particular, we

have compared the parameters of the following distribution for the maximumrainfall

height h accumulated during d hours that can be reached or exceeded every T years:

h = a(T )d

n

. To estimate the parameters n and a(T ) of this equation we have

made the hypothesis that the yearly maxima height of rain precipitation in d hours

follow a probability distribution of Gumbel type (EV1, Extreme Value Type 1).

The parameters were estimated with the moments method using yearly maximum

rainfall on 5 min, 10 min, 15 min, 30 min, 1 hour, 3 hours, 6 hours, and 12 hours.

Results of this analysis can be found in Table 1 where we compare the estimates of

parameters in the three cases: the observed time series and the 30 synthetic time

series generated each according to hypothesis I1 or I2.

Even though the period of the recorded time series in Genova might be relatively

short to capture the signi�cant multifractal behavior of rainfall in time (i.e. param-

eter estimations can be probably reviewed), results on extreme event distributions

are worthy of consideration for potential application of this model to estimation of

extreme event distributions from coarse data.

5 Statistical properties of rainfall in space

We now turn our attention to the multifractal behavior of rainfall spatial �elds. In

particular, we have studied statistical properties of two kinds of spatial estimations
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of rain: the �rst ones based on the radar measurements obtained during the GATE

campaign; the second ones as output of a high resolution numerical simulation,

performed with a meteorological limited area model (LAM) [Buzzi et al., 1994;

Marrocu et al., in press].

The GATE spatial �elds of precipitation were collected in the eastern Atlantic

coast of Africa during two di�erent periods in 1974: GATE1, the data-set of frames

collected during the �rst period from 28 June to 15 July; and GATE2, the data-set

of the second period from 28 July to 15 August.

Each frame represents the average rain rate every 15 minutes: data-set GATE1

contains 1715 frames, while data-set GATE2 contains 1512 frames. Fields are avail-

able with a 4 km spatial resolution in a regular square lattice 100�100, but data

are really provided only within a 200 km radius of the center of each image. In the

present work we used only a 64�64 grid centered in each image, in such a way that

the rain rate is de�ned over each grid-point.

The precipitation depth �elds obtained by the LAM simulation were saved every 6

hours over a regular grid 256�256 with a spatial resolution of about 10 km covering

Europe, starting on 0GMT of 19 February 1991 and ending on 18GMT of the 22nd

of the same month. The model was used in hindcasting mode, with initial and

boundary conditions interpolated by the analysis of the ECMWF (European Center

for Medium-range Weather Forecast), available every 6 hours. The LAM used for

these experiments is a primitive equation model, and, as usual in meteorological

models in operative con�gurations, the adiabatic contributions are solved separately

from the diabatic contributions. The adiabatic contributions are the equations of

momentum conservation (with the hydrostatic assumption in the vertical direction),

the continuity equation, a thermodynamic equation and an equation for the water

conservation. The diabatic contributions are provided by special parameterizations

for large scale precipitation, vertical convection in cumuli, dry adjustment, radiative

exchanges, horizontal and vertical di�usion, planetary boundary layer, soil moisture,

and thermal balances [Emanuel, 1991; Geleyn and Hollingsworth, 1979; Louis et al.,

1982]. The horizontal discretization is on a staggered grid of type C in the Arakawa

classi�cation, while the vertical discretization is on constant sigma coordinates. The
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adiabatic equations were solved using an explicit leap-frog scheme, with a 9 second

time-step for numerical stability, while the more computationally expensive diabatic

contributions were computed every 10 minutes. Figure 14 shows a precipitation �eld

obtained as output of the LAM integration.

The analysis of rainfall in space have been performed by computing the (anoma-

lous) scaling behavior of the the space structure functions of order q, de�ned as

follows:

S

q

(r) =<

"

Z

�+r

�

dx

Z

�+r

�

dyP (x; y)

#

q

>� r

�(q)

(60)

where < � � � > is an average operator over all possible disjointed samples of integrals

on square domains (x; y) of side r, with starting integration points (�; �); P (x; y) is

the spatial �eld of precipitation depth on a �xed time period.

From the GATE experiments not only rain spatial �elds at the original time res-

olution of 15 minutes were taken into account, but also those obtained by averaging

rain rates over 30 minutes, 1 hour, 3, 6, 12, and 24 hours. Two criteria were applied

to select the �elds to be used in the analysis. The �rst criterion imposes that at

least 10% of grid points have a non zero measure of precipitation: in such a way we

discard the �elds without measures and those that are less relevant for the analy-

sis. The second criterion requires a minimum correlation coe�cient, �xed at level

0.995, for the linear regression between the logarithms of structure functions S

10

(r),

de�ned by equation (60), and the logarithms of spatial scales r from 4 to 64 km,

regularly sampled in the logarithmic scale with integer powers of 2. This second

criterion guarantees a minimum statistical signi�cance on estimation of exponents

�(q).

The numberN of �elds, selected from each one of the original GATE1 and GATE2

data-sets, applying the two criteria exposed above, can be found in Table 2 for each

duration considered in the analysis. Results of spatial multifractal analysis on the

selected �elds are summarized in Table 3 where we compare the averages of the �rst

10 exponents �(q), estimated in the range of scales from 4 to 64 km. In Table 2 are

also listed for each data-set the values of parameters � and c obtained by imposing

the values of sample exponents �(3) and �(8) in equation (55).
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In a similar way we have also selected from the LAM data-set 13 of the 15 available

precipitation �elds accumulated every 6 hours. For this selection we have applied the

criteria of minimum correlation coe�cient (>0.995) for the linear regression between

the logarithms of structure functions S

10

(r) and the logarithms of spatial scales r

ranging from 10 to 160 km, sampled with integer powers of 2. Sample averages

and standard deviations of the �rst 10 exponents �(q) based on 6-hour precipitation

�elds are plotted with error bars in Figure 15; in Table 3 the averages of multifractal

exponents used to plot the Figure are compared with those obtained from the GATE

data-sets. The Figure shows also that that the expected scaling (55) for the two-

dimensional model with log-Poisson parameters � = 0:4 and c = 0:7 (the same as

used for R

2

simulations discussed in subsection 3.3.2) is very close to the scaling

found for LAM �elds.

Results on spatial statistical properties of precipitation �elds are also presented

in Figure 16, where the sample averages of exponents �(q) estimated from LAM 6-

hour rainfall �elds are compared with exponents �(q) corresponding to the di�erent

accumulation times considered for GATE1 and GATE2 data-sets.

Although there are little di�erences between the �(q) estimated by the two GATE

data-series, our analysis points out a strong dependence of the spatial statistical

properties of the precipitation �elds on the time duration, in which rainfall is accu-

mulated. As expected, the multifractality of precipitation �elds is more pronounced

for short accumulation times. In other words, this means that for short times the

behavior of precipitation �elds is strongly intermittent and that the intermittency

in space changes with duration.

Another very important result that comes from our work is the substantial co-

herence of the exponents �(q) determined for the 6-hour accumulated precipitation

�elds based on LAM simulations and those estimated from the GATE data-set at

the same duration. Although the parameterization of rainfall processes in mete-

orological models are heavily simpli�ed, the numerical simulation with the LAM

has produced precipitation �elds with statistical properties in good accordance with

those observed in the GATE radar measurements.
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6 Summary and concluding remarks

We outline and review the most relevant results of this work.

1) We have introduced the concept of scale covariance and extended self similar-

ity as suitable generalizations of multifractal analysis. These concepts have been

previously applied in the study of intermittency for three-dimensional ows. We

argue that scale covariance and extended self similarity are useful concepts also in

the framework of rainfall data.

2) We have shown how to compute synthetic rainfall �elds which satisfy both

anomalous scaling and extended self similarity. The method proposed in this paper

is quite general and is not con�ned to the use of a particular probability distribution

of the random multiplier. Moreover, the method was generalized in more than one

dimension (in Appendix A) and to scale covariance �elds.

3) Using time series of rainfall data, we have shown that the concept of scale

covariance is indeed useful in explaining observed scaling properties of rainfall data.

Our results also show that the log-Poisson distribution represents a good estimate

for the anomalous scaling exponent.

4) We have compared observed time series against synthetic rainfall data, both

having the same anomalous exponents and the same statistical samples. The com-

parison is quantitatively performed by looking at the statistical analysis of extreme

events. The results we obtained allow us to argue that a multifractal description of

rainfall data, in terms of scale covariance �eld, is an extremely good approximation

to the observed statistical properties of rainfall time series.

5) We have shown that the rainfall �eld, as produced in meteorological models

as limited area models, display anomalous scaling in rather good agreement with

respect to the observed ones. Our analysis is somewhat limited by the small number

of data sets examined. However, this result is worth mentioning since, although mi-

crophysical processes commonly applied in meteorological models are grossly param-

eterized, the LAM precipitation �elds analyzed here preserve statistical properties

observed in real rainfall. Another result that comes from the multifractal analysis

on the GATE �elds is that statistical behavior of precipitation in space is dependent
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on the time duration over which rainfall is accumulated: as expected, precipitation

�elds display a stronger intermittency for shorter time durations.

In this paper we have used a rather simple log-Poisson model to �t observed

anomalous exponents. We remark that other models may well achieve the same

results; the log-Poisson distribution has been used both for its simplicity and for its

physical meaning in the context of scale covariance �elds (see section 2). Moreover,

by using the log-Poisson distribution in our model to simulate random rainfall, the

statistical properties of synthetic �elds can be tuned with only two parameters.

This represents a real advantage with respect to cluster-based models like the WGR

model [Waymire et al., 1984], that require up to ten parameters to be estimated. In

addition, the multifractal approach introduces relevant statistical constraints over

a wide range of scales on the moments of signals. Further research on rainfall

time series could investigate scale anomalies and the presence and localization of

thresholds also at di�erent sites, and the possible dependence of statistical properties

and model parameters on geographical, orographic and climatic conditions.

Some open problems require further research and interactions in various areas

and disciplines. A �rst open problem is strictly heuristic and concerns the physical

interpretation of the multifractal behavior and intermittency observed in rainfall.

Other problems are related to the use and application of precipitation �elds from

numerical weather prediction models as input to hydrological rainfall-runo� dis-

tributed models for forecasting ood events. It is well known that meteorological

models supply forecasts on hundred or thousand square kilometer grid-size areas

and hourly time scales. Rainfall-runo� models often require smaller resolution both

in time and space, especially when applied to small basins. In this framework, a

�rst issue to be resolved is how to link results discussed separately here on spatial

and temporal statistical properties of rainfall, in order to apply the model directly

for space-time downscaling of precipitation.
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Appendix A Construction of multidimensional �elds

The one-dimensional model described in subsection 3.1 is here generalized for the

construction of positive de�nite multifractal measures embedded in d-dimensional

spaces. The construction of synthetic �elds �(x

1

; � � � ; x

d

) with x 2 [0; 1]

d

is based

on wavelet decomposition with coe�cients extracted by a stochastic cascade:

�(x

1

; � � � ; x

d

) =

N

X
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2

j
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���k

d
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d
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where j is the cascade level index, varying from 0 (�rst element) to N (number of

cascade levels); k

l

is a position index on the x

l

(l = 1; � � � ; d) axis, varying from 0 to

2

j

� 1 in the j-th cascade level;  

j;k

1

���k

d

(x

1

; � � � ; x

d

) is a wavelet on level j, charac-

terized by the array of position indexes (k

1

; � � � ; k

d

); while �

j;k

1

���k

d

is the coe�cient

extracted from the stochastic cascade.

The wavelets  are now de�ned by a production of d one-dimensional basis

wavelets 	(x), positive de�nite and integrable for x 2 [0; 1] and zero elsewhere:
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The normalization in modulus of the basis function 	 assures the normalization

of each wavelet  , de�ned by the above equation.

The random cascade is constructed using a multiplicative process; the random

generator � maps now each father term at j�1 level into 2

d

new coe�cients at level

j:

�

j;k

1

���k

d

= �

j�1;

k

1

2

���

k

d

2

� (A3)

Ensemble averages of q-moments of random variables � can be related to the

statistics of the generator:

�

q
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= �

q

j

= �

q

0

�

q

j

(A4)

Letting I =

R

1

0

dx

1

� � �

R

1

0

dx

d

�(x

1

; � � � ; x

d

) be the integral of the synthetic signal,

the �rst term of the random process must be:

�

0

=

I

P

N

j=0

2

jd

�

j

(A5)
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In the following we show the scaling of signals (A1) and derive a theoretical

prediction of the exponents �(q), that characterize structure functions S

q

(r):

S

q

(r) =<

"

Z

�

1

+r

�

1

dx

1

� � �

Z

�

d
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�

d

dx

d

�(x
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d

)

#

q

>� r

�(q)

(A6)

where the spatial average < � � � > can be now de�ned as an integral over all axes

starting points �

l

, with l = 1; � � � ; d. Moreover, using the symbol < � � � >

�

l

to

designate the spatial average on a generic axis x

l

, we can write the relation:

< f >= c

d
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d
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1
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Structure functions S

q

(r) de�ned by equation (A6) can be rewritten after substi-

tution of equations (A1) and (A2) and some manipulations between operators:

S
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Substituting equation (A7), the �rst order structure function has the following

expression:
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Using equations (41), (42), (A4) and (A5), we can evaluate function S

1

at scale

r:
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and at scale 2r:
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The exponent �(1) is equal to d:

�(1) = log

2
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The connected part S

c

q

of the q-th order structure function S

q

de�ned by equation

(A8) is the following:
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Substituting equations (41) , (48), (A4) and (A5), we can write:
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and at scale 2r:
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Finally, we can estimate the scaling behavior of q-th order cumulant functions S

c

q

as a function of the moments of the generator:
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Also for multidimensional measures, it is possible to show, in an inductive way,

that cumulant functions S

c

q

give the leading contribution to structure functions S

q

(r)

for any order q, that is:

S

q

(r) � r

�(q)

(A17)

where �(q) � �

c

(q) for r << 1.
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Tables

Table 1. Comparisons of parameters of the yearly maximum rainfall depth distribution

h = a(T )d

n

estimated from the rain time series observed in Genova and from synthetic

series generated with procedures I1 (threshold at 12 hours) and I2 (threshold at 24 hours).

Parameter a(T ) is millimeter of rainfall depth, d is the duration in hours, T is the return

period in years.

n a(T )

T=5 T=10 T=25

Observed time series 0.51 69 82 99

Synthetic time series:

procedure I1

0.54 63 80 100

Synthetic time series:

procedure I2

0.54 58 74 94

Table 2. Number N of selected �elds from GATE1 and GATE2 data-sets for the spatial

multifractal analysis and estimates of the log-Poisson parameters � and c for generation

of synthetic spatial �elds of rainfall depth at di�erent durations.

GATE1 GATE2

duration N � c N � c

15 min 436 .42 1.00 316 .38 1.00

30 min 215 .43 .92 154 .40 .92

1 hour 128 .44 .83 95 .41 .88

3 hours 70 .44 .73 52 .44 .81

6 hours 46 .48 .77 40 .46 .75

12 hours 25 .55 .78 26 .51 .77

24 hours 13 .62 .71 14 .56 .68
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Table 3. Averages of exponents �(q) in equation (60), estimated from GATE1 (G1) and

GATE2 (G2) data-sets in the range of spatial scales 4�64 km for di�erent durations. For a

comparison, averages of the multifractal exponents estimated from the 6-hour precipitation

�elds of the LAM data-set are also reported.

durations �(2) �(3) �(4) �(5) �(6) �(7) �(8) �(9) �(10)

15 G1 3.48 4.82 6.06 7.26 8.42 9.57 10.72 11.85 12.98

min G2 3.41 4.68 5.86 6.99 8.10 9.19 10.27 11.35 12.42

30 G1 3.55 4.97 6.30 7.59 8.85 10.09 11.32 12.54 13.76

min G2 3.48 4.84 6.11 7.34 8.54 9.72 10.89 12.06 13.22

1 G1 3.59 5.07 6.49 7.85 9.19 10.50 11.80 13.09 14.37

hour G2 3.52 4.92 6.25 7.53 8.78 10.01 11.23 12.44 13.65

3 G1 3.64 5.18 6.67 8.11 9.52 10.92 12.29 13.66 15.02

hours G2 3.61 5.11 6.54 7.93 9.28 10.62 11.94 13.25 14.55

6 G1 3.67 5.25 6.76 8.22 9.66 11.07 12.47 13.85 15.23

hours G2 3.66 5.22 6.72 8.18 9.60 11.01 12.40 13.78 15.16

LAM 3.62 5.19 6.69 8.15 9.57 10.98 12.37 13.74 15.11

12 G1 3.76 5.43 7.04 8.60 10.13 11.63 13.12 14.60 16.07

hours G2 3.71 5.32 6.86 8.36 9.82 11.26 12.69 14.11 15.52

24 G1 3.84 5.62 7.34 9.02 10.67 12.30 13.91 15.52 17.12

hours G2 3.80 5.52 7.19 8.82 10.42 11.99 13.55 15.09 16.62
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Figure Captions

Fig. 1. Plot of a Gaussian basis function 	(x), de�ned by equation (36) with � = 0:15,

and of some wavelets  

j;k

(x) on the �rst two levels j = 1; 2, obtained by stretching and

shifting the same basis function 	(x) according to equation (34). The integral of each

wavelet is normalized to unity.

Fig. 2. Graphical representation of the dyadic cascade process for �

j;k

coe�cients, where

j is the level index, and k is the position index of the corresponding wavelet.

Fig. 3. A typical example of synthetic signal �(x) generated in x 2 [0; 1] with the one-

dimensional model and log-Poisson generator with parameters � = 0:4 and c = 0:5. The

expansion was truncated at the 23rd level, but for graphical representation the signal is

shown at 2

�12

resolution. The integral of the signal from 0 to 1 is equal to unity.

Fig. 4. The theoretical expectation (55) of moments �(q) for the one-dimensional (d=1)

model with log-Poisson generator with parameters � = 0:4 and c = 0:5 (solid line). Error

bars represent averages and standard deviations of �(q) estimated from the 64 synthetic

signals.

Fig. 5. A typical section at 2

�7

resolution, parallel to the x or y axis, of a two-dimensional

synthetic �eld �(x; y) selected between the 64 Monte Carlo simulations in R

2

.

Fig. 6. A typical example of synthetic �eld �(x; y) generated in (x; y) 2 [0; 1]

2

with

the two-dimensional model and the log-Poisson generator with parameters � = 0:4 and

c = 0:7. The expansion was truncated at the 10th level, but for graphical representation

the signal is shown at 2

�7

resolution. The integral of the signal is equal to unity.

Fig. 7. The theoretical expectation (55) of moments �(q) for the two-dimensional (d=2)

model with log-Poisson generator with parameters � = 0:4 and c = 0:7 (solid line). Error
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bars represent averages and standard deviations of �(q) estimated from the 64 synthetic

signals at 1024�1024 resolution.

Fig. 8. The �rst 10 structure functions S

q

(�) of the rain time series observed at the

University of Genova versus time scales � in minutes. The range of time scales goes from

2 minutes to 2

14

minutes (about 11 days). The \external scale" is marked by the threshold

located around log

2

� = 10 (about 17 hours).

Fig. 9. A geosynchronous satellite infrared image on the Mediterranean on 22 September

1992, 10 a.m. The area of high intensity rainfall travelling over the Gulf of Genova is

highlighted by the circle with 300 km diameter.

Fig. 10. Dimensionless structure functions R

q

(�) of moment q = 7 are plotted versus

those of moment q = 3, with � from 2 minutes to 2

14

minutes. The threshold is no longer

present, implying that the Genova rainfall time series satis�es generalized properties of

extended self similarity.

Fig. 11. Anomalous scaling laws for small and large scales in the Genova rainfall time

series. The estimates of exponents �(q) are marked with empty circles for small scales

(2 minutes � 17 hours) and with �lled circles for large scales (17 hours � 11 days).

Continuous lines represent the corresponding expectations for the log-Poisson model with

parameters � = :30, c = 0:37 (small scales), and c = 0:95 (large scales) based on equation

(55).

Fig. 12. Millimeters of rainfall depth every 10 minutes on 14 January 1988 observed at

the University of Genova (top) and synthetic signals (middle and bottom) characterized

by the same daily total amount of precipitation (81.6 mm).

Fig. 13. Comparisons between the exponents �(q) of the observed Genova time series

(�lled circles) and averages and standard deviations (error bars) of those estimated by the

synthetic set I2.
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Fig. 14. A �eld of 6-hour precipitation depth (millimeters) over Europe produced by a

limited area model integration. Spatial resolution is about 10 km, the grid is 256�256.

Fig. 15. Anomalous scaling laws of the 13 LAM precipitation �elds selected for the

spatial analysis. Averages and standard deviations of exponents �(q) are marked with

error bars. The solid line is the expected scaling (55) for the two-dimensional model with

log-Poisson parameters � = 0:4 and c = 0:7 (the same as used for R

2

simulations discussed

in subsection 3.3.2).

Fig. 16. Averages of exponents �(q) of GATE1 and GATE2 data-sets for di�erent dura-

tions from 15 minutes to 24 hours are compared. Note that the averages of �(q) estimated

from LAM 6-hour precipitation �elds (drawn with circles) are very close to the 6-hour

GATE exponents.
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Fig. 1. Plot of a Gaussian basis function 	(x), de�ned by equation (36) with � = 0:15,

and of some wavelets  

j;k

(x) on the �rst two levels j = 1; 2, obtained by stretching and

shifting the same basis function 	(x) according to equation (34). The integral of each

wavelet is normalized to unity.
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Fig. 2. Graphical representation of the dyadic cascade process for �

j;k

coe�cients, where

j is the level index, and k is the position index of the corresponding wavelet.
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Fig. 3. A typical example of synthetic signal �(x) generated in x 2 [0; 1] with the one-

dimensional model and log-Poisson generator with parameters � = 0:4 and c = 0:5. The

expansion was truncated at the 23rd level, but for graphical representation the signal is

shown at 2

�12

resolution. The integral of the signal from 0 to 1 is equal to unity.
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Fig. 4. The theoretical expectation (55) of moments �(q) for the one-dimensional (d=1)

model with log-Poisson generator with parameters � = 0:4 and c = 0:5 (solid line). Error

bars represent averages and standard deviations of �(q) estimated from the 64 synthetic

signals.
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Fig. 5. A typical section at 2

�7

resolution, parallel to the x or y axis, of a two-dimensional

synthetic �eld �(x; y) selected between the 64 Monte Carlo simulations in R

2

.

Fig. 6. A typical example of synthetic �eld �(x; y) generated in (x; y) 2 [0; 1]

2

with

the two-dimensional model and the log-Poisson generator with parameters � = 0:4 and

c = 0:7. The expansion was truncated at the 10th level, but for graphical representation

the signal is shown at 2

�7

resolution. The integral of the signal is equal to unity.
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Fig. 7. The theoretical expectation (55) of moments �(q) for the two-dimensional (d=2)

model with log-Poisson generator with parameters � = 0:4 and c = 0:7 (solid line). Error

bars represent averages and standard deviations of �(q) estimated from the 64 synthetic

signals at 1024�1024 resolution.
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Fig. 8. The �rst 10 structure functions S

q

(�) of the rain time series observed at the

University of Genova versus time scales � in minutes. The range of time scales goes from

2 minutes to 2

14

minutes (about 11 days). The \external scale" is marked by the threshold

located around log

2

� = 10 (about 17 hours).
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Fig. 9. A geosynchronous satellite infrared image on the Mediterranean on 22 September

1992, 10 a.m. The area of high intensity rainfall travelling over the Gulf of Genova is

highlighted by the circle with 300 km diameter.
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Fig. 10. Dimensionless structure functions R

q

(�) of moment q = 7 are plotted versus

those of moment q = 3, with � from 2 minutes to 2

14

minutes. The threshold is no longer

present, implying that the Genova rainfall time series satis�es generalized properties of

extended self similarity.
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Fig. 11. Anomalous scaling laws for small and large scales in the Genova rainfall time

series. The estimates of exponents �(q) are marked with empty circles for small scales

(2 minutes � 17 hours) and with �lled circles for large scales (17 hours � 11 days).

Continuous lines represent the corresponding expectations for the log-Poisson model with

parameters � = :30, c = 0:37 (small scales), and c = 0:95 (large scales) based on equation

(55).
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Fig. 12. Millimeters of rainfall depth every 10 minutes on 14 January 1988 observed at

the University of Genova (top) and synthetic signals (middle and bottom) characterized

by the same daily total amount of precipitation (81.6 mm).

44



ζ(q)

q 0  1  2  3  4  5  6  7  8  9 10
 0

 1

 2

 3

 4

 5

 6

Fig. 13. Comparisons between the exponents �(q) of the observed Genova time series

(�lled circles) and averages and standard deviations (error bars) of those estimated by the

synthetic set I2.

Fig. 14. A �eld of 6-hour precipitation depth (millimeters) over Europe produced by a

limited area model integration. Spatial resolution is about 10 km, the grid is 256�256.
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Fig. 15. Anomalous scaling laws of the 13 LAM precipitation �elds selected for the

spatial analysis. Averages and standard deviations of exponents �(q) are marked with

error bars. The solid line is the expected scaling (55) for the two-dimensional model with

log-Poisson parameters � = 0:4 and c = 0:7 (the same as used for R

2

simulations discussed

in subsection 3.3.2).
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Fig. 16. Averages of exponents �(q) of GATE1 and GATE2 data-sets for di�erent dura-

tions from 15 minutes to 24 hours are compared. Note that the averages of �(q) estimated

from LAM 6-hour precipitation �elds (drawn with circles) are very close to the 6-hour

GATE exponents.
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