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1 Introduction

The simulation of Liquid Metal Flows is becoming more and more important following the expan-

sion of Research and Development in the �eld of Accelerator Driven Systems (ADS) and High

Power Spallation Sources (HPSS). Numerical simulation often represents the unique tool to eval-

uate complex 
ow conditions as in the spallation target, where a complex heat source term is the

consequence of the interaction between the proton beam and the Liquid Metal spallation material.

Here we would like to review the basic methods implemented in the main Computational Fluid

Dynamics (CFD) codes with a particular attention to numerical techniques, in order to validate

the numerical simulation of 
ows of liquid metals characterised by high density and low Prandtl

number.

The 
uid dynamic modelling of the target and primary circuits of the Energy Ampli�er Demon-

stration Facility (EADF) [1] is presented. The considered con�guration is a liquid metal 
ow inside

a container con�ned by a free surface. The 
ow is generated by buoyancy e�ects related to the

heat produced by the nuclear reactions occurring inside the 
uid. An additional external device

(e.g. pumping systems or gas injection) may be used in order to enhance the natural circulation.

The study of this kind of 
ow can be performed by solving the Navier-Stokes equations with

suitable initial and boundary conditions. These equations are �rst presented in their general form,

then some simpli�cations are introduced, considering the low compressibility of liquids (low-Mach

number 
ow) and the presence of the free surface.

A dimensional analysis is then performed and the dimensionless parameters governing the 
ow

are identi�ed. These parameters appear also in the dimensionless governing equations, allowing

to compare the order of magnitude of di�erent physical e�ects and to identify those that are

negligible under speci�c 
ow conditions. In particular, the low-Mach number formulation of the

Navier-Stokes equations can be obtained by expanding all the variables in power series of the Mach

number and considering the limit when the Mach number approaches zero. With respect to the full

Navier-Stokes equations, the low-Mach number formulation is characterised by the decomposition

of the pressure in thermodynamic and dynamic pressures typical of the incompressible equations.

The system of governing equations so obtained is the one usually employed in commercial codes for

the simulation of liquid 
ows. Starting from the low-Mach formulation, further assumptions lead

to more simpli�ed models such as the Oberbeck-Boussinesq equations that are valid for low-Mach


ows with small thermal variations.

In the second part of this work numerical schemes suitable for liquid 
ows are presented. The

schemes we consider are based on the Finite Volumes spatial discretization usually employed in
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Computational Fluid Dynamic (CFD) commercial codes. In such codes the time integration is

performed by pressure-based approaches, i.e. the pressure is updated by a Poisson-like equation.

Density-based schemes developed for compressible 
ows and extended to incompressible 
ows via

preconditioning methods are also described.
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2 Fluid Dynamics of Liquids

2.1 Navier-Stokes Governing Equations

The Navier-Stokes equations expressing the conservation of mass, momentum and total enthalpy

are valid under the hypothesis of continuous medium (the molecular mean free path is much

smaller than the characteristic length scale of the 
ow �eld). They read [2,3]

@�

@t

+r � (� u) = 0 ; (1)

@� u

@t

+r � (� u u) +r p = r � � + � g ; (2)

@

@t

[ � (h +K) ] +r � [ � (h +K) u ] =

@p

@t

+r �

�

� � u

�

+r � q + � g � u +Q (3)

where t is the time, � the density, u the velocity, p the pressure, � the stress tensor, g the

gravity acceleration, e the internal energy, h the enthalpy, K the kinetic energy, q the heat 
ux

and Q the heat generation per unit volume. In this work the gravity acceleration is supposed

to be constant with g = jgj = 9:81m s

�2

. The enthalpy and the kinetic energy are respectively

de�ned as

h = e +

p

�

; (4)

K =

juj

2

2

: (5)

For a Newtonian 
uid the stress tensor is given by

� = 2� s +

�

��

2

3

�

�

(r � u) I (6)

where � is the bulk viscosity, � the viscosity, I the unit tensor and

s =

r u +r u

T

2

(7)

the strain-rate tensor. The bulk viscosity is found to be usually very small, except in presence of

non-equilibrium phenomena as when vibrational modes of molecules are excited [2]. Therefore,

the assumption � = 0 generally holds.

The heat 
ux is expressed by the Fourier law as

q = �rT (8)
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where � is the thermal conductivity and T the temperature.

For liquids, the transport coe�cients � and � may be assumed to be functions of temperature

only, being the dependence from the pressure usually negligible. Therefore,

� = � (T ) ; � = � (T ) : (9)

Other forms of the energy equation may be also deduced. The equation for the kinetic energy

is obtained by multiplying Eq. (2) by u. It gives

�

DK

Dt

+r � ( p u) = pr � u +r � ( � � u ) + � g � u �� (10)

where D=Dt = @=@t + u � r is the Lagrangian derivative and

� = � : ru (11)

is the viscous dissipation.

The equation for the static enthalpy is obtained by subtracting Eq. (10) from Eq. (3). It yields

�

Dh

Dt

=

@p

@t

+ u � rp+r � q +�+Q: (12)

The equation for the internal energy can be easily deduced from Eq (12) and Eq. (4), yielding

�

De

Dt

= �pr � u +r � q +�+Q: (13)

The temperature equation is obtained by using Eq. (13), Eq. (4) and the relation [4]

dh = C

p

dT +

1� � T

�

dp (14)

where C

p

is the speci�c heat at constant pressure and � the thermal-expansion coe�cient de�ned

as

� = �

1

�

�

@ �

@ T

�

p

: (15)

It yields

�C

p

DT

Dt

= � T

Dp

Dt

+r � q +�+Q: (16)

The conservation equation for the entropy s is obtained by using Eq. (16) and the relation [4]

ds =

C

p

T

dT �

�

�

dp : (17)

6



CRS4 Technical Report 99/13

It reads

�T

Ds

Dt

= r � q +�+Q: (18)

The system of governing equations is completed by the equations of state [4]

p = p ( � ; T ) ; (19)

e = e ( � ; T ) : (20)

For liquids in de�ned ranges of temperature and pressure, the �rst equation of state (19) may be

expressed as

� = �

0

��

T

(T � T

0

) + �

p

(p � p

0

) (21)

where the su�x 0 refers to quantities evaluated at a reference thermodynamic state included in the

(T; p) application range. The two parameters �

T

and �

p

are constant and are given respectively

by

�

T

= �� ; �

p

= �� (22)

where � is the isothermal coe�cient of compressibility expressed as

� =

1

�

�

@ �

@ p

�

T

: (23)

The variables � and � are connected to C

p

, the speci�c heat at constant volume C

v

and the speed

of sound c by the relations [4]

c

2

=

C

p

C

v

��

; (24)

C

p

� C

v

=

�

2

T

��

: (25)

Tab. 1 reports for di�erent liquids the values of some thermodynamic variables.

By assuming negligible surface deformations, the free surface is simulated as a horizontal

plane whose vertical position changes in time. The hydrostatic contribution to pressure may be

eliminated by de�ning the modi�ed pressure P as

P = p � p

0

� �

0

g [ z � z

s

(t) ] (26)

where the z-axis is directed along the g direction and z

s

(t) is the z-coordinate of the free surface

1

.

Using this pressure, Eqs. (2) may be expressed as

@� u

@t

+r � (� u u) +rP = r � � + (� � �

0

) g : (27)

1

The free surface position is determined through the global mass conservation equation.
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Fluid � � 10

6

�� 10

11

c 


(K

�1

) (Pa

�1

) (m s

�1

)

Water at 20

o

C, 1 atm 207 46 1482 1:01

Mercury at 0

o

C, 1 atm 181 3:8 1470 1:12

Lead at melting point 124 3:4 1820 1:21

Table 1: : Thermal-expansion coe�cient �, isothermal coe�cient of compressibility �, speed of

sound c and speci�c heat ratio C

p

=C

v

for di�erent liquids.

2.1.1 Initial and boundary conditions

The initial conditions for our problem may be assumed as the hydrostatic ones. Moreover, in

Eq. (21) we can assume the 0-state as the initial solution state corresponding to the free-surface

gravitational potential line. Therefore, the initial temperature �eld is assumed to be T

0

and p

0

= p

s

being p

s

the uniform free-surface pressure. It yields

T ( x ; t

in

) = T

0

; P ( x ; t

in

) = P

in

( z ) ; � ( x ; t

in

) = �

in

( z ) ; u ( x ; t

in

) = 0 (28)

where x is the position vector and t

in

the initial time. The functions P

in

(z) and �

in

(z) are solutions

of the system formed by Eq. (21) and the di�erential equation (see Eq. (27))

dP

dz

= �(�� �

0

) g (29)

where the starting condition for the integration is

P

in

(0) = 0 : (30)

The boundary of the domain may be in general decomposed into the free surface @


s

and the

adiabatic solid walls @


a

. The boundary conditions for our problem are then expressed as

u � n = 0 and P = 0 on @


s

; (31)

u = 0 and rP � n + (r � �) � n = 0 on @


a

; (32)

rT � n = 0 on @


s

+ @


a

(33)

where n is the normal to the boundaries.
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2.1.2 Incompressible 
ows

Liquid 
ows are usually assumed as incompressible, i.e. the density is supposed to be independent

of pressure. To investigate the validity of such hypothesis, we can correlate density variations to

pressure and entropy variations by using the relation [4]

D�

Dt

=

1

c

2

Dp

Dt

�

�� T

C

p

Ds

Dt

: (34)

On the other hand, from Eq. (10) one has

Dp

Dt

=

@p

@t

� �

DK

Dt

+ u �

�

r � � + � g

�

(35)

showing that the contributes to pressure variations are due to: (i) unsteadiness of motion @p=@t;

(ii) velocity variations of the 
uid element (according to Bernoulli theorem) �DK=Dt; (iii) work

of the viscous stress and viscous dissipation u � (r� �) = r� (� � u)��; (iv) work of the buoyancy

force u � �g. When all these contributes have a negligible e�ect on density variations, the 
ow is

incompressible. Therefore the incompressibility condition can be obtained by assuming an in�nite

speed of sound in Eq. (34).

By making the divergence of Eq. (2) and using Eqs. (1), (21), (16), (24) and (25), the

nonlinear pressure waves are found to be governed by the hyperbolic equation

@

@t

�

1

c

2

@p

@t

�

�r

2

p = r �

�

r � (� u u)�r � � � � g

�

+

@

@t

�

�

C

p

�

��C

p

u � rT + � T u � rp+r � q +�+Q

�

�

(36)

where the right-hand term represents the sources of pressure waves. A sound wave is generated

when small (isentropic) perturbations occur in a 
uid at rest [2,3], i.e. when density and pressure

may be written as � = �

0

+ �̂ and p = p

0

+ p̂ with �̂� �

0

and p̂ � p

0

. Being the velocity of the

order of magnitude of �̂ and p̂, the leading order expansion of Eq. (36) is given by

1

c

2

0

@

2

p̂

@t

2

�r

2

p̂ = �

g � rp̂

c

4

0

: (37)

When pressure gradients are small compared with c

2

0

=g, Eq. (37) reduces to the wave equation.

When the speed of sound approaches in�nity the pressure wave equation becomes the Laplace

equation

r

2

p̂ = 0 : (38)

Eq. (38) shows that in the incompressible approximation the propagation mechanism of pressure

wave is suppressed.
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2.2 Dimensional Analysis

The dimensional analysis allows to re-write a relationship between the parameters which describe

the physical phenomena as a relationship between a lower number of dimensionless numbers [5].

Flows having the same values of the dimensionless numbers are similar, i.e. the time-space distri-

bution of their properties can be obtained one from another by means of a change of scales.

The physical parameters of the 
ow are those appearing in governing equations, initial data

and boundary conditions. The initial data of our problem are T

0

and �

0

(see Eqs. (28) and (30)).

The reference 
uid properties are �

0

= �(T

0

), �

0

= �(T

0

), C

p

0

= C

p

(�

0

; T

0

), �

0

= �(�

0

; T

0

) and

�

0

= �(�

0

; T

0

). These values are su�cient to characterise the 
uid only if the laws relating the

transport and thermodynamic properties of two di�erent 
uids to temperature are similar, as it is

assumed for simplicity. The geometry scale of the vessel is characterised by the reference length

L. The e�ects due to the heat source may be represented by means of a reference temperature

di�erence �T de�ned as

�T =

Q

0

L

�

0

C

p

0

V

(39)

where Q

0

is the reference value of the heat source.

Then, velocity, pressure and density �elds are functions of the following independent parameters

u = f

u

�

x ; t ; �

0

; T

0

; L ; V ; g ; �T ; �

0

; �

0

; C

p

0

; �

0

; �

0

�

; (40)

p = f

p

�

x ; t ; �

0

; T

0

; L ; V ; g ; �T ; �

0

; �

0

; C

p

0

; �

0

; �

0

�

; (41)

T = f

T

�

x ; t ; �

0

; T

0

; L ; V ; g ; �T ; �

0

; �

0

; C

p

0

; �

0

; �

0

�

: (42)

The dimensional analysis is based on the invariance of physical laws with respect to the reference

system and is represented by the �-theorem [5]. The total number of 
ow parameters on the

right-hand side in the above equations is 13 while the number of primary dimensions is 4 (length,

mass, time and temperature). According to the �-theorem, the dimensionless parameters which

govern the 
ow are 13-4=9. They may be obtained by choosing L, V , �

0

and C

p

0

as parameters

representing the four primary dimensions. As a result of the dimensional analysis we �nd that

u

V

= �

u

�

x

�

; t

�

; Re ; Gr ; P r ; Ec ; 
 M

2

; � ; � ;

�

; (43)

p

�

0

V

2

= �

p

�

x

�

; t

�

; Re ; Gr ; P r ; Ec ; 
 M

2

; � ; � ;

�

; (44)

T

V

2

=C

p

0

= �

T

�

x

�

; t

�

; Re ; Gr ; P r ; Ec ; 
 M

2

; � ; � ;

�

(45)
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where the dimensionless parameters on the right-hand sides are

x

�

=

x

L

(dimensionless length) ;

t

�

=

t

L=V

(dimensionless time) ;

Re =

�

0

V L

�

0

(Reynolds number) ;

Gr =

�

2

0

L

3

g �

0

�T

�

2

0

(Grashof number) :

P r =

�

0

C

p

0

�

0

(Prandtl number) ;

Ec =

V

2

C

p

0

�T

(Eckert number) ;


 =

C

p

0

C

v

0

(speci�c heats ratio) ;

M =

V

c

0

(Mach number) ;

� = �

0

�T ;

� = �

0

T

0

:

The Reynolds number represents the ratio between inertial forces and viscous forces. The Grashof

number accounts for buoyancy e�ects. The Prandtl number depends on 
uid properties only: in

Tab.2 the values of Pr for di�erent liquids are reported. The Prandtl number represents the ratio

between the viscous di�usion rate (i.e. the kinematic viscosity � = �=�) and the thermal di�usion

rate �

0

=(�

0

C

p

0

). Hence, when Pr is of order one (as for water) the thickness of the kinematic

and thermal boundary layers is the same. Liquid metals are characterised by values of Pr much

smaller than one and consequently by thermal boundary layers thicker than the kinematic ones.

The Eckert number is related to the ratio between the temperature increase due to an isentropic

arrest of 
uid and �T (in fact Eqs. (17), (2) and (10) written for a steady isentropic 
ow yield

11
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Fluid Molten lead Mercury Water Oil Glycerine

Pr 0:02 0:044 7 10

4

1:2 � 10

4

Table 2: : Prandtl number for di�erent liquids.

C

p

�T = �T�u

2

=2). The parameters � and � are connected to the similarity of the thermodynamic

behaviour of the 
uid. In particular, the equality of � for two di�erent 
ows means the equality of

the isobaric relative density variations. In fact when dp = 0 in Eq. (21) one has that � = ��=�

0

.

On the other hand, � is seen to relate temperature di�erences and pressure di�erences in the

isentropic case (from Eq. (17) with ds = 0 one has � = C

p

0

�T=(�p=�

0

)). Any other quantity is

a function of the numbers listed above. For instance, the heat 
ux q

w

per unit exchange surface

between 
uid and wall may be expressed by means of the heat transfer coe�cient h

w

de�ned by

the expression

q

w

= h

w

�T : (46)

Therefore, the dimensionless number

Nu =

h

w

L

�

0

(Nusselt number)

is given by

Nu = �

Nu

�

x

�

; t

�

; Re ; Gr ; P r ; Ec ; 
 M

2

; � ; �

�

: (47)

2.3 Dimensionless Governing Equations

The dimensional analysis gives no information about the form of the functions � (i.e. the relation-

ships in terms of the dimensionless parameters). So, the study of the asymptotic behaviour of �

when one or more of the arguments assume a very large or a very small value, is not possible using

only the dimensional analysis. For instance it will be shown in the following Section that when

the Mach number approaches zero, the dependence of Eqs. (43)-(45) and (47) from 
M

2

can be

neglected. On the other hand if viscous forces are negligible with respect to inertial forces then

Re !1. However viscous terms must be retained because close to solid walls (in the boundary

layer) inertial forces and viscous forces are of the same order of magnitude. To investigate the

importance of the dimensionless parameters in a particular 
uid 
ow, the dimensionless form of

governing equations has to be considered.

12
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The governing equations (1), (27), (16) and (21) may be written in dimensionless form by

dividing the dimensional values by constant reference quantities supplied by the data (boundary

conditions and initial solution) in order to have dimensionless terms ranging from zero to a value

of the order one. We assume that the 
ow has a single time scale and a single length scale.

Therefore, the following reference quantities are de�ned: V for 
uid speed variations (velocity

is zero on solid walls), L for length, L=V for time, �

0

for density, T

0

for temperature, �

0

for

viscosity, �

0

for thermal conductivity, Q

0

for heat source, �

0

for thermal-expansion coe�cient, �

0

for isothermal coe�cient of compressibility, C

p

0

for speci�c heat at constant pressure and C

v

0

for

speci�c heat at constant volume. In the following, dimensionless variables will be denoted by an

asterisk. In Eq. (27) a proper dimensionless modi�ed pressure is

P

�

=

P

�

0

V

2

: (48)

Eq. (21) may be written in the form (see Eqs. (15) and (24))

� = �

0

��

T

(T � T

0

) +




c

2

0

(p � p

0

) (49)

showing that the dimensionless pressure in Eq. (49) should be

p

�

=




�

0

c

2

0

(p � p

0

) (50)

in order to have a dimensionless equation of state independent of dynamical quantities (i.e. the


uid velocity). The dimensionless temperature di�erence � is de�ned as

� =

T � T

0

�T

=

T

0

�T

(T

�

� 1) : (51)

By employing such reference quantities, the dimensionless system of governing equations (26),

(1), (27), (16) and (49) is written in terms of dimensionless variables as

p

�

= 
 M

2

�

P

�

+

Gr

�Re

2

(z

�

� z

�

s

)

�

; (52)

@�

�

@t

�

+r

�

� (�

�

u

�

) = 0 ; (53)

@�

�

u

�

@t

�

+r

�

� (�

�

u

�

u

�

) +rP

�

=

1

Re

r

�

� �

�

+

Gr

�Re

2

(�

�

� 1)

g

g

; (54)

�

�

C

�

p

D�

Dt

�

=

� Ec


 M

2

�

�

T

�

Dp

�

Dt

�

+

1

Re Pr

r

�

� (�

�

r

�

�) +

Ec

Re

�

�

+Q

�

; (55)

�

�

= 1� � � + p

�

: (56)

The Prandtl number appears only in the product Re Pr that is also called Peclet number.
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2.4 Low-Mach Number Asymptotic Analysis

The low-Mach number governing equations are obtained by expanding all the dimensionless quan-

tities  

�

in asymptotic series of the form

 

�

( x

�

; t

�

; 
 M

2

) =  

�

(0)

( x

�

; t

�

) + 
 M

2

 

�

(1)

( x

�

; t

�

) +O

�

(
 M

2

)

2

�

(57)

being in general 
 a factor of order one (see Tab. 1). The low-Mach number expansion is obtained

by inserting Eq. (57) into Eqs. (52)-(56) and by considering the limit 
M

2

! 0. In the following

the superscript � will be dropped.

By expanding Eq. (52) one has at the zero-order

p

(0)

=


 M

2

Gr

�Re

2

(z � z

s

) : (58)

The term on the right-hand side of the above equation may be neglected if 
M

2

Gr=(�Re

2

)� 1,

i.e if


 g L

c

2

0

� 1 (59)

that is veri�ed when L is much smaller than the \scale height" c

2

0

=(
g). Eq. (59) may be also

written as �

0

�

0

gL � 1 being �

0

gL the reference hydrostatic variation of pressure. Therefore,

relative density variations due to the hydrostatic variation of pressure are supposed to be much

smaller than one. �Re

2

=Gr may be of order M

2

in stellar or atmospheric circulation gas 
ows.

For liquids the scale height is of the order of 100 km. Consequently Eq. (59) may be assumed

valid for the EADF liquid metal 
ows and Eq. (58) can be written as

p

(0)

= 0 : (60)

The expanded form of Eq. (53) is given by

@�

(0)

@t

+r

�

�

�

�

(0)

u

(0)

�

= 0 : (61)

When expanding Eq. (54), one has

@�

(0)

u

(0)

@t

+r

�

�

�

�

(0)

u

(0)

u

(0)

�

+rP

(0)

=

1

Re

r

�

� �

(0)

�

Gr

Re

2

�

(0)

g

g

+


 M

2

Re

r

�

� �

(1)

�


 M

2

Gr

Re

2

�

(1)

g

g

: (62)

The condition


 M

2

Re

� 1 (63)
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is always veri�ed because M=Re = (�

0

=c

0

)=L is the reference Knudsen number (i.e. the ratio

between the mean free path �

0

=c

0

and the characteristic length L) that is always much smaller

than one in order to satisfy the continuity medium assumption. The condition


 M

2

Gr

Re

2

� 1 (64)

may be written as


 g L

c

2

0

�

1

�

(65)

that is valid when Eq. (59) is valid provided that � < 1. For liquids � < 1 if �T < 10

4

K. Then,

in the EADF Eqs. (63) and (64) may be always used leading to the following expression of the

expanded momentum equation

@�

(0)

u

(0)

@t

+r

�

�

�

�

(0)

u

(0)

u

(0)

�

+rP

(0)

=

1

Re

r

�

� �

(0)

�

Gr

Re

2

�

(0)

g

g

: (66)

By collecting the zero-order terms in Eq. (55), one obtains

�

(0)

C

(0)

p

D�

(0)

Dt

=

1

Re Pr

r

�

� (�

(0)

r�

(0)

) +

Ec

Re

�

(0)

+Q

(0)

(67)

where Eq. (60) has been employed. The viscous dissipation may be neglected if

Ec

Re

� 1 (68)

that means

�T �

V �

C

p

0

L

: (69)

For liquid 
ows where V = 1m s

�1

and L = 10m, the lower limit in Eq. (69) is order of 10

�10 o

C.

Finally the expanded equation of state (56) is expressed as

�

(0)

= 1� � �

(0)

: (70)

In Eqs. (61)-(70) the Mach number, the Eckert number and � have disappeared. Hence, the

right-hand sides of Eqs. (43)-(45) and (47) may be expressed as

� ( x ; t ; Re ; Gr ; P r ; � ) : (71)

The uniform pressure p

(0)

accounts for thermodynamic e�ects while the pressure P

(0)

appearing

in the moment equation accounts for dynamic e�ects (in Eq. (70) the density does not depend on

the dynamic pressure, i.e. the 
ow is incompressible). The presence of a free surface over which
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the pressure is uniform leads to a thermodynamic pressure constant in time and in space. On the

contrary, for a closed cavity the thermodynamic pressure p

(0)

is found to be only spatially uniform,

i.e. p

(0)

= p

(0)

(t) [6]. Hence the term p

(0)

must be retained in the equation of state (70) and

p

(0)

is obtained by imposing the conservation of the total mass (i.e. by integrating the continuity

equation on the computational domain).

Coming back to the dimensional form and dropping the (0) superscript, the system of governing

equations is written as

@�

@t

+r � (� u) = 0 ; (72)

@� u

@t

+r � (� u u) +rP = r � � + (� � �

0

) g ; (73)

�C

p

DT

Dt

= r � q +Q; (74)

� = �

0

� �

T

(T � T

0

) (75)

where in Eq. (74) the term Q is present only if Eq. (39) is veri�ed.

By de�ning the variable

~

h as

~

h =

Z

T

T

0

C

p

d� +

~

h

0

(76)

Eq. (74) may be written as

@�

~

h

@t

+r �

�

�

~

h u

�

= r �

�

�

C

p

r

~

h

�

+Q: (77)

For a thermally perfect 
uid (like an ideal gas),

~

h coincides with the enthalpy. The enthalpy can

be expressed by Eq. (76) also for the EADF case [4]. The system formed by Eqs. (72), (73) and

(75) is the one generally employed for liquid 
ows in commercial CFD codes (e.g. STAR-CD [7]

and CFX-4 [8]). Di�erent options are usually available for the type of energy equation to be

integrated, being the choice based on the relative importance of the energy contributions

2

. The

above analysis has shown that for low Mach numbers both the pressure term and the viscous

dissipation term are negligible with respect to the other terms and Eq. (77) could be used.

2

For example, the total enthalpy equation (Eq. 3) should be integrated when the kinetic energy term is important

(high Eckert number), while the static enthalpy equation (Eq. 12) can be used otherwise.
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Although the system of governing equations (72)-(75) is closed, Eq. (72) is replaced by an

equation for the pressure obtained by making the divergence of the momentum equation and

imposing the continuity constrain. It yields (see also Eq. (36))

r

2

P = r �

�

�r � (� u u) +r � � + (� � �

0

) g

�

�

@

@t

�

�

C

p

�

��C

p

u � rT +r � q +Q

�

�

: (78)

Eq. (78) is elliptic showing that acoustic waves have disappeared according to an in�nite speed

of propagation. Therefore acoustic problems can not be studied by commercial codes.

2.4.1 Oberbeck-Boussinesq equations

Let us consider in Eqs. (61)-(70) the hypothesis of small thermal change, i.e.

T � T

0

T

0

� 1 (79)

or

�

(0)

�

T

0

�T

: (80)

It follows from Eq. (80) that � �

(0)

� �

0

T

0

where in general �

0

T

0

< 1. Hence, Eq. (70) may be

approximated by

�

(0)

= 1 (81)

and Eqs. (53)-(67) are written to the leading order as

r

�

� u

(0)

= 0 ; (82)

@u

(0)

@t

+r

�

�

�

u

(0)

u

(0)

�

+rP

(0)

=

1

Re

r

�

� �

(0)

�

Gr

Re

2

�

(0)

g

g

; (83)

C

(0)

p

D�

(0)

Dt

=

1

Re Pr

r

�

� (�

(0)

r�

(0)

) +Q

(0)

(84)

where the transport coe�cients �

(0)

and �

(0)

are constant. The density variation is retained in

the buoyancy term since it is responsible for driving the motion in natural convection problems.

The above equations are the Oberbeck-Boussinesq approximation of the Navier-Stokes governing

equations [3].
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When the dimensional analysis is applied to the present 
ow model, the reference 
uid proper-

ties �

0

and g do not enter into consideration separately, but only as their product �

0

g. Therefore

Eq. (71) is replaced by �(x; t; Re;Gr; P r).

In dimensional form Eqs. (82)-(84) are expressed as

r � u = 0 ; (85)

�

0

�

@u

@t

+r � (u u)

�

+rP = r � � � �

T

^

T g ; (86)

�

0

C

p

D

^

T

Dt

= r � q +Q (87)

where

^

T = T � T

0

. For liquids, the limitations for applying the Oberbeck-Boussinesq approxi-

mation is L smaller than few meters (this condition is much more severe than Eq. (59) due to

uniform transport coe�cients used in the Oberbeck-Boussinesq) and j

^

T j of order few degrees

only. Therefore it cannot be applied to the modelling of the EADF 
ows. Anyway, commercial

codes do not use this approximation, being their generally formulated with variable density. The

Oberbeck-Boussinesq approach is sometimes employed in in-house codes and can be found as an

option in CFX-4 [8]).

2.5 EADF Flow Regimes

The system of governing equations (72)-(75) is valid for the mixed convection general case, i.e.

when both buoyancy e�ects and the externally imposed convective �eld are important.

For the EADF 
ows, the order of magnitude of the dimensionless numbers may be estimated

using the reference values illustrated in Tab. 3. The reference speed V is in general the external

�

0

�

0

�

0

C

p

0

c

0

�

0

kg m

�3

kg m

�1

s

�1

W m

�1

K

�1

J kg

�1

K

�1

m s

�1

K

�1

10

4

10

�3

10 100 10

3

10

�4

Table 3: : EADF reference values.

velocity (imposed for instance by a pumping mechanism). When one is interested in the 
ow

around the window, V is the in
ow velocity of the part of the circuit that is isolated and simulated.

The characteristic 
uid velocity inside the EADF is V = 1m s

�1

. Furthermore, L = 10m and
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�T = 100K if all the circuit is simulated; L = 10

�1

m and �T = 10K is for the 
ow around the

window is analysed. Tab. 4 reports the dimensionless numbers for the target and primary circuits

and for the 
ow around the window cases. The Reynolds number is not de�ned for the target

and primary circuits because the 
ow is uniquely de�ned by the Grashof number, in the case of

pure natural circulation (see next sections). Additional numbers should be considered in the case

of gas injection for taking into account the lift force of the bubbles. These numbers would arise

from the equation written for a gas-liquid two-phase 
ow

3

.

Re Gr P r M � �

target and primary circuits - 10

16

10

�2

10

�3

10

�2

10

�2


ow around the window 10

6

10

9

10

�2

10

�3

10

�2

10

�3

Table 4: : Dimensionless numbers for the EADF circuits and for the 
ow around the window.

2.5.1 Forced convection

Forced convection occurs when the buoyancy term in Eq. (73) is negligible with respect to the

inertial term, i.e when Gr=Re

2

� 1 that may be written as

g L�

0

�T

V

2

� 1 : (88)

From Tab. 4 it follows that only for the 
ow around the window Eq. (88) holds and buoyancy e�ects

may be neglected. If we also neglect the in
uence of the temperature on transport properties (e.g.

temperature di�erences are small), the only relevant 
ow parameter in Eq. (71) is Re.

2.5.2 Natural convection

A natural convection 
ow is a 
ow produced exclusively by buoyancy forces. In this case the

reference velocity is not de�ned as a data of the problem and the value of V to be used in

the dimensionless numbers must be obtained as a function of the other 
ow parameters. This

correspond to the EADF circuit where the 
ow circulation is realised only by means of the heat

source term. In this case inertial forces are generated by buoyancy forces only, so they are of the

3

In the one dimensional case, with the hypothesis of homogeneous bubbles distribution, a number of the type

� g ��; L

3

=�

2

would arise from a dimensional analysis, being �� the density variation of the lead-bismuth due to the

bubbles injected in the rising duct of length L. The relative importance of bubbles pumping and natural convection

could be evaluated by comparing this number with the Grashof number.
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same order of magnitude, i.e. Gr=Re

2

= 1. This implies that the characteristic velocity is given

by

V

2

= g L�

0

�T : (89)

Hence Eq. (66) is written as

@�

(0)

u

(0)

@t

+r

�

�

�

�

(0)

u

(0)

u

(0)

�

+rP

(0)

=

1

Gr

1=2

r

�

� �

(0)

� �

(0)

g

g

: (90)

Here the square root of the Grashof number represents the ratio between inertial and viscous

forces. Therefore, when the Grashof number is large viscous forces are negligible with respect to

inertial forces (however they can not be neglected in the near wall region). On the other hand,

when Gr is small viscous forces are important in all the domain.

The energy equation (67) is written as

�

(0)

C

(0)

p

D�

(0)

Dt

=

1

Gr

1=2

Pr

r

�

� (�

(0)

r�

(0)

) +Q

(0)

: (91)

For natural convection Re disappears from Eq. (71) and Gr may be replaced by the Rayleigh

number Ra = Gr P r .

This is the case for the global analysis of the target and primary circuits (when gas injection

is not considered). Fixed all the other circuit's characteristics, the 
ow regime is uniquely de�ned

by the Grashof number based on the height of the circuit and on the mean temperature di�erence

between the rising and the downcoming ducts.

2.5.3 Mixed convection

When a piece of the EADF circuit is isolated and analysed, we have a situation where an external

velocity is imposed (as a consequence of the global circulation). If local buoyancy e�ects are

negligible in the considered piece of circuit, we are in the case of forced convection. However,

in the spallation region of the target (
ow around window), strong local temperature gradients

occur, driving a local natural convection which could compete with the local forced convection.

This 
ow regime is called mixed convection.

In this case the Reynolds number is based on the externally imposed velocity V , while Gr is

based on the local temperature di�erences. The ratio Gr=Re

2

gives the order of magnitude of

the buoyancy forces with respect to the inertial forces generated by forced convection. When

Gr=Re

2

= 1, the two e�ects are comparable.

From Tab. (4), this ratio in the spallation region is equal to 10

�3

and local natural convection

could be neglected. However, this is the situation at the highest 
ow rate. At lower 
ow rates or

in transient conditions, the e�ect of local buoyancy could become very important.
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3 Numerical Solution Techniques

In the following, a brief review of the solution techniques commonly used in CFD codes is pre-

sented. The pressure-based formulation is generally used in commercial codes. This formulation

is especially suitable for low Mach number (incompressible) 
ows and can be adapted to the case

of compressible 
ows. Another method is based on the extension of the density based approach,

suitable for compressible 
ows, to the low Mach number case through preconditioning techniques.

Both these formulations and all the models presented in the following can be applied to liquid

metal 
ows of interest for the EADF activity.

3.1 General Form of Governing Equations

The system of governing equations (72), (73) and (77) may be expressed in conservative form as

@W

@t

+r � (F

E

�F

V

) = S (92)

where

W =

2

6

6

6

4

�

� u

�

~

h

3

7

7

7

5

; F

E

=

2

6

6

6

4

� u

� u u + P I

�

~

h u

3

7

7

7

5

; F

V

=

2

6

6

6

4

0

�

q

3

7

7

7

5

; S =

2

6

6

6

4

0

0

Q

3

7

7

7

5

:

The density is related to the temperature by means of Eq. (75). Furthermore, initial and boundary

conditions are given by Eq. (28) and Eqs. (31)-(33) respectively.

Eqs. (92) have the form of the convection-di�usion equation

@��

@t

+r � ( ��u � �r� ) = S : (93)

In particular, the continuity equation is obtained by assigning � = 1 and S = 0, while for the

momentum equation (� = u) and the energy equation (� =

~

h) one has respectively

� = � ; S = r �

�

�ru

T

� P I

�

(94)

and

� =

�

C

p

; S = Q (95)

(if Eq. (16) is used, then S = ��TDp=Dt + � + Q). In the present work laminar equations

are considered. When turbulence is accounted for by applying the Reynolds averaging and using

Boussinesq closures [7], in Eqs. (92) the following modi�cations must be introduced: (i) all the
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quantities are replaced by their mean values; (ii) the transport coe�cients � include the eddy-

viscosity contributes; (iii) the pressure P and

~

h include additional terms related to the turbulent

kinetic energy of the 
ow. Furthermore, when a k � " model is employed one has to integrate

two additional transport equations whose form is still represented by Eq. (93). Therefore, by

taking into account such modi�cations the extension to turbulent 
ows of the numerical models

illustrated in the following is straightforward.

3.2 Pressure Based Numerical Methods

The Finite Volume method is the approach commonly used in CFD commercial codes. The cells

of the computational mesh are considered as control volumes where the conservation equations

are integrated. By applying the Gauss theorem to the divergence-form terms, the integration of

the generic Eq. (93) over the computational cell leads to the discretised equation

�V

P

d(��)

P

dt

= �

X

m

(��u � �r�)

m

� A

m

+ S

P

�V

P

(96)

where �V

P

is the volume of the computational cell and the m-subscript runs on cell-faces. For the

m-cell-face, jA

m

j is the area and n = A

m

=jA

m

j the outgoing normal. The value of the variables is

assigned to the cell centre and is denoted as (�)

P

.

The terms

F

c

= �

X

m

(��u)

m

� A

m

F

v

=

X

m

(�r�)

m

� A

m

are the convective and di�usive 
uxes respectively. They must be calculated on the cell faces by

using the value of the variable in the cell centre �

P

and the values in the centre of the neighboring

cells �

nb

, the way this is done depending on the discretisation scheme used (see Sec. 3.2.1). The

result of this discretisation practice can be always written in the form

Fc + Fv = �â

P

�

P

+

X

nb

â

nb

�

nb

(97)

where the the coe�cients â

P

and â

nb

are functions of the density, velocity and di�usion coe�cients

in the considered cell and in its neighboring cells.

The form of the source term S

P

�V

P

depends on the considered variable and circumstances.

However, it can be always expressed as a quasi-linear function of �

P

as

S

P

�V

P

= S

u

+ S

p

�

P

(98)
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where S

u

and S

p

are analogous to the â coe�cients for the 
ux terms.

In the stationary case, we have

�V

P

d(��)

P

dt

= 0

and the discretised Eq. (96) becomes

â

P

�

P

=

X

nb

â

nb

�

nb

+ S

u

(99)

having included the S

p

term in the â

P

matrix. Eq. (99) is a quasi-linear system which can be solved

with the methods described in Sec. 3.2.2, yielding the � �eld relative to the considered values of

the â coe�cients, which depend on the value of the other 
ow variables. For the solution of the

stationary 
ow �eld, a system of equations of the type (99) (one for every 
ow variable) has to

be solved, using the iterative procedures described in Sec. 3.2.3. In the following, the iterations

relative to the solution of the �eld equations are indicated with the � subscript.

In the non-stationary case, assuming constant density, the inertial term can be written as

�V

P

d(��)

P

dt

= ��V

P

�

�

P

� �

0

P

�t

and Eq. 99 becomes

��V

P

�

�

P

� �

0

P

�t

+ â

P

�

�

P

=

X

nb

â

nb

~

�

nb

+ S

u

(100)

where

~

� = � �

�

+ (1� �)�

0

(0 � � � 1) (101)

and the superscripts � and 0 refer to the time t

n

+ �t and t

n

respectively. In this case, the

�-iterative process leads the solution from the time t

n

to the time t

n

+�t. The iterative process

is necessary because Eq. (96) is linearised by calculating the matrix coe�cients as functions of

given density, velocity and di�usion coe�cients (the �elds at the (� � 1)-iteration). The solution

may be obtained avoiding the �-iterative process if a su�ciently small �t is used (in this case the

linearisation error may be neglected).

In Eq. (101) the values � = 0, � = 1=2 and � = 1 correspond to the explicit, Crank-Nicholson

and implicit scheme respectively. It can be shown that the implicit scheme is the only one that

does not require a stability condition on the time-step [8]. Nevertheless, the unconditionally

stable implicit scheme is only �rst-order accurate in time with respect to the second-order Crank-

Nicholson scheme. Second-order in time may be obtained with the implicit scheme by using the

discretization of the inertial term given by [9]

d�

P

dt

=

3=2�

�

P

� 2�

0

P

+ 1=2�

n�1

P

�t

(102)
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where �

n�1

refers to the time t

n

� �t. We will concentrate on the �rst-order implicit scheme

(� = 1) that is robust and unconditionally stable even if small time-steps are necessary in time-

dependent computations to ensure the accuracy of results.

For non-constant density 
ows, Eq. (96) may be approximated using the zero-order linearisation

in terms of density given by

d(��)

P

dt

= �

��1

P

�

�

P

� �

0

P

�t

: (103)

Hence in general Eq. (100) may be written as

a

P

�

P

=

X

nb

a

nb

�

nb

+ b (104)

where the superscript � has been dropped and

a

P

= â

P

+ a

0

P

(105)

a

nb

= â

nb

(106)

b = S

u

+ a

0

P

�

0

P

(107)

being

a

0

P

=

8

>

>

<

>

>

:

�

��1

P

�V

P

�t

for unsteady 
ows

0 for steady 
ows.

(108)

Eq. (104) has the same form of Eq. (99), the only di�erence being in the expressions of the

coe�cients. Therefore, the same solution algorithms can be used for both the steady and the

transient forms of the equations.

3.2.1 Spatial Discretization

As explained in Sec. 3.2, an expression for the convective and di�usive 
uxes across the cell

faces as a function of the values on the cell centers is needed. This operation is called spatial

discretisation.

The di�usive term of Eq. (96) is elliptic, which means that it is equally in
uenced by all the

values in the surrounding cells. The discretisation of this term is not a problem, and centered

schemes are usually employed. On the contrary, the stability and the accuracy of the numerical

solution depends on the discretisation scheme used for the convective terms. In the following, the
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P EW w e

uw ue

δxwP δxPe

Figure 1: One dimensional computational grid.

most common spatial discretisation techniques are presented in their one dimensional formulation

on a uniform grid.

Fig. 1 shows the one dimensional computational cell. The value of the convective 
ux ��u

has to be calculated on the two faces w and e of the cell.

Central di�erencing

In the central di�erencing scheme the 
uxes are calculated as

(��u)

w

=

1

2

[(��u)

W

+ (��u)

P

] (109)

(��u)

e

=

1

2

[(��u)

P

+ (��u)

E

] : (110)

This scheme is second order accurate. However it can be shown that, due to its inability to

identify 
ow direction, it can be unstable when the convective 
uxes are dominant on the di�usive


uxes [10]. A measure of the relative importance of convection with respect to di�usion is given

by the Peclet number, de�ned as

Pe =

� u

�=�x

; (111)

being �x the characteristic cell dimension. The central di�erencing scheme is stable when the

Peclet number calculated on the cell face is greater than 2 [10].

Upwind di�erencing

The upwind di�erencing scheme takes into account the 
ow direction, assigning the value at the

upstream node as the convected value of � at a cell face. For the case in Fig. 1, where the

velocity has the w-e direction, we have

(��u)

w

= (��u)

W

(112)

(��u)

e

= (��u)

P

: (113)

The upwind scheme is �rst order accurate, but is always stable. It is said to be very di�usive,

in the sense that it introduces an error that behaves like a di�usion term (numerical di�usion),

resulting in a smearing of the solution.
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Hybrid di�erencing

The hybrid di�erencing scheme is a combination of the central and upwind di�erencing schemes.

Considering for example the w face, the hybrid scheme switches from the upwind or to the central

scheme on the basis of the value of the Peclet number on the cell face:

(��u)

w

= (��u)

W

when Pe > 2 (114)

(��u)

w

=

1

2

[(��u)

W

+ (��u)

P

] when Pe < 2: (115)

(116)

Higher order schemes

Among the higher order schemes, the QUICK di�erencing scheme [10] is more accurate than

the central and hybrid schemes also if undershoots and overshoots may be present in the solution.

Other schemes as the Total Variation Diminishing (TVD) schemes are specially formulated to

achieve oscillation-free solutions at the cost of an increased computational e�ort.

All the schemes described above can be extended to the three dimensional case in body-�tted

grids, still maintaining their general characteristics. The expression of the coe�cients of Eq. (104)

depends on the chosen discretisation technique.

In general, for an accurate calculation, second or higher order schemes should be used for

the discretisation of momentum and energy equations. The upwind scheme can be used for the

turbulent equations in order to increase their numerical stability.

3.2.2 Solution of the Linear System

The linear system (104) can be solved using di�erent approaches. Direct inversion of the matrix

is in general too expensive. Then, iterative algorithms are usually employed. The Gauss-Seidel

method consists in solving

�

P

=

P

nb

a

nb

�

nb

+ b

a

P

(117)

where �

nb

stands for the neighbor values present in the computer storage. The line-by-line method

used in Ref. 8 is a combination of the Gauss-Seidel method and of the Tri-Diagonal Matrix

Algorithm (TDMA) direct method. Other iterative techniques are the line-by-line Alternating-

Direction Implicit (ADI), the Incomplete Lower-Upper Decomposition (ILU), the Strongly Implicit

Procedure (SIP), the Conjugate Gradient (CG) that includes the Generalised Minimal Residual

(GMRES), the Bi-Conjugate Gradient (Bi-CG), the Conjugate Gradient Square (CGS) and the

Bi-CGSTAB [8,10].
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In general the iterative solution of the algebraic equations need not to be taken to complete

convergence in the intermediate state of the � iterations.

Although commercial codes allow the choice of the solution method for the linear system, the

default option is usually suitable for any application.

3.2.3 Solution Algorithms

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) is generally employed in com-

mercial codes (e.g. STAR-CD and CFX) to integrate the governing equations. In this method

the discretized continuity, momentum and energy equations (104) are solved with a sequential

procedure where the momentum equation is used to obtain an approximated velocity �eld that

is then corrected in order to satisfy mass conservation. Eq. (104) written for the momentum

equation yields

a

P

u

�

P

=

X

nb

a

nb

u

�

nb

� �V

P

(rP

�

)

P

+ b (118)

where the discretized pressure gradient has not been included in the source term b and P

�

is a

guessed pressure �eld, e.g the pressure at the the previous iteration so that P

�

= P

��1

. In the

Finite Volume approach cell-centre gradients are calculated, using the Gauss theorem, as

�V

P

(rP

�

)

P

=

X

m

P

�

m

A

m

: (119)

The velocity �eld u

�

calculated by Eq. (118) does not satisfy the continuity equation and must

be corrected by a pressure �eld calculated using the continuity equation that acts as a constraint

for momentum [8]. The velocity �eld u that satis�es the continuity equation at the iteration �

and the corresponding pressure �elds P are solutions of the equation

a

P

u

P

=

X

nb

a

nb

u

nb

� �V

P

(rP )

P

+ b : (120)

By subtracting Eq. (118) from Eq. (120), the equation for the velocity correction

u

0

P

= u

P

� u

�

P

(121)

is obtained in terms of the pressure correction

P

0

P

= P

P

� P

�

P

: (122)

It yields

u

P

= u

�

P

�

�V

P

a

P

(rP

0

)

P

(123)
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where the term

P

nb

a

nb

u

0

nb

has been neglected. A formula similar to Eq. (123) can be derived for

the velocity on cell faces. This formula, substituted into the discretised continuity equation, given

by

X

m

(� u A) = 0 (124)

gives an equation for the pressure correction P

0

of the form

a

0

P

P

0

p

=

X

nb

a

0

nb

P

0

nb

+ b

0

P

: (125)

The source term b

0

P

is the mass imbalance arising from the incorrect velocity �eld u

�

.

The procedure of the SIMPLE method is the following [8].

1 Starting from a guess pressure �eld P

�

solve Eq. (118) to obtain u

�

.

2 Solve the pressure-correction equation (125) for P

0

.

3 Calculate P from Eq. (122).

4 Calculate the velocity �eld u from Eq. (123).

5 If it is necessary solve Eq. (104) for other scalars.

6 Treat P as the new P

�

and return to step 1.

It is important to note that the approximations made in deriving Eqs. (123) do not alter the

converged solution. In fact at convergence the relations u

0

= 0 and P

0

= 0 give values of P

and u that always satisfy the discretized momentum and continuity equations. Furthermore, the

convergence is achieved via a series of continuity-satisfying velocity �elds that help the convergence

of other transported scalars (e.g. the turbulence kinetic energy and dissipation when the k � "

model is used).

In the derivation of the pressure-correction equation no dependence of pressure on density has

been considered (the equation is linearized in terms of velocity and density �elds). This approxi-

mation is justi�ed by the iterative essence of the method at least when solving for incompressible


ows, when the e�ect of pressure on velocity is of primary importance. Vice versa, in highly

compressible 
ows (e.g. supersonic) the e�ect of pressure on density is of primary importance

and there is possibility of divergence due to the strong non-linearity. For compressible 
ows a

\compressible" form of Eq. (125) should be derived (e.g. by linearizing the density as function of

pressure in the expressions of the matrix coe�cients).

28



CRS4 Technical Report 99/13

In order to improve the SIMPLE method, some revised version have been proposed. Among

them there are SIMPLER, SIMPLEC and PISO (see Ref. 8 and 10).

Convergence Criteria

In the uncoupled approach, a residual R may be computed for each equation (momentum,

pressure, energy and scalars) in each cell. It reads

R =

X

nb

a

nb

�

nb

+ b � a

P

�

P

: (126)

Convergence criteria are usually formulated by imposing that for each equation the largest value

or the norm of jRj=R

ref

in the computational domain be less than a certain small number. For


ows with inlets the reference value R

ref

is assumed equal to the inlet 
ux; for enclosed domains,

R

ref

is taken as the residual after a �xed number of iterations. Also the mass source represents

a valid indicator of the convergence of the solution.

3.2.4 Relaxation techniques

Several relaxation techniques may be used in order to accelerate or stabilise the convergence

process.

Relaxation on variable

In this relaxation strategy, once the linear system has been solved, the variable � is corrected by

using

�

new

P

= ��

P

+ (1 ��)�

��1

P

(127)

where � is a constant less than one (under-relaxation). Often, density, di�usion coe�cients and

source terms are also under-relaxed by using Eq. (127).

Pseudo-transient relaxation

Eq. (104) is replaced by

�

P

= �

P

nb

a

nb

�

nb

+ b

a

P

+ (1 � �)�

��1

P

(128)

or

a

P

�

�

P

=

X

nb

a

nb

�

nb

+ b +

1� �

�

a

P

�

��1

P

: (129)

The diagonal predominance of the system formed by Eqs. (129) is greater with respect to Eq. (104)

if � is a constant less than one (under-relaxation).
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Solving the unsteady form of Eq. (104) with no inner iterative process is equivalent to solve

the steady form of Eq. (129) with a cell-varying under-relaxation parameter given by

� =

â

P

â

P

� a

0

P

: (130)

Eq. (129) may be used for unsteady computations: in this case the inner �-iterations are under-

relaxed.

Relaxation of the linear system

When solving iteratively the linear system, the change from iteration to iteration in the values

of dependent variables may be accelerated or slowed down by using over-relaxation or under-

relaxation respectively. Over-relaxation or under-relaxation are achieved by using � > 0 and

� < 0 respectively in

�

r

P

= ��

r

P

+ (1 ��)�

r�1

P

(131)

where �

r

P

comes from the solution of Eq. (104) and r is the index of the iterative algorithm solving

the linear system.

Usually, in the SIMPLE method, the under-relaxation (129) on Eq. (118) and the under-

relaxation

P = P

�

+ �

p

P

0

(132)

on Eq. (122) is applied. Therefore, the parameters � in Eqs. (129) and (132) are the \relaxation

coe�cients" to be given as input in commercial codes.

3.3 Density-Based Numerical Methods

Time-marching density-based codes have been successfully used for solving hyperbolic systems ob-

tained when discretising compressible 
ow governing equations. These codes have become highly

sophisticated in terms of geometry complexity, accurate spatial discretization and convergence

acceleration techniques[12,13]. Such methods perform the time-integration of the conserved vari-

ables by Runge-Kutta explicit algorithms or by implicit algorithms (e.g. Approximate Factorization

and LU decomposition). For the spatial discretization of the convective 
uxes high order schemes

have been developed (e.g. Arti�cial Dissipation, TVD symmetric or upwind, MUSCL, ENO).

Local time-stepping, implicit residual smoothing and multigrid are often used to accelerate the

convergence. However, numerical algorithms developed for compressible 
ows are often ine�ec-

tive when the Mach number is reduced because of the sti�ness of the system's eigenvalues. In
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fact, the time-step is limited for stability reasons by the largest eigenvalue which, for low speeds,

is approximately the speed of sound. When the Mach number approaches zero the convergence

slows dramatically due to the disparity of the wave speeds. In recent years, preconditioning meth-

ods have been used to eliminate the eigenvalues sti�ness at low speed. The major advantage of

the preconditioning methods is that they may be easily implemented into existing time-marching

compressible codes whose peculiarities are retained.

Furthermore, preconditioning methods allow to solve a further di�culty that arises when trying

to simulate incompressible 
ows using density-based algorithms. Following the cell-centred Finite

Volume approach the system of governing equations (92) is written in compact form as

�V

P

dW

P

dt

= �

X

m

(F

E

�F

V

)

m

� A

m

+ S

P

�V

P

: (133)

Time-marching schemes update the conserved variable term W making impossible to evaluate the

pressure P (P does not compare both in W and in the equation of state). Then, by introducing

the matrix

K =

2

6

6

6

6

4

1 0 0

�u I 0

�

~

h 0 1

3

7

7

7

7

5

the system (133) is transformed in the non-conservative form

�V

P

�

K

@W

@Q

�

P

dQ

P

dt

= �K

P

"

X

m

(F

E

�F

V

)

m

� A

m

+ S

P

�V

P

#

: (134)

where Q =

�

P; u;

~

h

�

T

is the vector of the primitive variables. In the matrix

K

@W

@Q

=

2

6

6

6

6

4

0 0 @�=@

~

h

0 � I 0

0 0 �

3

7

7

7

7

5

the term (1; 1) that multiplies the time-derivative of pressure controls the pressure wave speeds

and is responsible of the eigenvalues' sti�ness. Preconditioning methods are based on the tech-

nique developed by Chorin [14]: an arti�cial compressibility term under the form of a time-derivative

of pressure replaces the time-derivative of density in the continuity equation. Therefore, the con-

tinuity equation (1) is replaced by

1

�

2

@P

@t

+r � (� u) = 0 (135)
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and consequently K@W=@Q is replaced by the matrix [15]

P

�1

=

2

6

6

6

6

6

6

4

1

�

2

0 0

0 � I 0

0 0 �

3

7

7

7

7

7

7

5

where � is the arti�cial-compressibility parameter that represents the pressure wave speed of the

preconditioned system. Hence, Eqs. (134) are replaced by

�V

P

dQ

P

dt

= �(P K)

P

"

X

m

(F

E

�F

V

)

m

� A

m

+ S

P

�V

P

#

(136)

where

P K =

2

6

6

6

6

4

�

2

0 0

�u=� I=� 0

�

~

h=� 0 1=�

3

7

7

7

7

5

: (137)

In Eqs. (136) the pressure P is updated by its time-derivative and the equation of state (75) is

employed to obtain the density.

By de�ning f = F

E

� n , the eigenvalue of A = P K@f =@Q are

�

r

(A) = U ; U ; U ; U=2 + c ; U=2 � c (138)

where U = u � n and c =

p

(U=2)

2

+ �

2

. Usually � may be given by an expression as

�

2

= max(�

2

0

; u � u) (139)

where �

0

is a constant greater than zero in order to ensure that one eigenvalue is negative for

subsonic 
ows. The value of � is critical for the convergence properties of the method. Actually,

well-conditioned �

r

are obtained when � makes the pseudo acoustic wave speed of the same

order of the particle velocity. By increasing �, pressure-waves �eld adjusts faster but the bad-

conditioning of the inviscid eigenvalues grows up, especially in presence of large recirculation

zone where the velocity of 
uid is small. Nevertheless, when the Reynolds number decreases the

characteristic time of viscosity spreading also decreases and if � is too small the boundary layer

can not adapt to the too slowly developing pressure �eld and 
uctuations of separation regions

may destroy the convergence. [8]

Di�erent methods based on the arti�cial compressibility technique have been suggested. A

perturbed form of the governing equations may be obtained by expanding the 
ow variables in
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terms of the Mach number [16]. Alternatively, preconditioning matrixes as (137) are developed

in order to re-scale the eigenvalues to the same order of magnitude [8,16-17]. Recently, the

preconditioning approach has been proposed to solve reacting and non reacting 
ows within a

wide Mach number range. [18-20]

The density based preconditioned approach is less expensive from the computational point of

view. However, it could be less robust than the pressure based approach, and requires skill users

for an e�cient performance. This is the main reason why it is not adopted in commercial CFD

codes.

The CRS4 in-house code KARALIS is based on the above procedure. It will be used in the

EADF computation activity and its performance will be compared with that of commercial codes

in the near future.

4 Conclusions

The 
uid-dynamic modelling for the simulation of the Lead-Bismuth 
ow in the EADF was re-

viewed. The general form of the non-dimensional governing equation was derived, and the analysis

of the orders of magnitude of the di�erent terms in the case of a the liquidmetal 
ows in the EADF

was performed, through a low-Mach number asymptotic analysis. It was found that the resulting

form of the equations is the one commonly used in commercial CFD codes for the simulation of

liquid 
ows, which can then be used for our applications.

The most common numerical methods for low-Mach number applications were also presented.

These methods are general and can be applied to liquid metal 
ows without any modi�cation.

The peculiarity of the numerical simulation of liquid metal 
ows lies in the modelling of the

turbulent heat transfer, due to the low Prandtl number of this type of 
uids. This subject is

discussed in [21].
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