Metadata, citation and similar papers at core.ac.uk

Provided by P-arch

Implementation and testing
of the CODESA-3D model

for density-dependent flow and
transport problems in porous media

Giuditta Lecca
Environment Area

July 2000

NV

ANY

Centre for Advanced Studies, Research and Development in Sardinia
VI Strada Ovest, Z. I. Macchiareddu, C.P. 94, 1-09010 Uta, CA, Italia

https://core.ac.uk/display/51249302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1

2

3

Introduction 3
Brief description of the model 5
2.1 Mathematical model 5
2.2 Numerical model 9
Implementation issues 14
3.1 Codedesign 14
3.1.1 Integration of existing computer codes 14
3.1.2 Dynamic memory allocation 15
3.1.3 Data organization using derived data structures 17
3.2 The code structure 21
3.2.1 Level 0: PROGRAM MAIN_CODESA3D i . 21
3.2.2 Level 1: SUBROUTINE CODESA3D v v i 22
3.2.3 Level 2: SUBROUTINE FLOWTRANSOLVE 24
3.2.4 Level 3: SUBROUTINE PICCPL o v i 27
3.2.5 Level 4: SUBROUTINES UNSATFLW, UNSATTRN and further levels 31
Benchmark and applications 40
4.1 Benchmark problem: the Henry problem 40
4.2 Applications 42
4.2.1 Contamination of a ditch-drained aquifer by trickle infiltration from a
saltdome 42
4.2.2 The saltwater intrusion problem of the Korba coastal aquifer 44
Appendix A 49
A.1 Physical parameters 49
A.1.1 Inputand Output 50
A.2 Numerical integration 53
A.2.1 Flowequation 54

A.2.2 Transport equation 56

B Appendix B 59
C Appendix C 84
C.1 List of 1/0 files: the codesa3d.fnamesfile 84
C.2 Basic parameters: the parmfile L. 85
C.3 2-D ground surface: the gridfile 85
C.4 Boundary conditionfiles 87
C.4.1 Flowequation 87

C.4.2 Transport equation 89

C.5 Initial condition files 90
C.5.1 Flowequation 90

C.5.2 Transport equation 90

C.6 Material and solute properties files 91
C.7 Screen output: the result.QUTfile 91

1 Introduction

The report describes the implementation and test phases of the computer code CODESA-3D
(COupled variable DEnsity and SAturation 3-Dimensional model), whose mathematical and
numerical models are described in all details in the tenth chapter of the book [15].

CODESA-3D is a three-dimensional finite element simulator for flow and solute transport in
variably saturated porous media on unstructured domains. The flow and solute transport
processes are coupled through the variable density of the filtrating mixture made of water
and dissolved matter (salt, pollutants). The flow module simulates the water movement in
the porous medium, taking into account different forcing inputs: infiltration/evaporation,
recharge/discharge, withdrawal/injection, etc., while the transport module computes the
migration of the salty plume due to advection and diffusion processes.

Typical applications of the model are so-called density-dependent problems in subsurface
hydrology; in particular the model has been applied to the saltwater intrusion problem of
coastal aquifesr [24, 27, 22] and brine movement in a radionuclide polluted aquifer [29].
Denser-than-water non-aqueous phase liquids (DNAPLs), such as chlorinated organic con-
taminants, are other examples of density-dependent contaminants, which can be modeled
with CODESA-3D.

The CODESA-3D code is born from the integration and extension of two parent codes:

o SATC3D: SATurated Coupled flow and transport 3-Dimensional model;
o FLOW3D: variably saturated FLOW 3-Dimensional model.

These two computer codes were developed, during the last ten years, by the Department
of Applied Mathematics of the University of Padova in collaboration with the Environment
Group of CRS4. Code manuals (in Italian) and related publications are [11, 13, 14] and [10,
12], respectively.

The report represents the first version of the CODESA-3D developer and user’s manual de-
scribing:

o the mathematical and numerical models. Only a brief summary of them is included here
for cross-referencing reason; refer to [15] for the complete description of CODESA-3D
model;

o the implementation model. It is largely based on the parent SATC3D and FLOW3D
routines, written in Fortran 77, but in addition allows a more flexible data management
and enhances software modularity via Fortran 90 features such as user-derived data
types and dynamic memory allocation. The code listings of the most representative
routines are also included for arapid but comprehensive instruction/data flow checking;

o the application model. It is described the set up and the discussion of the results of case
studies developed for didactic, test and application purposes.

Appendices A, B and C report respectively:

o the expressions of the physical parameters of the mathematical model and those of
matrices and vectors of the numerical model. In this way, the CODESA-3D extensions
to the parent codes (SATC3D and FLOW3D) and the planned extensions to build up the
final version of model [15] are summarized. The input and output of the model are
discussed, as well;

o the description and usage of all the code variables (listed in the codesa3d header.h file)
and the data structure hierarchy.

o the complete input/output dataset for a representative case study [16] and the CPU
timings of the run over CRS4 available machines running Fortran 90 compilers.

2 Brief description of the model

In this section we briefly describe the mathematical and numerical model of CODESA-3D,
described in details in [15]. The coupled flow and transport model is developed for the
case of variably saturated porous medium, applicable both to the unsaturated (soil) and the
saturated (groundwater) zone, and of variably dense filtrating solution, assuming mixing !,
between freshwater and dissolved salts.

2.1 Mathematical model

The CODESA-3D mathematical model is based on two coupled equations assessing, for a fixed
control volume immersed in the flow domain (Figure 1), the mass conservation principle ?
both for water (equation 1) and dissolved salt (equation 2). The first mass balance equation
is referred further as flow equation and the second one as transport equation 2.

In what follows [z, y, 2]7 is the Cartesian spatial coordinate vector 4, with » vertical coordinate
directed upward, and ¢ is the time.

o t
ST NS T
P(x,y,2)
@)
z
y
O X

Figure 1: Control volume centered at point P(x,y, z) of domain ©? and crossed by the water
flow at time t. The salt dissolved in water is represented by gray particles.

1As opposed to sharp-interface models, which consider an abrupt interface between salt- and freshwater, ap-
proximately assumed as immiscible water bodies.

2The excess of mass inflow over outflow across the control volume boundaries is equal to the increase of mass of
the control volume per unit volume of the porous medium and per unit time.

3Also known as the advection-dispersion equation.

4The superscript T denotes the transpose operator.

The mathematical model is formulated in terms of two unknowns:

Yl y,z,t) = b equivalent freshwater pressure head
Pod
. @
(e, y,z,t) = — normalized concentration of salt
Cs

The equivalent freshwater pressure head is defined as v = p/(p,g) [L], where p [M L=1T~2]
is the water pressure, p, [M L~3] is the freshwater density and g [L7T~?] is the gravitational
constant. A derived variable is the equivalent freshwater hydraulic head h =+ + 2 [L]. The
normalized concentration® ¢ [/] is an adimensional variable (0 < ¢ < 1) defined as the ratio
between actual ¢ and maximum ¢, absolute concentrations of salt in the (water) solution. The
maximum absolute concentration ¢, is a characteristic parameter of the numerical application
at hand: for saltwater intrusion problems ¢, is usually in the range 25+35x10~3 grams per
liter (g/1) ¢, which corresponds to an average salt concentration of seawater.

In this model the variable density p of the solution is expressed as a linear function of the
normalized salt concentration c:

p = po(l+ec)

where ¢ = (p; — p,)/po, is the density difference ratio, typically ¢ < 1, with p, the solution
density at the maximum concentration (¢ =1): p; = p,(1 + ¢). Also the dynamic viscosity
p [ML=YT=1] of the solution is assumed linearly dependent on ¢: p = p,(1 + ¢'¢), with
¢ = (us — po)/ 1o the viscosity difference ratio, and p, and p, solution viscosities at ¢ = 0 and
¢ = 1, respectively.

The real pressure head in the variably dense water is ¢¥" = p/(pg) = ¥/(1 + ec) < ¢. Analo-
gously the real total head is h" = z +¢" < h.

With these definitions, the coupled system of variably saturated flow and miscible
salt transport equations is:

WL _gvoesc Lty
5 (gt N ot po (mathematical model) (4)
- = =V (ev)+V - (DVe)+qcr+ f

All terms in equations (4) are time inverses [7~'] 7 and the symbol V is the gradient operator,
e.g.: Vz=[0,0,1]7 is the unit vertical vector.

In the first equation of system (4) the term —V - v express the divergence of water flux in the
control volume; in the second equation the term —V - (ev) expresses the advective flux, i.e.
the flux carried by the water at its average velocity, while the term V - (DVe¢) expresses the

5Also called relative concentration.
8About 23+35 grams per cubic meter (g/m?).
"The continuity equations are formulated per unit volume of porous medium.

dispersive flux, linearly proportional to the gradient of concentration, which takes place from
high concentration to low ones. Dispersive flux is the macroscopic effect resulting from local
velocity fluctuations, accounting both for mechanical dispersion and molecular diffusion [3].

In the flow equation (first equation):

o v is the Darcy velocity vector [L/T]:

‘v: -K- [V1/J+(1—|—ec)v,z]‘ (5)

with K = k., K. the variably saturated hydraulic conductivity tensor [L/T], with k., [/]
the relative permeability and K/ = pgk/u the saturated hydraulic conductivity tensor
[L/T], being k is the intrinsic medium permeability [Z?]. Incorporating constitutive
equations for density and viscosity, K/ becomes:

K — (14 €c) K
5 (1+¢€o)

with K, the saturated hydraulic conductivity tensor at reference conditions ¢ and po;

[¢]

o(1, ¢) is the overall storage coefficient [L~1];

[¢]

¢ is the porosity [/];

[¢]

Sy is the water saturation [/] i.e. the ratio between the volume of water and the volume
of voids in the representative elementary volume (REV) of porous medium. Obviously
Sw = 1in a water saturated porous medium;

[¢]

q is the injected (positive)/extracted (negative) volumetric ® flow rate [T1].
In the transport equation (second equation):

o D is the hydrodynamic dispersion tensor [7T-'];

o ¢* is the normalized concentration of salt in the injected(positive)/extracted(negative)
fAuid [/];

o f is the volumetric rate of injected (positive)/extracted (negative) solute, in a limited
quantity not capable to affect the flow field [T-'].

The expressions of the physical parameters listed above are given in the Appendix A. A
detailed description of flow and solute transport processes can be found in classical subsurface
hydrology textbooks [3, 7, 23].

Coupling in system (4) is due to the concentration terms that appear in the flow equation and,
conversely, the head terms that appear in the transport equation via the Darcy velocities. As
can be seen the coupling terms contain nonlinear expressions of the unknowns both in the
flow and transport equations. An additional source of nonlinearity is introduced in the flow
equation by the coefficients ¢ and k,.,, that are highly nonlinear function of the pressure head
v, when the water flow develops in the unsaturated zone ° where v, now called the suction
head, becomes lesser than zero, due to the capillarity effect.

& Per unit volume of porous medium.
Where the void space of the porous medium is filled with both air and water.

Initial conditions (IC’s) and Dirichlet, Neumann, or Cauchy boundary conditions (BC’s) must
be added to complete the mathematical formulation of the density-dependent flow and trans-
port problem expressed in (4).

The flow boundary conditions are:

1/)($ayazat = 0) = 1/)0($aya Z) on (HOW IC’S)
. T o , @)
1/)($ayazat) — 1/)(1‘,3/,2,15) on Fl (HOW BC S)
v-n = —¢(7,7,7,1) on I's

having denoted 2 as the whole 3-D computational domain and I' as its boundary, 1, is the
prescribed pressure head at the initial time (zero) for all the points belonging to the volume
Q, 4 is the prescribed pressure head on the Dirichlet boundary segment I'; of the surface
I' and ¢, is the prescribed flux across the Neumann boundary segment I';, whose outward
normal unit vector is n.

Q
r (\/ _
Zb soil
~_Water table ~
< sea [, \\/
L »*\\ freshwater i ‘
; >~ _ interface \
1 saltwater el |
: SSSSS S
/ bedrock
. r2a

Figure 2: Cross-section of the low domain () representing a coastal aquifer, contaminated
by saltwater intrusion, with its boundaries: T'y at the sea side with a prescribed distribu-
tion of seawater pressure heads, T's, on the aquifer bottom with zero water flux (¢, = 0),
I's; on the aquifer surface with prescribed distributed water inflow ¢ (infiltration) and pre-
scribed concentrated water outflow) (withdrawal); T's at the sea side with prescribed salt
concentrations and above it a freshwater outlet face I'y, where zero concentration gradients
Ve = 0 are usually assumed. The drawn interface between salt- and freshwater is actually to
be considered as a transition zone, where relative concentration ¢ continuously varies from
unity to zero when proceeding from the sea to the land.

The transport boundary conditions are:

(e, y,z,t =0) = co(z,y,2) on Q (transport IC’s)

o(T,7,7,1) = ZT,7,%,1) on Ty (transport BC’s) 9)
DVe-n = (7, 7,7,1) on I'y
(ve—=DVe) n = —q.(%,7,71) on I

where ¢, is the initial concentration at time zero, ¢ is the prescribed concentration on the
Dirichlet boundary segment I's, ¢4 is the prescribed dispersive flux across the Neumann
boundary segment 'y and gq. is the prescribed total flux (advective plus dispersive) of solute
across the Cauchy boundary segment I';.

Appendix A also includes the description of the physical parameters appearing in the 1C and
BC formulations (7) and (9).

Figure 2 shows typical boundary conditions for a coastal aquifer, contaminated by seawater
intrusion due to inland overpumping. We consider prescribed pressure (on I'y) and concen-
tration (on I's) Dirichlet boundaries at the sea-side, impervious boundary (no water flux) at
the aquifer bottom (I's,), assumed distributed influx ¢ (infiltration) along soil surface (T's;)
and prescribed exploitation @ at the wells (I'};). Since the model assumes hydrodynamic dis-
persion, the drawn interface between salt- and freshwater is actually to be interpreted as a
transition zone, where relative concentration continuously varies from unity to zero moving
landward. Along the coast, accordingly to a dynamic water balance budget, is to be consid-
ered also a seepage face I'; allowing the lighter freshwater to discharge into the sea. Miscible
models usually assume along this outlet window I'4 no spatial variation of salt concentrations
(Ve=0).

2.2 Numerical model

The numerical model CODESA-3D is a standard finite element (FE) Galerkin scheme, with
tetrahedral finite elements and linear basis functions, complemented by a weighted finite
difference (FD) scheme for the discretization of the time derivatives.

With reference to a 3D domain composed by N nodes and N, finite elements, the solutions
sought ¢ (z,y, z,t) and e(z,y, z, t) are expressed as linear combination of the nodal discretized
unknowns v = [y, %o, ..., ¥n]T and ¢ = [¢1,éo, ..., ¢n]T through linear shape functions N:

N

Wy, z) b= Ni(w,y, 2)i(t)

i=1

and
N

(o, y,z,t) mé = ZNZ'(l‘, Yy, 2)é (1)

i=1
The expression of linear basis functions N; for tetrahedral element can be found in classical FE
text-books [34, 18]. The complete FE formulation of the CODESA-3D can be found in [15].

The FE discretization of system (4) finally yields the following system of ordinary differential

equations (ODEs) in the nodal discretized unknowns ¢ and ¢, which represents the CODESA-
3D numerical semi-discretized model:

du .
Pd—¢+H1/:+q* = 0
e t (ODE system) (11)
Md—;:—l—(A—I—B—I—C)é—I—r* = 0

In the above system, for the flow equation:

o P(e, &) is the flow mass (or capacity) matrix;

-~

o H(,¢) is the flow stiffness (or flux) matrix;

o q*(,¢) is a vector accounting for the prescribed boundary fluxes, withdrawal or injec-
tion rates, the gravitational gradient term, and the time variation of the concentration,

and for the transport equation:

~ ~ ~

o matrices A(vp, &), B(¢h, &) and C(4), €) represent advective, dispersive and the Cauchy-
BC-condition contributions to the overall transport stiffness matrix, that in the follow-
ing will be shortly indicated as matrix E = (A + B + C);

-~

o M(4) is the transport mass matrix;

o vector r* accounts for source and sink terms, and for the dispersive component of the
Neumann and Cauchy boundary conditions.

Flow matrices H and P are symmetric positive definite matrices (SPD) '°. Transport matrices
A, C and M are also SPD matrices, while advective transport matrix B is a unsymmetric
matrix.

Model parameters of system (11) that are spatially dependent are considered constant within
each tetrahedral element. Parameters that depend on pressure head and/or concentration
are evaluated using ¢ and/or ¢ values averaged over each element and are also element-wise
constant.

The numerical integration of matrix and vector coefficients of system (11) is derived in [15];
Appendix A provides also the expressions of these matrices and arrays.

After the spatial discretization using FE, the system (11) is integrated in time using Finite
Differences (FD). Denoting by dy/dt the generic time derivative (with y = ¢, ¢), we have

dy/dt = (y* 1" — yF)/ Aty

where At is the time interval between current ¢;; and previous ¢; time steps. Matrices and
vectors, generically indicated here with variable Y, that are function of the unknowns, are
evaluated at the time (¢ + wAt¢) using the trapezoidal rule:

YA = oY 4 (1 — W)Y

10A symmetric matrix (n x n) is positive definite if all its eigenvalues are positive.

10

with w the weighting parameter. The forward Euler scheme is obtained for w = 0, the back-
ward Euler scheme is obtained for w = 1 and the Crank-Nicolson scheme for w = 0.5. For
numerical stability of the integration scheme, the weighting parameter w must satisfy the
condition 0.5 < w < 1. Applying the weighted FD scheme to the equations of system (11),
with weighting parameter w; for the flow equation and w, for the transport equation !!, yields
the following system of nonlinear algebraic equations:

phes k1 phes ko ke
(Aty +“fHk+wf)¢ - [Aty _(1_“f)Hk+wf]¢ —a
(13)
MF+1 MP ot
(AT +thk+wt) eftl = [—Atk - (1 —(.dt)Dk+wt:| ek — "

which may be concisely rewritten:

B+l 5kt
AT = by

(15)

Af-H RPLE S - b,

with A and A; the coefficient matrices (also called the left hand side (LHS)), 4 and ¢ the
vectors of unknowns and b; and b, the right hand side (RHS) vectors of the flow and transport
equations, respectively.

At this point of the discretization process, the first equation (variably saturated flow) of sys-
tem (15) needs special attention for its intrinsic nonlinearity due to the presence of the non-
linear coefficients ¢ and k., [3] incorporated in matrices P and H, respectively. The lin-
earization techniques adopted in CODESA-3D are the Picard iteration, also known as the
method of successive substitution (SS), and the Newton’s method, also known as Newton-
Raphson [5]. Again all the numerical discretization details are described in [15]. For the
purposes of the present report, at the end of the adopted linearization scheme of the flow
equation in (15) the following linearized flow equation is obtained:

~ k+1 ~ k41
where (m + 1) is the current nonlinear flow iteration step, (A ¢) is the linearized flow matrix
and the nodal discretized vector 5= (¢n+1-¢n,) is called the search direction vector.

A difference between the two cited linearization schemes is that Picard linearization generates
a symmetric flow coefficient matrix A ¢, thus preserving the symmetry of the original matrix
of the discrete flow equation, whereas Newton iteration generates a unsymmetric matrix
A, which is called the Jacobian '2. This fact has some relevance on the choice of the linear

Hweighting parameters w; and w; are not required to be the same.
12The right hand side of the Newton's scheme is called the residual.

11

solver and on its computational cost (memory and CPU requirements) and efficiency [30].
On the other hand Newton iteration is known as more efficient method in presence of more
pronounced nonlinearity effects. The peculiarity of the two methods for flow and transport
applications are reported in [26, 28].

The system (15), incorporating the linearized flow equation (16) can be rewritten at each time
step k + 1 and for each innermost nonlinear flow iteration step m + 1 as:

(At g (bs) g1

w>
l

(nonlinear system 1.2) (18)

At . é = bt

where matrix A ¢ can be symmetric or not depending on which linearization method is adopted
and matrix A, is always unsymmetric due to the contribution of convective transport stiffness
matrix B. Remember that s = (1[;m+1 - 1/3m), thus the linearized flow equation is solved at each
linearization step in terms of equivalent freshwater head increments s.

Neumann and Cauchy boundary conditions are incorporated in the matrix and vector co-
efficients of the FE formulation, as described in [15], while Dirichlet boundary conditions
are finally imposed on the left and right hand sides of the assembled discrete equations of
system (18).

The resulting nonlinear system (18) is solved using the successive substitution (SS) scheme
(Picard linearization) which for a given time step & + 1 reads:

solve the flow equation: (A;),, ., -spti 1 = (bs), 4,

with an innermost flow linearization scheme;

4,
5. If(n>0.and. ||efT] — ¢kl < &) Then
Stop
Else
solve the transport equation: A; - ¢fTl = by;
End If
6. End For

In the above algorithm ¢, is the loop exiting tolerance and n is the loop index with maximum
step counter n. This scheme will be shortly indicated with SS(m,c;). Note that step 4 in

12

the above algorithm is solved using an innermost linearization scheme with tolerance ¢; and
maximum step counter 7, either Picard or Newton scheme.

Since the initial solution estimate y°, with y = (¢, ¢) has a big effect on the convergence
behavior of the adopted linearization schemes often, a relaxed iteration, defined as:

ym+1 — ym _|_A(ym+1 _ ym)

with A damping parameter 3, is adopted to accelerate convergence when a poor initial esti-
mate is used.

Linear systems of general type: Az = b, in step 4 and 5 (else branch) are solved using Krylov
subspace iterative methods [30] for symmetric and unsymmetric systems. Some of the iter-
ative methods available in CODESA-3D are:

o Symmetric positive definite matrices (SPD):
Conjugate Gradient Method [17].

o Unsymmetric matrices [31, 32, 8]:
BiConjugate Gradients STABilized (BCGSTAB);
Transpose Free Quasi-Mimimal Residuals (TFQMR);
minimum residuals (GRAMRB);

The exit condition of the linear solver iteration is given by

[l
< €
[ClF——

with » = (b — Az) the residuals and ¢, the prescribed tolerance for solver convergence, usu-
ally in the range of 1078+10-'2, for floating point calculation having 8 byte precision. All
these solvers are preconditioned, in order to accelerate convergence, using the incomplete
LU decomposition '* or the main diagonal of the coefficient matrix A.

13Damping parameters A, adopted in the linearization of the flow equation, and A;, adopted in the linearization
of the coupled system, are obviously not required to be the same.
14In the symmetric case the incomplete Cholesky LL” decomposition is used.

13

3 Implementation issues

The chapter describes the CODESA-3D implementation model including: the computer code
design and structure, and the data organization as well.

. sATCaD| o FLOW3D |
} T vaiably }
! saturated flow ! saturated flow !
! module ! l module l
transport

i module l

L | CODESA-3D

Figure 3: Integration of FLOW3D variably saturated flow module in place of the correspond-
ing SATC3D saturated flow module for the creation of the CODESA-3D model.

3.1 Code design
3.1.1 Integration of existing computer codes

CODESA-3D code skeleton originates from SATC3D [14], a coupled saturated flow and mis-
cible transport simulator. Like SATC3D, CODESA-3D is a coupled flow and transport simu-
lator, but in addition it allows for a variably saturated flow regime. In doing this extension,
CODESA-3D incorporates (Figure 3) the pre-existing freshwater flow model FLOW3D [11, 13],
integrating it with the presence of the diluted salt, thus giving rise to a flow simulator for a
variably dense fluid in a variably saturated porous medium. The integration required model
extensions both in the incorporated low module, due to the introduction of the salt concen-
tration terms which affects the water density, and in the transport module, which, conversely,
deals now with a variably saturated flow field. The principal integration in the CODESA-
3D, with reference to the SATC3D code, was the introduction of the innermost linearization
scheme required by the solution of the variably saturated (nonlinear) flow equation (16).
This piece of software was collected from FLOW3D routines. Apart from the linearization of
the flow equation, other extensions to the original codes SATC3D and FLOW3D and planned
future extensions to reach the final version of the CODESA-3D model [15] are summarized
in Appendix A.

14

Parent codes (FLOW3D, SATC3D) integration in CODESA-3D has been done exploiting a series
of features of Fortran 90 programming language: the dynamic memory allocation and derived
data structures, which are described in the following paragraphs.

3.1.2 Dynamic memory allocation

For this software integration project, an important point in favor of dynamic memory allo-
cation was the possibility to allocate exactly the memory size amount required for the given
simulation, especially useful for large scale problems.

Parent Fortran 77 codes used to define, statically, the dimensioning parameters of the test
case in a include file <codename>.H. The following lines show the include file CATHY.H from
FLOW3D source distribution:

C this file: CATHY.H

C __
C Dimensioning Parameters

C NODMAX - maximum # of surface nodes in 3-d mesh

C NTRMAX - maximum # of triangles in 2-d mesh

C MAXSTR - maximum # of vertical layers

C NMAX - NODMAX#*(MAXSTR + 1) maximum # of nodes in 3-d mesh

C NTEMAX = 3#NTRMAX#MAXSTR - maximum # of tetrahedra in 3-d mesh

C NIMAX - maximum # of element connections to a node

C MAXTRM = N1MAX*NMAX - maximum # of nonzero elements in system matrices
C MAXBOT - maximum size of NONSYM real working storage

C INTBOT - MAXBOT + 6*NMAX + 1

¢

INTEGER NODMAX, NTRMAX, MAXSTR

INTEGER NMAX, NTEMAX

INTEGER N1MAX, MAXTRM

INTEGER MAXBOT, INTBOT

PARAMETER (NODMAX = 2116, NTRMAX = 4050, MAXSTR = 42)
PARAMETER (NMAX = NODMAX*(MAXSTR+1) ,NTEMAX = 3*NTRMAX*MAXSTR)
PARAMETER (N1MAX = 20,MAXTRM = N1MAX*NMAX)

PARAMETER (MAXBOT = 90000,INTBOT = MAXBOT+6*NMAX+1)

Arrays were thus declared using the predefined parameters of the include file (CATHY . H), which
was accessed by each program unit through the keyword INCLUDE (see example below):

15

C An example of static allocation of array X

PROGRAM MAIN
IMPLICIT NONE
INCLUDE °’CATHY.H’

REAL#8 X (NMAX)

When a dataset did not fit the declared dimensioning parameters, these had to be enlarged,
editing the include file and recompiling all the source codes that include it.

Now instead, using dynamic memory allocation the equivalent portion of the code is:

C An example of dynamic allocation of array X

C __
USE MODKIND ! specification of real precision
INTEGER :: N
REAL (MY_PRECISION), POINTER, DIMENSION (:) :: X
¢
READ(*,%*) N

IF(N.GT.0)THEN

ALLOCATE (X(N), STAT=err)

IF(err.NE.0)STOP ’WARNING: error during allocation’
ELSE

STOP ’WARNING: N.LE.O’

In the example above a monodimensional (1-D) array is declared using a 1-D pointer '°
(<type>, POINTER, DIMENSION (:)). The actual memory size required by the vector is read
from the standard input at run time, when it is exactly known the size of the problem at hand.
The array associated memory may be eventually released and re-allocated to another array
during program execution.

The present version of CODESA-3D uses only dynamic memory.

Aside from the main point of dynamic allocation, in the code fragment above there is an-
other Fortran 90 interesting feature. The precision of a real variable X is set to the value
MY_PRECISION, which in turn is defined in the module program unit '® MOD_XIND. Such module

15A 2-D pointer is declared as: <type>, POINTER, DIMENSION (:,:) and a 3-D one as: <type>, POINTER,
DIMENSION (:,:,:) and so on.

16Modules are third type of program units besides main (PROGRAM) and external subprograms (SUBROUTINE,
FUNCTION) which can contain both data and instructions. A typical Fortran 90 module is a library object.

16

unit is made visible to this program through the keyword USE. Below is shown the content of
MODULE MOD KIND:

C this file: modkind.f

C Set real number precision by uncommenting the proper line
¢

MODULE MOD_KIND
c 4 byte precision
cccece INTEGER, PARAMETER :: MY_PRECISION = 4
c 8 byte precision
INTEGER, PARAMETER :: MY_PRECISION = 8
END MODULE MOD_KIND

Changing the floating point precision of computations requires simply editing the content of
MODULE MOD KIND and recompiling all the source files that use that module, without the need
of editing each single routine of the entire source distribution.

3.1.3 Data organization using derived data structures

Another important Fortran 90 feature incorporated in CODESA-3D code is the use of derived
data types, which are compound variables made by combination of the basic intrinsic data
types (INTEGER, READ, LOGICAL, etc.) and shapes (scalar, vector, matrix, pointer etc.).

This extension was introduced to obtain the desired flexibility needed during the integration
of the existing routines. The major benefits of the practice are:

o the great compactness in passing the actual argument list to the called routines, moving
from along list of intrinsic variables (typically 20+30 items) to a shorter list of compound
variables (typically up to 10 items);

o the existence of a unique place in the code where the derived variables are defined. All
the prototypes are contained in MODULE units;

o the existence of a unique place in the code where the derived variables are instantiated
with actual dimensions. All the allocations are in allocate. £ file.

These three functionalities greatly minimize coding mistakes and further error checking. The
number and composition of these derived data types were carefully based on the code or-
ganization. Indeed the list of implemented derived types reflects the main "recipients” of a
typical discretized (FE) model and the relationships between them. Eleven (11) major derived
classes were defined and 3 minor ones for a total of 14 classes:

1. mod Dim: collection of actual dimension parameters read at run-time form input files;
2. Par_tag: collection of all the other principal parameters;

3. CPU_tag; collection of CPU timing variables;

17

I0_tag: collection of logical units and file names;

Grid_tag: collection of variables related to mesh definition;
Flow BC_tag: collection of variables related to flow BC's;
Transp_BC_tag: collection of variables related to transport BC's;

MBal_tag: collection of variables related to mass balance computations;

© 00 N S U B

MS_prop_tag: collection of variables related to material (porous medium) and solute
(salt) properties. This major class incorporates also three subclasses related to the
moisture-retention soil properties [25]:

a) VG_tag: set of Van Genutchen curve parameters.
g
(b) HU tag: set of Huyakorn curve parameters;
c) BC_tag: set of Brooks-Corey curve parameters;
g

10. Sys_tag: collection of variables related to discretized linear systems;

11. Out_tag: collection of variables related to model output.

The Naming convention is such that the derived variable named <var> of type <var>_tag is
declared in the module mod_<var> contained in file mod <var>.f.

As an example, the derived data type Grid_tag is defined in module mod_Grid as follows:

C this file: mod_Grid.f

C __
C derived data type containing all the grid parameters and data
MODULE MOD_GRID
USE MOD_KIND ! specification of real precision
TYPE GRID_TAG
INTEGER :: IVERT, ISP
INTEGER, POINTER, DIMENSION (:) :: IVOL,TP
INTEGER, POINTER, DIMENSION (:,:) :: TRIANG, TETRA
REAL (MY_PRECISION) :: BASE
REAL (MY_PRECISION), POINTER, DIMENSION (:) :: AREANOD, X, Y, Z, ZRATIO,
> VOLNOD, VOLU, VOLUR
END TYPE GRID_TAG
END MODULE MOD_GRID
C __

The compound variable GRID contains variables and arrays related to the definition of the
computational grid. See Appendix B for the meaning of a single variable.

Relevant subfields of structure GRID are the integer connectivity matrices Grid%TRIANG (4 x
Dim%NTRI) and Grid%TETRA (5 x Dim%NT) describing the initial 2-D ground surface and the whole
3-D aquifer meshes, respectively. In particular, as depicted in Figure 4, the e-th column of
matrix TRIANG contains the 3 nodes (P,S, and U in the Figure) belonging to e-th triangle while
the fourth location contains an integer identifier of the the hydrogeological zone (represented
as gray patches in the Figure) of that finite element; analogously the e-th column of matrix
TETRA contains the 4 nodes (1,],L, and M) belonging to e-th tetrahedron while the fifth location
identifies the hydrogeological zone. Physical parameters which are assigned according to

18

/AN

3

R
Q J

8/

TRIANG(:,e) = {P,S,U,izone} TETRAC(:,e) ={l,J,L,M izone}

Figure 4: Connectivity arrays TRIANG and TETRA, which define the list of nodes and the hydro-
geological zone (depicted as gray patches) of the triangles and tetrahedra belonging to the
2-D ground surface and 3-D aquifer grids, respectively.

hydrogeological zones are saturated hydraulic conductivity K, porosity ¢, elastic storage S,
and longitudinal «j; and transversal op dispersivities. The maximum number of zones in
CODESA-3D is given by the number of 2-D superficial triangles Dim%NTRI multiplied by the
number of vertical strata Dim%NST. '7

In the code fragment that follows we see that the prototype of the derived variable GRID is
made visible to all program units which have the instruction USE MOD_GRID. The actual com-
pound variable GRID of type GRID_TAG is declared, in each program unit, with the instruction
TYPE (GRID_TAG) :: GRID, and itis allocated with actual dimension only once at the begin-
ning of the run, as in the code fragment that follows:

17The vertical zoning in CODESA-3D is formulated as a projection of the superficial one, thus one is allowed to
modify only the specific hydrogeological value assigned to a vertical zone but not its lateral extension.

19

C An example of allocation of some subfields of compound variable GRID

USE MODKIND ! specification of real precision
USE MOD_GRID ! prototype of derived grid data

IMPLICIT NONE
TYPE (GRID_TAG) :: GRID ! declaration of compound variable GRID

IF(Dim%n.le.0) THEN
STOP ’error: mn.le.0 ’

ENDIF

ALLOCATE (Grid%x(Dim%n),stat=err) ! dimension N
IF(err.ne.0)STOP

ALLOCATE (Grid¥%y(Dim%n),stat=err)
IF(err.ne.0)STOP

ALLOCATE (Grid%z(Dim%n),stat=err)
IF(err.ne.0)STOP

The compound variable GRID is then used as shown in the following code fragment:

C An example of use of some subfields of compound variable GRID

TYPE (GRID_TAG) :: GRID ! declaration of compound variable GRID

¢ read X and Y coordinate values

READ (IO%4IN2,*) (Grid%X(I),Grid%Y(I),I=1,Dim%NNOD)
c read only surface elevation values

READ (I0%IN2,%*) (Grid%Z(I),I=1,Dim%NNOD)

c generate 3D mesh with vertical projection of ground surface 2D triangulation

CALL GRID3D(Dim,Par,I0,Grid,FlowBC,TranspBC)

Note that a single field of a derived data structure is accessed using % operator. Recur-
sively a derived data structure may be a subfield of an higher-level derived data structure,
thus defining a hierarchy of data. In CODESA-3D, for instance, the real coefficient ALFA of
Huyakorn moisture-retention curves [25] is defined as a subfield of structure HU, which is
in turn a subfield of the material and solute class MS prop; to access variable ALFA we write:
MS_prop/%HU%ALFA.

As we can see in the code fragment above, the external routine GRID3D is called with all
the derived variables to be read/written passed as a very compacted list (6 items) of actual
arguments. As shown this procedure greatly enhances code compactness and readability; on

20

the other hand it may eventually introduce some overhead during compilation and execution
phases. Efficient Fortran 90 compilers greatly reduce these overheads.

3.2 The code structure

The original 107 FLOW3D and 80 SATC3D routines have been maintained, with minor modifi-
cations, in CODESA-3D, which is composed by about 175 routines, for a total of about 20 000
Fortran source lines (including comments).

The naming convention is such that SUBROUTINE PIPPO is contained in file named pippo.£.

3.2.1 Level 0: PROGRAM MAIN CODESA3D

The CODESA-3D code is organized in a main program PROGRAM MAIN_CODESA3D which drives the
actual computational unit called SUBROUTINE CODESA3D. The main program skeleton, shown
in the shaded box below, does the following operations: open input/output files, read from
these input files the dimensioning parameters of the problem at hand and then rewind files,
allocate arrays using actual memory requirements, run the computations, deallocate associ-
ated memory and close input/output files prior to exit.

C this file: main_codesa3d.f
C DRIVER of CODESA-3D
IMPLICIT NONE

C open input files
CALL OPENIO (Par,IO)
C read actual dimensioning parameters from input files
CALL READDIM (Dim,Par,IO)
C allocate arrays dynamically with actual dimensions
CALL ALLOCATE (Dim,Par,I0,Grid,FlowBC,TranspBC,MS prop,Sys,0ut)
C do computations

CALL CODESA3D (Dim,Par,I0,Grid,FlowBC,TranspBC,MS prop,Sys,0ut)

C close all input files
CALL CLOSIO (Par,IO)
C deallocate dynamic arrays
CALL DEALLOCATE (Dim,Par,I0,Grid,FlowBC,TranspBC,MS prop,Sys,0ut)

21

3.2.2 Level 1: SUBROUTINE CODESA3D

It is the called SUBROUTINE CODESA3D that manages the computations allowing two types of
simulations:

o freshwater flow alone (Par,ITRANS = 0);

o density dependent coupled flow and transport (Par’ITRANS # 0).
The actual arguments of SUBROUTINE CODESA3D are simply 9 of the 11 principal derived data

types, which are easily passed in cascade to the called routines. The code structure of
SUBROUTINE CODESA3D is shown below:

C this file: codesa3d.f
SUBROUTINE CODESA3D (Dim,Par,I0,Grid,FlowBC,TranspBC,MS prop,Sys,0Out)
C initialization

C start new time step
G = e NEW TIME STEP
DO WHILE ((.NOT. Par%flowexit flag) .AND. (.NOT. Paricoupledexit flag))

C case (1) ---> ITRANS=0: variably saturated freshwater flow only
IF (Par%ITRANS .EQ. 0) THEN
C Assemble and solve for unknown pressure heads
CALL FLOWSOLVE (Dim,Par,I0,CPU,Grid,FlowBC, MS_prop,MBal,Sys,0Out)

C case (2) ---> ITRANS .ne. 0: coupled flow & transport
ELSE

C Assemble and solve for unknown pressure heads and concentrations

CALL FLOWTRANSOLVE (Dim,Par,I0,CPU,Grid, FlowBC,TranspBC,
MS_prop,MBal,Sys,Out)

G oo GO TO THE NEXT STEP
C ending

RETURN

END

The initialization phase for SUBROUTINE CODESA3D includes: complete reading of input files,
generation of the 3-D mesh, allocation and set up of arrays for storage of the assembled
sparse matrices '® in the Compressed Sparse Row (CSR) format [2], initialization and set up
of simulation parameters, variables and arrays. The ending phase includes: output of final

18The global matrices arising from FE formulations are very sparse since each row, which corresponds to a mesh
node, collects contributions only from the mesh near neighbors of the node. Only the non-zero coefficients of these

22

results, cumulative mass balance errors, flag and failure summaries, CPU times both for code
sections and total execution, and deallocation of assembled matrices of actual dimension
Dim%NTERM and Dim%NTERMC. All these phases are common to the simply flow (1) and the flow
& transport simulations (2). Also the DO WHILE loop of time stepping is common to the (1)/(2)
branches of the IF-ENDIF construct, while the set up of the time marching marching para-
meters (ParDELTAT, Par%TIME etc.) is done at the lower code structure level (SUBROUTINE
FLOWSOLVE, FLOWTRAI\ISOLVE).

The 3-D Mesh generation is accomplished by replication, for a given number of vertical layers
(Dim%NTRI+1), of the given 2-D ground surface triangulation, composed by Dim%NNOD nodes
and Dim%NTRI triangles. Since the vertical projection of each 2-D triangle generates a 3-D
prism (with a triangular basis) and in turn each prism generates 3 tetrahedra, the final 3-
D mesh has DimNNOD*(Dim%NSTR +1) nodes and Dim%NTRI*3+Dim%NSTR tetrahedra. Different
mesh generation options with reference to layer thicknesses are available according to integer
parameters Par%ISP, Par%IVERT (see Appendix B).

The matrix memorization is row-wise compressed according to the CSR standard [2]. Figure 5
shows the contents of arrays (COEF, JA, I4) involved in symmetric (left) and unsymmetric
(right) compressed storage '°.

a c| c a c| c
b h b h
[c h
¢ | h f i matrix COEF h f i
c g g g
i h i h
I Cc |

compressed matrix COEF

[efelolnle el efol o[i) [elelcfefrfelnln]r[ifofo] i n]e]"]
/ﬂ 7 /% /1 /4 //4 A /4 7 L 7 - -

R

L Flp el [r] GLelslela[s[e[ai s o]z s [s]]

/" column index JA

‘1‘4/‘6’/‘7’/‘9T10‘11[‘1‘4‘6‘8‘11‘13‘15‘

pointer to first row coeff. A

Figure 5: Compacted storage of symmetric (left)/unsymmetric (right) matrices using the CSR
format. Observe that only the upper part of a symmetric matrix is stored.

The allocation of flow assembled matrices is done taking into account whether they are sym-
metric or not ?° for memory saving purposes. If both flow and transport coefficient matrices
are unsymmetric 2! only one copy (that of flow) of CSR pointer arrays (column index Sys%JA,
row pointer Sys%TOPOL, etc.) is computed and maintained. The corresponding transport CSR
arrays are simply ”pointers”, with no associated memory, that address the flow counterparts,

matrices are stored in a row-wise fashion in a real vector and then integer vectors of indices are used to relate these
vector locations to the original matrix coefficients.

19While COEF and J4 in CODESA-3D maintain the same name, pointer array IA is called TOPOL.

200nly Picard iteration for the linearization of the flow equation gives rise to a symmetric system.

21Since transport matrix is always unsymmetric, this case occurs when Newton linearization is applied to the flow
equation.

23

as it shown in the following code fragment taken from the SUBROUTINE CSR_PTR:

C An example of pointer association without new memory request (else branch)

IF(Par%ITRANS.ne.0)THEN ! coupled flow & transport
IF (Par%IFLOW.eq.1)THEN ! flow symmetric storage
C compute dimension NTERMC for integer pointers and allocate them
CALL TRANSPCSRPTR (Dim,Par,IO0,Grid,Sys)
ELSE ! flow non-symmetric storage
C simply refer to previously allocated integer FLOW pointers

Dim%NTERMC = Dim}NTERM
Sys%JAC => Sys%JA
Sys#TOPOLC => Sys%TOPOL
Sys#TETJAC => Sys%TETJA
ENDIF
ELSE ! only flow

The Fortran 90 symbol => has the special meaning of pointer association.

3.2.3 Level 2: SUBROUTINE FLOWTRANSOLVE

At the secondary code structure level SUBROUTINE FLOWTRANSOLVE manages the solution of the
coupled system (11) at each time step for the unknown pressure heads and concentrations 22,
The coupled system is linearized using a successive substitution (SS) scheme (see pseudocode
in the box below the system (18)) allowing two types of linearization method (Picard and par-
tial Newton), both for flow and transport equations. The choice of the linearization scheme
is made upon the choices:

o flow equation

— Par;IFLOW = 1, Picard scheme (SUBROUTINE PICFLW);
— Par%IFLOW = 2, partial Newton scheme (SUBROUTINE NEWTFLW).

o transport equation

— Par’;ITRANS = 1, Picard scheme (SUBROUTINE PICCPL);
— Par%ITRANS = 2, partial Newton scheme (SUBROUTINE NEWTCPL).

The shaded boxes below show the content of source file flowtransolve.f:

22 Analogously SUBROUTINE FLOWSOLVE, which is not discussed here, solves the equation for unknown freshwater
pressure heads, when a freshwater flow alone is simulated.

24

C this file: flowtransolve.f (lrst part)

SUBROUTINE FLOWTRANSOLVE (Dim,Par,I0,CPU,Grid,FlowBC,TranspBC,
> MS_prop,MBal,Sys,0ut)

C Successive substitution (SS) scheme to solve the coupled system

C

C-————————————— CASE Par%ITRANS=1: PICARD SCHEME
IF (Par%ITRANS .EQ. 1) THEN

C

C Picard linearization of the transport equation

CALL PICCPL (Dim,Par,I0,CPU,Grid, Flow BC,TranspBC,

> MS_prop,MBal,Sys,0ut)

¢
Cm—mmm e CASE Par%ITRANS=2: NEWTON SCHEME
¢
ELSE IF (Par%ITRANS .EQ. 2) THEN
¢
C partial Newton linearization of the transport equation
¢
CALL NEWTCPL (Dim,Par,I0,CPU,Grid,FlowBC,TranspBC,
> MS_prop,MBal,Sys,0ut)
¢
END IF
C ___
(. . . to be continued on the next pages . . .)

After the solution of the system (SUBROUTINE PICCPL or NEWTCPL) some auxiliary calculations
are made, as can be seen from the shaded box below, namely: check for time backstepping
or stop conditions; output of the results; hydrograph outputs; update of flow and transport
variables, processing of time step variables, interpolation of time-varying BC, prior to return
the control to the callee routine CODESA-3D which increments the DO WHILE in the time step
counter.

Observe that from this level below in the code structure coexist routines with both compound
and intrinsic arguments.

25

C this file: flowtransolve.f (2nd part)
C. continuing from the previous pages . . .)
¢
C handle the back-stepping case for the flow eqn.
¢
IF (Par%ICNVRF.EQ.-2) RETURN
C no back-stepping possible, simulation is terminated

IF ((Par%ICNVRF .EQ. -3).0R.(Par}ICNVRC .EQ. -3)) THEN
CALL CLOSID (I0)
STOP
ENDIF
C back-calculate fluxes at Dirichlet and Cauchy nodes, and perform mass balance
C and hydrograph calculations; calculate soil moisture characteristics needed
C for velocity calculations and for output; and output mass balance errors

C flow eq.: update a first block of variables and arrays
C before going to the next time step

MBal%ETOT
MBal%VTOT

MBal/ETOT + ABS(MBal,ERRAS)
MBalyVTOT + (MBal%VIN + MBal%VOUT)
MBalyVTOTI = MBal%VTOTI + MBal%VIN
MBalyVTOTO = MBal%VTOTO + MBal%VOUT
MBal/ADINP = MBal%ADIN

MBal%ADOUTP = MBal?ADOUT

MBal/NDINP = MBal%NDIN

MBal%NDOUTP = MBal}NDOUT

MBal/ANINP = MBal%ANIN

MBal%ANOUTP = MBal?ANQUT

MBal/NNINP = MBal%NNIN

MBal%NNOUTP = MBal}NNOUT

MBal%SFFLWP = MBalYSFFLW

MBal%SFFLWP = MBalYSFFLW

Flow BC%QPOLD = Flow BC%QPNEW
Flow BC%SFEXP = Flow BCYSFEX
Flow BC%SFEXIT = Flow BCYSFEX
Flow BC%SFQP = FlowBCY%SFQ

Flow BCAIFATMP = Flow BC},IFATM
Flow BC%ATMOLD = Flow BCYATMACT

Out#PSITIMEP = Out}PSINEW
Out#PTIMEP = Out%PNEW

¢

C hydrograph calculations

C and output of solution

C transport eqn.: wupdate arrays before going to the next time step
¢

Out%CTIMEP = Out%CNEW
Out%COLD = Out%CNEW
(. . . to be continued on the next pages . . .)

26

C this file: flowtransolve.f (3rd part)
C. continuing from the previous pages . . .)
¢
C time step processing, and preparation for the next time step
¢
CALL DTSTAT(ParTIME,Par%DELTAT,Par/DTBIG,Par}TBIG,Par¥DTSMAL,
> Par’TSMAL,Par%DTAVG)
¢
C If we have achieved convergence we prepare for the next time step
C unless we’ve reached TMAX or we’re running a steady state problem
¢

IF ((ABS (Par;TIME-ParTMAX) .LE.0.001*Par)DELTAT) . OR. (Par%DELTAT.GE. 1.0D+10)) THEN
Parcoupled exit_flag = .TRUE.

RETURN
ENDIF
CALL TIMCPL(Par%NSTEP,Par}NITERT,Par)NITERTC,Par}ITER,Par}ITERC,Par};ICNVRC
> ParTIME,Par}TIMEP ,Par}DELTAT ,Par}DELTATP,Par’DTMIN,Par%DTMAX,Par’TMAX,
> Par’DTMAGM, Par%,DTMAGA ,Par,DTREDM,Par%DTREDS , Dim)NPRT, I0%KPRT , I0%TIMPRT)
¢
C input and interpolate boundary conditions for the next time level
¢
CALL BOUNDNEXT (Dim,Par,I0,Grid,FlowBC,MS_prop,0Out)
¢
C flow eqn.: update a second block of arrays before going to the next time step
¢
Out Out’POLD = Out%PNEW ! potential head
Out%PTNEW = Par}TETAF*0ut%PNEW + (1.0 - ParTETAF)*0ut/PTIMEP
Out#PTOLD = Out’PTNEW
¢
RETURN
END

3.2.4 Level 3: SUBROUTINE PICCPL

Following the path of Picard linearization of the transport equation we found SUBROUTINE
PICCPL 22 which is shown below:

23SUBROUTINE NEWTCPL, which is not discussed here, uses partial Newton linearization for the transport equation
and has the same structure of SUBROUTINE PICCPL.

27

C this file: piccpl.f (lrst part)

SUBROUTINE PICCPL (Dim,Par,I0,CPU,Grid, FlowBC,TranspBC,MS prop,
> MBal,Sys,Out)

C start the timer
CALL TIM(TIMNL,1)

200 CONTINUE

assemble and solve the nonlinear system of flow for
pressure heads (psi) and then compute potential heads (h = z + psi)

2 Q Q

CALL UNSATFLW (Dim,Par,I0,CPU,Grid,FlowBC,MS prop,MBal,Sys,0ut)

¢
C flow eqn.: handle the back-stepping and no back-stepping case
¢
IF (Par%ICNVRF.LE.-2) RETURN
¢
C calculate the weighted potential head and concentration values
¢
Out#PTNEW = Par’TETAC*0ut’%PNEW + (1.0-Par%TETAC)*0ut’PTIMEP
Out#CTNEW = Par’TETAC*Out’CNEW + (1.0-Par%TETAC)*0ut’CTIMEP
¢
C calculate velocities on the tetrahedra
¢
CALL NODELT (Dim%NT,Grid%TETRA,MS_prop%CKRW,MS prop%CKRWE)
CALL VELUNSATH (Dim,Par,Grid,MSprop,Sys,QOut)
¢

C assemble and solve the unsymmetric linear system of the transport equation.

CALL UNSATTRN (Dim,Par,I0,CPU,Grid,FlowBC,TranspBC,MS prop,

> MBal,Sys,0Out)

(. . . to be continued on the next pages . . .)

The PICCPL routine manages the solution of the flow (SUBROUTINE UNSATFLW) and transport
(SUBROUTINE UNSATTRN) variably saturated nonlinear equations and then executes a conver-
gence check (SUBROUTINE CNVRGC) of the successive substitution (SS) scheme to solve the cou-
pled system (equation (18)) of flow and transport in porous media.

28

C
C

Q

C this file: piccpl.f (2nd part)
C.

continuing from the previous pages . . .)

check for convergence of the nonlinear iteration

CALL CNVRGC(Dim}N,Par’ICNVRC,Par%ITERC,Par}ITMXC1,Par}ITMXC2,Din}ITMXC,

> Out%IKMAXVC,Par), TOLNLC ,Par},DELTAT,Par%DTMIN, Out%PNEW, Out’POLD,
> Out%CNEW, Out%COLD,Out%PMAXNV, Out%PMAXOV, Out’,CMAXNV,Out/CMAXOV,
> Out%DIFFPV,0utDIFFCV,0ut%DIFPMX,0ut’,DIFCMX, Out%DIFMAX)

update variables of nonlinear iterative scheme and output convergence results

CALL NLUPD(IO,Dim%N,Par’,ITER,Par%ITERC,Par}ICNVRC,ParIRELAXC,Par%NITER,
Par/NITERT,Par}NITERC,Par}NITERTC,Par/,ITTOTC,Par%KBACK,Par}NSTEP,
Par0MEGAP ,Par’,0MEGAPC ,Par},TIME,ParTIMEP ,ParyDELTAT ,Par),DTMIN,
ParDTREDM, Par},DTREDS, Out%IKMAXVC, OutPMAXNV, Out%PMAXOV,0ut},DIFFPV,
Out%CMAXNV, Out%CMAXOV, Out)DIFFCV,0ut/DIFPMX, Out%DIFCMX, Out%CNEW,
Out%COLD, Out%CTIMEP,Out’PNEW, Out%POLD,O0ut%PTIMEP)

vV V V V V

IF (Par%ICNVRC .EQ. -1 .OR. Par},ICNVRC .EQ. -2) GO TO 200

————————————————————————————— END NONLINEAR ITERATION -------------
stop the timer

CALL TIM(TIMNL,2)
CPUYNLC=CPU%NLC+TIMNL

RETURN
END

The convergence of the SS scheme is controlled by the the following code fragment taken from
file cnvrge. £:

IF (DIFMAX .LE. TOLCPL) THEN ! << convergence achieved >>
IF (ITERC .LT. ITMXC1) THEN
ICNVRC=1 ! increase DELTAT
ELSE IF (ITERC .LT. ITMXC2) THEN
ICNVRC=2 ! same DELTAT

ELSE
ICNVRC=3 ! decrease DELTAT
END IF
ELSE ! << convergence failed>>
IF (ITERC .LT. ITMXC) THEN
ICNVRC=-1 ! iterate again

ELSE IF (DELTAT .GT. DTMIN) THEN

ICNVRC=-2 ! back-stepping
ELSE

ICNVRC=-3 ! back-stepping not possible anymore
END IF

END IF

29

To achieve coupled system convergence DIFMAX < TOLCPL, with TOLCPL the prescribed exit
tolerance, usually in the range: 0.01 = 0.025. The real parameter DIFMAX, which controls con-
vergence, is essentially given by the maximum value among current and previous nonlinear
step differences of normalized pressure heads and concentrations, i.e.:

DIFMAX = MAX(DIFPSI;DIFC)

where DIFPSI = | (PNEW(:)-POLD(:))/PMAX|, with PMAX = MAX (|PNEW(:)|; |POLD(:)I|) and
DIFC = | (CNEW(:)-COLD(:)I.

A heuristic method is adopted to determine the length Par%DELTAT of the next time step
according to the convergence behavior of the current linearization step of the coupled sys-
tem (18). The method increases DELTAT when the number of iterations Par%ITERC is smaller
of the integer input parameter Par’%ITMXC1 and decreases it when ITERC is greater than in-
put integer parameter Par’ITMXC2. The DELTAT is maintained the same when Par’ITMXC1
< Par,ITERC < Par%ITMXC2. The DELTAT is increased according to the formula: DELTAT =
DELTAT#DTMAGM + DTMAGA and decreased: DELTAT = DELTAT*DTREDM - DTREDS where the input
real constants DTMAGM, DTREDM, DTMAGA and DTREDS represent the amplification and reduction
factors and the additive and subtractive terms, respectively. Observe also that at conver-
gence failure it is still possible to continue the run, decreasing current DELTAT and moving
back to the previous time (backstepping), if the reduced DELTAT is still greater than the input
constant Par¥%DTMIN (minimum allowable time step).

In CODESA-3D, as can be seen above from the source code of SUBROUTINE PICCPL, CPU tim-
ings are registered with the SUBROUTINE TIM, whose source code is shown below:

C this file: tim.f
C ___
SUBROUTINE TIM(TIME,ICOD)
¢
C returns elapsed time in seconds from a real time clock
C count.rate is the # of processor clock counts per seconds
¢
INTEGER :: ICOD,ITIME
INTEGER :: COUNT, COUNTRATE, COUNTMAX
REAL :: TIME
¢
IF (ICOD.EQ.1) THEN ! initial setting
CALL SYSTEM_CLOCK (COUNT,COUNT RATE, COUNT MAX)
TIME = FLOAT(COUNT/COUNTRATE)
ELSE ! periodic setting
CALL SYSTEM_CLOCK (COUNT,COUNT RATE, COUNT MAX)
TIME = FLOAT(COUNT/COUNTRATE) - TIME
ENDIF
¢
RETURN
END

The SUBROUTINE SYSTEM_CLOCK is a Fortran 90 intrinsic (primitive) function.

30

3.2.5 Level 4: SUBROUTINES UNSATFLW, UNSATTRN and further levels

At the fourth code structure level we found two principal routines: SUBROUTINE UNSATFLW and
SUBROUTINE UNSATTRN, which assemble and solve the nonlinear flow and transport equations,
respectively.

The solution of flow equation.

Source code for SUBROUTINE UNSATFLW is shown below:

C this file: unsatflw.f

C ___
SUBROUTINE UNSATFLW (Dim,Par,I0,CPU,Grid,FlowBC,TranspBC,MS prop,
> MBal,Sys,Out)

- START NONLINEAR ITERATION-——--———--———-
200 CONTINUE

C

IF (Par%IFLOW .EQ. 1) THEN

CALL PICFLW (Dim,Par,I0,CPU,Grid,FlowBC,MS prop,Sys,0Out)

ELSE
CALL NEWTFLW (Dim,Par,I0,CPU,Grid,FlowBC,MS prop,Sys,0ut)
END IF

before checking for convergence of the nonlinear scheme, we:

(i) back-calculate fluxes at Dirichlet nodes

(ii) compute (but don’t output) mass balance errors

(iii) apply nonlinear relaxation (if required)

(iv) calculate the nonlinear convergence and residual error norms
(v) check for switching of atmospheric boundary conditions

(vi) calculate new position of the exit point along each seepage

Q QO Q Qa aQ aa

face and check for seepage face exit point convergence

check for convergence of the flow nonlinear scheme

Q

CALL CNVRGF (Dim,Par,IO0,CPU,Grid,FlowBC,MS prop,QOut)

IF(Par%ICNVRF.EQ.-1) GO TO 200
c--———————-------——————— GO TO THE NEXT NONLIN STEP

RETURN

END

The convergence check for the nonlinear flow equation is done in SUBROUTINE CNVRGF. The
principal criterium for convergence is ||-|| < TOLNL, where TOLNL is the nonlinear flow iteration
scheme exit tolerance and || - || is a vector norm (real variables PL2 and PINF) of the pressure
head differences between current and previous nonlinear steps. The norm can be Euclidean:
PL2=SQRT (SUM(PNEW(:)-POLD(:))) or infinite: PINF=MAX(PNEW(:)-POLD(:)), according to the

31

value (1;0) of integer input parameter Par’L2NORM.

At a lower code structure level there is SUBROUTINE PICFLW 24 that follows:

C this file: picflw.f (lrst part)

SUBROUTINE PICFLW (Dim,Par,I0,CPU,Grid,FlowBC,TranspBC,MS prop,
> MBal,Sys,Out)

C initializations
C assemble global stiffness and mass matrices
IF (Par’%0SCFLAG) THEN

C Galerkin scheme modified by Orthogonal Subdomain Collocation method
CALL ASSPICO0SC(Grid%x,Grid%y,Grid%z,Dim%NT,Dim%NTRI,

> Dim%4NSTR,Grid%TETRA,Sys%TETJA, Sys%LMASS, Sys%COEF1, Sys%COEF2,
> MS_prop%PERMX ,MS_prop/PERMY ,MS prop’PERMZ ,MS propCKRUWE,
> MS_prop/ETAE,Grid%VOLU,Grid%VOLUR, Sys¥%BI, Sys%CI,Sys%DI)

ELSE

C standard Galerkin scheme

CALL ASSPIC(Dim%NT,Dim%NTRI,Dim/NSTR,Grid%TETRA,Sys/4TETJA,
> SysY%LMASS, Sys%COEF1, Sys%COEF2,
> MS_prop/%PERMX ,MS prop%PERMY ,MS prop%PERMZ ,MS prop%CKRWE,

> MS_prop/ETAE,Grid%VOLU,Grid%VOLUR, Sys%BI,Sys%CI,Sys%DI)

ENDIF
C assemble the RHS vector, without contribution of the unsaturated zone
C gravitational term, the concentration term, and the boundary conditions.

CALL RHSPIC(Dim%N,Sys%JA,Sys%TOPOL,Par/,DELTAT,0ut’PSITNEW,Out%PSINEW,
> Out%PSITIMEP, Sys%COEF1,Sys%COEF2,Sys%TNOTI)
C assemble the global LHS system matrix from the stiffness and mass matrices

CALL CFMATP(Dim}%NTERM,Par’TETAF,Par%DELTAT,Sys/COEF1,Sys%COEF2)
C add to the RHS contributions of: the gravitational and concentration term

IF (Par%ITRANS.ne.0) THEN
CALL RHSGRVCON (Par,Dim}NT,Dim%NTRI3,Grid%}TETRA,Grid%IVOL,

> MS_prop%EPSLON, Par%DELTAT,Par%TETAF,
> OutCNEW, Out’CTIMEP ,Dim}NSTR,
> MS_prop%PERMZ ,MS_prop%POROS ,Grid%VOLU,
> Sys%DI,MS prop%CKRWE ,MS prop%SWE, Sys%TNOTI)

ELSE
CALL RHSGRV(Dim}NT,Dim%NTRI3,Dim%NSTR,Grid%TETRA,Sys%TNOTI,
> SysYDI,MS_prop%PERMZ , Grid%IVOL,MS_prop%CKRHE)

ENDIF

(. . . to be continued on the next pages . . .)

243UBROUTINE NEWTFLW, which is not discussed here, has the same structure.

32

The initialization phase for SUBROUTINE PICFLVW includes: calculation of soil moisture charac-
teristics needed for Picard scheme and setting to zero of the global stiffness (Sys%C0EF1) and
mass (Sys%COEF2) matrices.

Q Q Q a

Q

Q Q@

Q Q Q@

this file: picflw.f (2nd part)
continuing from the previous pages . . .)
save a copy of RHS vector before imposing Dirichlet BC’s

Sys%XT5 = Sys)TNOTI

impose BC’s and save diagonal original coeff. of LHS system matrix

corresponding to Dirichlet nodes

CALL BCPIC(Dim%NP,Dim%NQ,Flow BCY%CONTP,Flow BC/CONTQ, Sys/LHSP,Flow BC%Q,

> Dim%4NNOD, Sys%LHSATM,Flow BC/4IFATM,Flow BC4ATMACT ,Flow BCYATMOLD,
> Sys%TOPOL,SysCOEF1,Sys),TNOTI ,Par’,TETAF ,Par’,RMAX ,Flow BC/NUMDIR,
> Flow BC%NODDIR,Dim%NSF,Flow BCYNSFNUM,Flow BC/,NSFNOD,Flow BC%SFEX, Sys%LHSSF)

solve the linear system of equations and calculate the residual
CALL SYMSLV(IOD%0UT1,Dim/N,Dim%4NTERM,Flow BC},NUMDIR,ParNITER,Par’ITMXCGSY,
> Par}TOLCGSY ,Par%RMIN, Flow BC4NODDIR, Sys%JA, Sys%TOPOL,
> Out#PSIDIFF,SysTNOTI, Sys%COEF1, Sys%COEF2, Sys%SCR1)
Par}ITLIN = ParITLIN + Par}NITER
ParNITERT = Par%NITERT + Par}NITER
set flag if the linear solver failed
extract pressure heads PSINEW from the difference solution PDIFF

Out#PSINEW = Out’%PSINEW + Out%PSIDIFF

restore diagonal elements of LHS system matrix corresponding to

Dirichlet nodes.

CALL SHLPIC(Dim}NP,Sys%TOPOL,Flow BC/CONTP,Flow BC%4PRESC,Sys/LHSP,
> Sys%COEF1,0ut’,PSINEW,0ut%PSIOLD,Din%NSF,Flow BC4NSFNUM, Flow BC/,NSFNOD,
> Flow BC%SFEX, Sys/%LHSSF,Dim%NNOD,Flow BC/,IFATM,Sys%LHSATM)

calculate the maximum norm of the pressure head difference
between the current and previous nonlinear iterations.

CALL MAXNORM(Dim,Par,Out)

RETURN
END

Boundary conditions (BC'’s) are incorporated into the global discretized linear system. Neu-
mann (or Cauchy) fluxes are added to the RHS of the linear system, while the Dirichlet bound-
ary conditions are applied both to the LHS and the RHS of the same algebraic system. Setting

33

of a Dirichlet boundary condition for mesh node I (SUBROUTINE BCPIC)is done multiplying the
diagonal I-th element of LHS matrix by a very large number (usually a function of the largest
real number representable by the computer = HUGE(1.0)) and setting the corresponding 1-th
coefficient of RHS vector to the prescribed value of the unknown. In this way we practically
transform the I-th equation in the identity: unknown = assigned value. Before doing this
we must store the diagonal coefficient of LHS matrix (SUBROUTINE BCPIC) in order to restore
them after the solution of the system (SUBROUTINE SHKPIC). The same procedure is adopted
for the solution of the transport equation (see SUBROUTINE UNSATTRN on next pages).

The solution of the linear SPD system resulting from the Picard linearization of the flow
equation is solved with the CG preconditioned with 1C decomposition (SUBROUTINE SYMSLV).

The assembling of global stiffness and mass matrices that constitute the LHS of the flow lin-
earized system is done in SUBROUTINE ASSPIC 2%, whose source code is shown below. The only
difference between the if branch (flow & transport) and else branch (freshwater flow), which
is not included for simplicity, is the presence in the if branch of the hydraulic permeability
multiplier: multi= (14 €¢)/(1 + €'Z) and the overall storage multiplier: mult2= (1 + ¢¢), which
are both set to 1 in the else branch.

25SUBROUTINE ASSPIC.0SC, which implements a Galerkin FE scheme modified by the Orthogonal Subdomain Col-
location (OSC) method, has the same structure.

34

C this file: asspic.f
SUBROUTINE ASSPIC(...)

IF(ITRANS.NE.O)THEN ! flow & transport
DO IEL=1,NT ! loop on finite elements
ISTR=1+IEL/ (NTRI*3)
IR=MOD (IEL,NTRI*3)
IF (IR .EQ. 0) ISTR=ISTR-1
MTYPE=TETRA(5,IEL) ! hydrogeological zone

CAVG = 0.0
CMED = 0.0
CMEDP = 0.0
DO K = 1,4
I = TETRA(K,IEL)
CMED = CMED+CNEW(I)
CMEDP = CMEDP+CTIMEP(I)
END DO
CMED = 0.25%CMED
CMEDP = 0.25%CMEDP
CAVG = TETAF*CMED + (1-TETAF)*CMEDP ! averaged c

nultl
nult?2

(1+EPSLON*CAVG) / (1+EPSLON1*CAVG) ! permeability multiplier
(1+EPSLON*CAVG) ! storage multiplier

VK=VOLUR (IEL)*CKRWE (IEL)
VE=VOLU (IEL)*mult2*ETAE (IEL)
PVK1=mult 1#PERMX (ISTR,MTYPE)*VK
PVK2=mult 1#PERMY (ISTR,MTYPE)*VK
PVK3=mult 1#PERMZ (ISTR,MTYPE)*VK
DO K=1,4
PVKB=PVK1*BI (X, IEL)
PVKC=PVK2*CI(X,IEL)
PVKD=PVK3*DI (X, IEL)
DO L=K,4
IND=TETJA(X,L,IEL)
COEF1(IND)=COEF1(IND) + PVKB*BI(L,IEL) + stiffness matrix
> PVKC*CI(L,IEL) + PVKD*DI(L,IEL)
COEF2 (IND)=COEF2(IND) + VE*LMASS(K,L) ' mass matrix
END DO
END DO
END DO ! end of loop on finite elements

ELSE ! freshwater flow alone

ENDIF

RETURN
END

35

The solution of transport equation.

Source code for SUBROUTINE UNSATTRN is shown below:

C this file: unsattrn.f

SUBROUTINE UNSATTRN (Dim,Par,I0,CPU,Grid,FlowBC,TranspBC,MS prop,
> MBal,Sys,Out)

C initializations

C assemble global stiffness and mass matrices
C

CALL ASSTRN(Dim%NT,Dim%NTRI3,Dim%NSTR,Grid%TETRA,Par%IP4,Grid%IVOL,
SysY%TETJAC,MS prop%DIFFUS, Grid%X,Grid%Y,Grid%z,

Out%UU, Dut%VV, Out4WW,Grid%VOLU,Grid%VOLUR,Sys%BI,
SysY%CI,Sys%DI,Sys%COEF1C, Sys%COEF2C ,MS prop%POROS,
MS_prop%SWE ,MS_prop%RETARD,MS_ prop%ALFAL,
MS_prop%ALFAT,SysY%LMASSC)

v V V V VvV

C

C assemble RHS vector, without the contribution of the BC’s

C
CALL RHSTRN(Dim}N,Sys%TOPOLC,Sys%JAC,ParDELTAT,Par,TETAC,
> Sys%TNOTIC,0ut%CTIMEP,Sys%COEF1C,Sys/COEF2C)

C

C assemble the global LHS system matrix from the stiffness and mass matrices
CALL CFMAT (Dim%NTERMC,Par’TETAC,Par%DELTAT,Sys/COEF1C,Sys/,COEF2C)
C get an estimate of the boundary fluxes for Dirichlet BC’s at time level zero

C save diagonal elements of LHS system matrix corresponding to Dirichlet nodes

CALL LHSTRN(Dim}NPC,Transp BC%NNPC,Sys%TOPOLC,Sys%JAC,Sys)LHSC,Sys¥%COEF1C)

C
C impose boundary conditions
C
CALL BCTRN(Dim%N,Dim%NPC,Par%NSTEP,Din/NMC, Transp BC/NNPC,
> Transp BC%NNMC, Sys%TOPOLC, Sys%JAC,Par’RMAX, Sys%XT5C,
Sys%TNOTIC, Transp BCYPC,Transp BCAMC1,
Transp BC%MC2, Sys%COEF1C)
(. . . to be continued on the next pages . . .)

36

C this file: unsattrn.f (2nd part)

(. . . continuing from the previous pages . . .)

¢

C solve the linear system of equations and calculate the residual
¢

CALL NSYSLV(Par%ISOLVC,I0%0UT1,Dim%N,Dim%NTERMC,Dim%NPC,
Transp BC%NNPC,Par’ITMXCGNS,Dim%IBOT,Dim%}MINBOT,
Dim%MAXBOT, IERSYM,Par},NITERC, Sys%IAC,Sys%JAC,
Sys%TOPOLC, Sys%INSYM,Par%4TOLCGNS ,Par%RMIN, Sys%COEF1C,
Sys%COEF2C, Sys%SCR1,Sys%SCR2, Sys%RNSYM, Out%CNEW, Sys%TNOTIC)
IF(Par%ISOLV .EQ. 3 .AND. IERSYM .NE. 0) THEN

CALL CLOSIO (ID)

STOP
END IF
Par%ITLINC =Par%ITLINC+Par%NITERC
Par%NITERTC=Par%NITERTC+ParNITERC

Vv V V V

C

C restore diagonal elements of LHS system matrix corresponding to
C Dirichlet nodes

C

CALL SHLNSY(Dim}NPC,Transp BC%NNPC,Sys%TOPOLC,Sys%JAC,
> Out%CNEW, Transp BC%PC,SysC

RETURN

END

The solution of the linear unsymmetric system resulting from the Picard (or partial Newton)
linearization of the transport equation is solved with Krylov subspace solvers of the CG-family
in the SUBROUTINE NSSLV. The choice of the solver is made upon the value of the integer input
variable Par’,ISOLVC:

o ISOLV=-5 BCGSTAB (w diagonal preconditioner);

o =—4 BCGSTAB w/o preconditioner;

o =-3 TFQMR (w diagonal preconditioner);

o =-2 TFQMR (w/o preconditioner);

o =-1 TFQMR (incomplete LU preconditioner);
o =0 BCGSTAB (incomplete LU preconditioner);
o =1 minimum residuals (GRAMRB);

o =2 GCRK(5);

o =3 direct Gauss solver.

The assembling of global stiffness and mass matrices that constitute the LHS of the transport
linearized system is done in SUBROUTINE ASSTRN, whose source code is shown below:

37

C this file: asstrn.f

SUBROUTINE ASSTRN(...)

DO IEL=1,NT ! loop on finite element

ISTR=1 + IEL/NTRI3
IR=MOD (IEL,NTRI3)
IF (IR .EQ. 0) ISTR=ISTR-1
MTYPE=TETRA(5,IEL) ! hydrogeological zone
DO I=1,4
XX(I)=X(TETRA(I,IEL))
YY(I)=Y(TETRA(I,IEL))
ZZ(I1)=Z(TETRA(I,IEL))
TETRAL(I)=I
END DO

C rotate the current element so that the local x-axis is aligned with

C the velocity vector, and re-compute the basis functions
¢

CALL ANIS3D(UU(IEL),VV(IEL),WW(IEL),XX,YY,ZZ,VEL)
CALL BASIS(IP4,TETRAL,XX,YY,ZZ,BIL,CIL,DIL)

VPR=VOLU (IEL)*POROS (ISTR ,MTYPE) *SWE (IEL) *RETARD (ISTR,MTYPE) ! nS,RqVe

DXXV=(VEL*ALFAL(ISTR,MTYPE) +

> DIFFUS*POR0S (ISTR,MTYPE) *SWE(IEL))*VOLUR(IEL) ! D), = ar|v|+DonS.,
DYYV=(VEL*ALFAT(ISTR,MTYPE) +
> DIFFUS*POROS (ISTR,MTYPE) #SWE(IEL)) *VOLUR(IEL) ! D;y = a7 |v|+DonS,,

DZZV=DYYV ! Dj,=D..

DO K=1,4
KNOD=TETRA (K ,IEL)
DXXVB=DXXV*BIL(K)
DYYVC=DYYV*CIL(K)
DZZVD=DZZV*DIL (K)
DO L=1,4
LNOD=TETRA(L,IEL)
IND=TETJAC(K,L,IEL)
IF (LNOD .GE. KNOD) THEN
COEF1C(IND)=COEF1C(IND) + DXXVB*BIL(L) +

> DYYVC#CIL(L) + DZZVD*DIL(L) ! stiffness matrix
COEF2C(IND)=COEF2C(IND) + VPR*LMASSC(K,L) ! mass matrix
END IF
END DO
END DO
to be continued on the next pages . . .)

In the code fragment above the input real variable MS_prop%Rd is the retardation factor which
is set to one.

38

this file: asstrn.f (2nd part)
continuing from the previous pages . . .)

¢
(
C symmetrize matrix
¢

DO K=1,4
KNOD=TETRA (K, IEL)
DO L=1,4
LNOD=TETRA(L,IEL)
IF (LNOD .LT. KNOD) THEN
IND=TETJAC(K,L,IEL)
INDS=TETJAC(L,K,IEL)
COEF1C (IND)=COEF1C(INDS)
COEF2C (IND)=COEF2C (INDS)
END IF
END DO
END DO
END DO ! end of loop on finite elements
¢
C assemble unsymmetric advection term (matrix B) contribution to the stiffness matrix
¢

DO IEL=1,NT ! loop on finite element
VSIGN4=IVOL(IEL)*0.25
DO L=1,4
ADVCTN (L)=VSIGN4* (UU(IEL)*BI(L,IEL) +
> VV(IEL)*CI(L,IEL) + WW(IEL)*DI(L,IEL))
END DO
DO K=1,4
DO L=1,4

IND=TETJAC(K,L,IEL)
COEF1C (IND)=COEF1C(IND) + ADVCTN(L)
END DO
END DO
END DO ! end of loop on finite elements

RETURN
END

At lower code structure levels we found routines that were already in the FLOW3D and SATC3D
source distributions, so to describe these source file we simply refer to related manuals and
publications [11, 13] and [14].

39

h=(1y) PSR

x=0 1 2

Figure 6: Definition of the Henry problem and boundary conditions.
4 Benchmark and applications

In general exact solutions of density-dependent coupled flow and transport problems are not
available due to the nonlinear nature of these processes, excepting a semi-analytical solu-
tion by Henry of a steady state case [16]. In this chapter the Henry problem is developed
as a benchmark to test reliability of the CODESA-3D code. Other tests have been under-
taken in order to verify model response in presence of strongly coupled flow and transport
problems [4] Two other examples are added to demonstrate different applications of the
model; the first example shows the capability to mimic a seepage face in a partially saturated
aquifer [15] and the second one simulates the seawater intrusion in a coastal phreatic aquifer
(Korba region, Tunisia) [21, 22]. Other CODESA-3D applications are described [24, 27].

4.1 Benchmark problem: the Henry problem

The Henry problem describes the advance of a saltwater front in a confined aquifer which
was initially saturated with uncontaminated freshwater. The geometry and the boundary
conditions of the Henry problem are shown in Figure 6.

Problem definition. The computational domain, homogeneous and isotropic, is represented
by a 3-D parallelepiped box of 0.1 m thickness, 1 m depth and 2 m length. The flow boundary
conditions consist of impermeable borders along the top and the bottom of the computational
box. These side walls are also impervious for diffusive solute fluxes (i.e. dc/dn = 0). Hy-
drostatic pressure is assumed along the vertical boundary of the right side corresponding to
the sea side. The aquifer is charged with freshwater at a constant flux from the left side. At
the inland side, the concentration is zero (freshwater condition), while at the coastal side the
relative concentration of seawater is imposed for an height of 0.5 m from the aquifer bottom.
Initial conditions are zero hydraulic heads and zero concentrations throughout the domain.
The simulation parameters for the Henry problem are given in Table 4.1.

40

| Quantity | Value | Unit

D, 6.6 x 10~° m? s~ !

g 9.81 ms—?

k 1.019368 x 10=° | m?

q 6.6 x 1072 ke m—1s!

p 0.35 Vi

r 10-3 kgm~ts~!
£0, Ps (1.,1.025) x 10° | kgm™3

Table 1: Simulation parameters of the Henry problem.

Figure 7: Relative concentration isocontours and velocity field at steady state for the Henry
problem.

Results and discussion. Figure 7 shows CODESA-3D computed relative concentration isolines
at steady state. Seawater intrudes into the model domain through the lower left boundary. In
this area, where the density is highest, pressure gradients are oriented almost vertically up-
ward. In contrast the gravitational force is directed vertically downward. These two driving
forces causes the observed concentration pattern into the aquifer domain. As density differ-
ences decrease along the aquifer bottom from theleft to the right hand side, the potential-
driven flow forced by the freshwater influx becomes more important and allows less dense
fluid leaving the domain through the upper left boundary section. Figure 7 compare very
well with the analogous numerical results of numerical models [9, 20] of the Henry problem.
Appendix C report the input dataset for CODESA-3D of the Henry problem.

Computational issues. The computational grid is a regularly spaced (with A = 0.10 m) par-
allelepiped box of dimensions 2 x 1 x 1 m. It is composed by 2 541 nodes and 12 000
tetrahedra. The steady state was reached within 1 time step only, using a very large DELTAT
(10%° seconds — oo) such that time derivatives of system (4) practically tend to zero. The
SS linearization procedure of the coupled system (with Picard linearization of the transport
equation) required 31 iterations with a exit tolerance of 1E-2. The flow equation, linearized
also with the Picard scheme in 62 iterations (exit tolerance of 1.E-4), was solved using the

41

CG scheme with diagonal preconditioning. The average number of linear solver iterations
per flow linearization step was 107.42 for a total of 6660 preconditioned CG iterations. The
transport equation was solved using the TFQMR scheme with LU preconditioning. On the
average the solution of the transport equation needed 14 iterations per linearization step
of the coupled system for a total of 434 iterations. The CPU time for the simulation on a
Silicon Graphics (SGI) computer equipped with RISC10000 processor, 512 Mbyte of RAM and
running IRIX/6.4 operating system (filuferru. crs4.it) was of 45 seconds of which 43 seconds
for the solution of the coupled system. Of this time about the 50% was taken in the assem-
bling and solution of the flow equation and about 30% in the assembling and solution of the
transport equation.

4.2 Applications
4.2.1 Contamination of a ditch-drained aquifer by trickle infiltration from a salt dome

The example is a three-dimensional problem of variably saturated flow and transport in a
ditch-drained aquifer with incident steady rainfall and trickle infiltration of a salt contami-
nant.

Problem definition. The computational domain, homogeneous and isotropic, is represented
by a 3-D parallelepiped box of x m thickness, y m depth and z m length. A Darcy flux of
0.15 cm/d is applied over the upper square central area, while the rest of the surface is
subjected to a Darcy flux of 0.1 cm/d. A fixed seepage face, of 10 cm height from the bottom
of the box, boundary condition is applied along the front vertical face. Boundary conditions of
zero Darcy flux are imposed along the other three vertical faces, and at the base of the domain.
The aquifer system is isotropic and homogeneous, with a saturated hydraulic conductivity of
40 cm/d and a porosity of 0.3. We assume that the aquifer is initially free of contaminant (zero
concentration), and that the contaminant enters the aquifer from the salt dome represented
by the trickle infiltration area. Along all the other boundaries of the aquifer conditions of
zero dispersive flux are imposed. The density ratio is ¢ = 0.03 while the viscosity ratio and the
diffusion coefficient D, are set to zero; the values of the dispersivity coefficients are o;, = 2 cm,
and ar = 0.4 cm. Huyakorn equations [7] describe the soil hydraulic properties. Water
saturation is:

Sw(®) = (1 = Syr)Se + Sur (19)
where S,, = 0.001 is the residual water saturation and S. is the effective water saturation:

Se(¥) = [1+k (Yo —¥)177 ¥ < ¢
56(1/)) =1 1/} Z 1/)(1 (20)

with 1, = —10.0 cm the air entry pressure, ¥ = 0.015, 3 = 2.0 and v = 3.0. Relative perme-
ahility is:

ke (1) = 109 (21)
where G = aS? + (b — 2a)S. +a —b, a = 2.0 and b = 3.5.

Results and discussion. The pressure head contours and the velocity and concentration fields
along cross section AA’ after 60 days are shown in Figures 8 and 9. The results show how
the aquifer drains at a rate faster than the recharge form the surface, generating unsaturated
conditions in the upper portion of the aquifer. The water table surface is represented by the

42

VELOCITY
— 1 cm/day

Figure 8: Pressure head and velocity field after 60 days along cross section A’-A’ for Exam-

ple 3.

Z [cm]

40 50 60 70 80 90 100
X [cm]

Figure 9: Salt concentration fields after 60 days along cross section A’-A’ for Example 3.

43

Mediterranean Sea

exploitation wells
salinity contours:
1 -

e

2 0 2 4 Kilometers
e

(b)

Figure 10: a) Geographic location of the Korba coastal aquifer; b) exploitation map and salin-
ity contours [g/1] from 1996 measurements.

contour line at zero pressure, which intersect the front vertical face on the left at about 20 cm
height from the aquifer bottom. The salt plume is roughly symmetric near the surface but
turn towards the seepage face in the lower aquifer where the velocities are higher.

Computational issues. The domain contains 2 009 nodes and 3 840 triangles at the surface,
and is discretized into 20 vertical layers, to yield 42 189 nodes and 230 400 tetrahedra for the
3-D grid.

4.2.2 The saltwater intrusion problem of the Korba coastal aquifer

The example is a three-dimensional problem of seawater intrusion in a coastal phreatic
aquifer. The Korba aquifer has been studied within the Avicenne project [33], in collab-
oration with the Institute National Agronomique de Tunisie (INAT).

Problem definition. The 438 km? Korba aquifer is a part of the western coastal aquifer of the
Cap Bon area, which extends from the city of Ras Maamoura in the south to the city of Kelibia
in the North, and is bounded by the Mediterranean Sea in the east and the Djebel Abderrah-
man anticline in the west (Figure 10). The phreatic alluvial aquifer consists of two important
formations: a Pliocene sandstone whose stratigraphic series correspond to an alternation of
sandstone and marl, and a Quaternary alluvium containing detrital sediment (sand, gravel,
silt) with thin clay lenses. The aquifer depth is in reality highly variable, ranging from 150
m in the south to 30 m in the north, and decreasing from east to west to nearly vanish at
the Djebel Abderrahman anticline. Recharge of this aquifer is mainly from infiltration from
natural replenishment at an average rate of 32 mm/year [6], or about 7% of the mean annual
rainfall (460 mm).

Model setup. The finite element surface mesh used for the numerical simulation of the
Korba aquifer contains 1 643 nodes and 2 917 Delauney triangles and follows the digital ele-
vation model of the Korba plain with elevations above see level (a.s.l.) in the range 0 to 160
m [19, 21]. The same 2-D grid was adopted to cover the aquifer bottom having depths, with
reference to the topographic surface, in the range 24 to 150 m. The 3-D grid contains 7 layers

44

of varying depth for a total of 11 501 nodes and 52 506 tetrahedra. In accordance with the
geology of the Korba plain, 2 material subregions have been defined with the corresponding
saturated conductivities given in Table 4.2.2. Of the two formations, the Pliocene sandstone
constitutes the main part of the aquifer domain, while the Quaternary alluviumis sparser and
tinner, thus only the upper two layers of the 3-D grid were set to the corresponding hydraulic
permeability. The aquifer is assumed isotropic and homogeneous within each subregion. For

| Hydrological zone | Variable | Value |
Pliocene sandstone | K, = K, = K, | 3.4 x 107°
Quaternary alluvium | K, = K, = K, | 3.4 x 10~°

Table 2: Isotropic saturated hydraulic condictivities K, [m/s] of the Korba case study.

the entire aquifer the other material and solute properties for the simulations are set to the
following values: n = 0.25, S, = 0.0012m~!, e= 0.025, oy = 170 m, ap = 7m, D, = 0 m?/s.
Boundary conditions. The southern, western, and northern boundaries and the aquifer bot-
tom are treated as impermeable to flow and not allowing mass dispersive flux. On the eastern
(coastal) boundary, the flow equation is fixed real head " = C, which, expressed in terms
of equivalent freshwater head gives a linear distribution with zz » = C' 4 (C' — z)e. For the
transport equation a zero dispersive flux is imposed over a window of variable depth w (w <
30 m) and a prescribed seawater concentration (c=1) is imposed below w. Along the rivers
Dirichlet boundary conditions are imposed as constant in time freshwater heads equal to the
corresponding river bed elevation. The effect of this condition, which implies that the water
table lies on the topographic surface, needs to be evaluated. The Neumann condition of zero
dispersive flux along the upper portion of the coastal boundary allows the lighter freshwater
to discharge into the sea through the seepage window. A constant in time infiltration rate of
32 mm/year was applied over the entire surface boundary, except for few areas (dunes near
the coastal boundary), which were subjected to a doubled infiltration rate of 64 mm/year. A
leakage from the lower confined aquifer was considered, imposing 121 point sources located
in the western boundary of the aquifer bottom, each of 2.0x 103 m3/s of freshwater flux,
for a total recharge of 241 x 1073 m3/s (7.6 x 10° m3/year). Variable pumping rates at 953
clustered wells, with penetrations at two different depths of 30 and 45 m, were imposed with
a maximum total extraction of 50 x 10° m3/year.

Results and discussion. Two set of simulations (freshwater flow alone and coupled variably
dense water flow and salt transport) were run in order to reproduce current situation for the
threatened aquifer.

First set of simulations. A steady state simulation of the flow model was run, with the
aquifer initially completely saturated at a uniform equivalent freshwater pressure head of
zero throughout. The simulation takes into account leakage (7.6 x 10° m3/year), natural
recharge (6 x 10° m3/year) and pumping at a rate of 37the maximum total extraction (18.50
x 10% m3/year). The hydraulic conductivity values were calibrated to best reproduce the
reference piezometric field (1962). Figure 11 compares the steady state simulated water ta-
ble elevation above sea level (a.s.l.) with the values recorded at the observation wells in
1962, which was used as the starting point for the transient simulations described below.
Although differences exist with field data, the correspondence is relatively good. In the cal-
ibration process the parameters which most heavily influenced the behavior of the system
were the imposed boundary conditions, namely the prescribed head along the river beds,
the infiltration rate, and the saturated hydraulic conductivity. The adopted parameters were
utilized for subsequent transient flow and mass transport simulations.

Second set of simulations. A second set of simulations was run using the steady state con-

45

70
65
60
55
50
45
40
35
30

25
water table elevations: h 20

03-1 :
/\/5_20 . 10
/\/20-40 5
/\/40-60 0

Figure 11: Comparison between field measured and calculated water table elevations
(m.a.s.l) taking into account natural recharge for the unstressed (no pumping) steady state
flow simulation.

ditions from the first set as initial conditions for the flow field. Initial conditions for the
relative salt concentration were set assuming an ideal interface (not miscible) between salt-
and freshwater according to the Ghyben-Herzberg approximation [3]: h; = ho/e, where h;
is the depth of a stationary interface below see level and h; is the phreatic level above sea
level. That is, at any distance from the sea, the depth of the interface below the sea is 40
(=1/0.025) times the height of the water table above it. A period of 35 years was simulated.
In this second set, pumping at variable rates was applied to the aquifer. Applying the maxi-
mum total exploitation rate for 35 years would have resulted in a severe water table lowering
and at the end an almost complete drainage of the aquifer.

Scenario (a). Pumping rates linearly increasing from 18.50 to 35 x 10° m3/year during the
entire simulation time. Figure 12 shows the water table drawdown at the end of the period
and the saltwater concentration field along the water table surface for the same period. The
pumping area is evident in the figure from the flow field. The depression cones, artificially
separated by the river network, have a maximum depth of -6 m, which is reasonably near to
the observed field values. The results of the simulations show that water withdrawal from
pumping has caused significant saltwater encroachment.

Scenario (b). Pumping rates linearly increasing from 18.50 to 50 x 10% m?/year during the
entire simulation time. The pumping area is evident in Figure 13 both from the flow field
and from the deflection of the saltwater front towards the two major upconing zones. The
depression cones have a maximum depth of -14 m, which has been observed in the Korba
plain during 1996.

Scenario (c): To analyze the impact of aquifer artificial replenishment, the same period of 35
years was also simulated considering an additional hypothetical recharge of 1.3 x 10° m3/year
distributed in a few points belonging to the dune regions near the coast. Figure 13 shows
that the saltwater concentration isolines for the run are significantly closer to the coastal
boundary than in the previous cases, showing the induced effect of the freshwater discharge
into the sea. With regards to the coupled flow and transport simulation in both pumping
and recharge conditions, the calculated equiconcentration lines did not agree well with the
measured salinity contour lines shown in Figure 10, probably due to aforementioned lack
of information about soil and aquifer physical parameters and to inadequate field data rep-
resentation in space and time. Two other simulations were run in order to investigate the

46

50
45
40
35
30
25
20
15

water table elevations: 1
/\/5-0

/\/ 0-10 5
/\/ 10-20 0
/\/ 20-35 5
/\/35-50 1

Figure 12: Comparison between field measured and calculated water table elevations
(m.a.s.l) at 24 years (1996) for the transient coupled flow and transport simulation taking
into account both natural recharge and heavy pumping.

influence of the seepage face window to sea. A window depth of 30 m was used in the first
run and a depth of 5 m in the second. The relative salinity field difference between the two
cases for a transient simulation of 10 years with both infiltration and heavy pumping has a
mean value of 0.0015 and a standard deviation of 0.011.

47

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Figure 13: Comparison between calculated relative concentration fields along the water table
surface at 24 years (1996) for the transient coupled low and transport simulation taking
into account both natural recharge and heavy pumping for the transient coupled flow and
transport simulation taking into account both natural recharge and heavy pumping (on the
left) or half-rate pumping (on the right). Note the retreating saltwater front in the right
figure in comparison to the left.

Acknowledgement

The financial support of this work was provided by the Italian Ministry of the University,
Project ISR8, C11-B and by the Sardinian Regional Authorities.

48

A Appendix A

The Appendix A defines the physical parameters of CODESA-3D mathematical model, point-
ing out which physical parameters are read in input files and written in the output files. It
also gives the expression of matrices and vectors of the numerical model, as in [15]. By do-
ing this, the CODESA-3D implemented extensions to the parent codes (SATC3D, FLOW3D)
are listed and some planned extensions to build up the final model reported in [15] are also
indicated.

A.1 Physical parameters

In the following are described the physical parameters of the coupled flow and transport
equations of system (4). Refer to the Chapter § 2 for symbol meanings not specified here.

The parameters of the flow equation are

o K = k;wKsat: the variably saturated conductivity tensor [L/T], with
— k() [/] the relative permeability, that is a nonlinear function of ¢ [3, 7];
— Keat = P9 x the saturated conductivity tensor [L/T], with with k the permeability

i
tensor [L?]. Using principal directions of the medium permeability as the global
coordinate system, we obtain a diagonal permeability tensor k:

kew 00
k=] 0 ky O
0 0 k.

Incorporating constitutive equations for variable density p and viscosity p, the x-
coefficient of the saturated conductivity tensor K,; becomes:

Koo = ko (1 * EC) fod =
(1+¢€ce) po 1+¢€c ’

K., the xx-coefficient of the saturated conductivity tensor at reference conditions
(pOa ﬂ0)~

o o = (1 + ec)o* is the overall storage coefficient, with:

— 0% = (SwSsat + ¢pogaaﬁ) the overall storage coefficient for freshwater flow, being
P

* S, — ¢f the water saturation [/], with ¢ the porosity and ¢ the moisture
content, i.e., considering a representative elementary volume (REV) of porous
medium 6 is the ratio between the volume of water and the volume of porous
medium in the REV;

* Ssat = pg(a+¢PB) the elastic specific storage [1/L], with « ?° and 3 soil and fluid
compressibility [T?L/M], respectively. The specific storage S, is the amount

1+ v)(1-2v)

2650il compressibility can be expressed in terms of mechanical parameters: o = EQ)
-V

, with £ Young

and v Poisson modulus.

49

of water per unit volume of a saturated formation stored/released owing to
expansion/compression of mineral skeleton and pore fluid per unit change of
hydraulic head A.

In the transport equation remains to be defined the dispersion tensor D, [L?/7] whose co-
efficients [3, 7] D;;,i,j = «,y, z are given by:

o Dij = aT||V||5ij + (OzL — OzT)UZ'U]'/HVH + d)SwDOT(SZ']': is the dispersion tensor [LZ/T],
with oy and ap the longitudinal and transverse dispersivity [L], respectively, ||v|| =
\/VE A v 402, 0y s the Kronecher symbol, D, is the molecular diffusion coefficient and

7 is the tortuosity (it is usually set to unity). Rotating the Cartesian coordinate system
at a nodal point, such that one of its axes, say x, coincides with the direction of the
average uniform velocity v (thus defining a local coordinate system of principal axes of
dispersion *7) the dispersion tensor becomes diagonal:

ar||v|| + ¢Sw Dot 0 0
D= 0 ar||v|| + ¢Sw Dot 0
0 0 ar||v|| + ¢Sw Dot

A.1.1 Input and Output
With reference to the flow and transport equations (4), CODESA-3D input data are:

o input file soil

— specification of capillarity and retention curve characteristics (e.g.: k., 39S, /0p, 8,
etc.), which are highly nonlinear functions of «, for the given soil ?®. The choice is
done using four predefined moisture-retention characteristics [7]: Van Genutchen
ordinary (1) and extended (2), Huyakorn (3), and Brooks-Corey (4). The analytical
forms of the capillarity and retention curves are reported in [25]. These character-
istics curves are selected according to the value (1,2,3,4) of parameter Par)IVGHU
of the same input file soil and the values of the corresponding curve coefficients
(Appendix B);

— hydrogeological parameters:

+ diagonal coefficients K., Ky,, K., of the saturated hydraulic conductivity ten-

sor at reference conditions (pg, pg), i.€. variables MS_prop%PERMX, MS_prop%PERMY
and MS_prop%PERMZ, respectively.

* the elastic storage coefficient S;,; which is the variable MS_prop¥%elstor;

x the porosity ¢ which is the variable US_prop¥poros.
Typical values of these hydrogeological parameters for different soils/rocks are re-
ported in [3, 23]; These parameters are set for each superficial hydrogeological

zone Dim%NZONE and each vertical stratum Dim%NSTR according to the input scheme
of the file:

Koo, Kyy, K22¢,Scqr (superf. zone 1 of vertical stratum 1)
Koo, Kyy, K22¢,Scar (superf. zone 2 " ")

27This coordinate frame rotation is done in SUBROUTINE ANIS3D.
28Current implementation of CODESA-3D allows for the definition of a single soil characterization for the whole
domain.

50

Koo, Kyy, K22¢,Scar (superf. zone NZONE " ')

Koo, Kyy, K220, Scqr (superf. zone 1 of vertical stratum NSTR)

Koo, Kyy, K22¢,Scar (superf. zone 2 " ")

Koo, Kyy, K22¢,Scar (superf. zone n " ")

— input file solute

*

*

reference values of density p, (MS_proplrho0) and viscosity p, (MS_prop¥mu0);
density difference ratio € = (p; — p,)/po ~ 0.025 = 0.030 (MS_prop’epsilon) and
viscosity difference ratio ¢ = (u; — po)/po &~ 1 (MS_proplepsiloni);
longitudinal «; and transversal ar dispersivity, namely variables MS_prop%ALFAL
and MS_prop/ALFAT;

molecular diffusion coefficient D,, which is the variable US_prop%DIFFUS.

CODESA-3D input data, with reference to the initial and boundary conditions are

o the initial conditions (IC’s) at the simulation starting time which are supplied for all
nodes of the computational mesh:

— flow equation — file flowic. 1C’s can be specified both in terms of freshwater pres-
sure heads (¢)) or freshwater total heads (h = z+4) according to the value (.FALSE.,
.TRUE.) of logical flag Par’,POT_IC_FLAG; only one value to be replicated to all nodes
(homogeneous IC’s) or Dim%N nodal values, referring to the 3-D mesh, can be read
according to the value (0;1) of integer parameter Par%INDP;

— transport equation — file tranic. IC’s are specified in terms prescribed relative

concentrations (c); only one value to be replicated to all nodes or Dim%l nodal val-
ues, referring to the 3-D mesh, can be read according to the value (0;1) of integer
parameter Par%INDPC.

o the boundary conditions (BC’s) must be supplied for selected nodes of the computational
mesh; In FE formulations when a domain boundary has no associated field value or
prescribed fluxes, it is implicitly considered as an impervious boundary to flow. This is
true for the coupled system (11) thus if we do not specify nothing for a domain boundary,
that is assumed impervious to water and salt flow.

— flow equation. BC's can be specified as Dirichlet and Neumann types in the in-
put files nansfnodbec 27, which contains the list of boundary nodes, nansfdirbc and
nansneubc, which contain the list of boundary Dirichlet and Neumann values, re-
spectively. Another ”switching”-type of BC’'s is set in file sfbc, which contains
only the list of those boundary nodes since the corresponding boundary values are
computed by the model at each time step.

x Dirichlet BC’s: The assigned boundary nodes, contained in file nansfnodbc are

possibly subdivided in two class of nodes: ground surface nodes (Dim%NDIR) on
which the BC’s are to be replicated along depth or 3-D nodes (Dim%NDIRC) in
the real 3-D space (not to be replicated). Boundary values, contained in the
file nansfdirbc, can be specified both in terms of freshwater pressure heads (¢)

292The acronym NANSFBC stands for Non-Atmospheric Non-Seepage-Face BC.

51

or freshwater total heads (h = 2z + v) according to the value (.FALSE., .TRUE.)
of the logical flag Par%POT_BC FLAG set in the nansfnodbc input file.

+ Neumann BC's:

- ground surface distributed fluxes [M/ T~'] (infiltration rate) on the 2-D ground
surface nodes. These infiltration rates are specified in the atmbc input file
and can be read as a single value to be replicated for each node or as
Dim%NNOD values, referring to the 2-D mesh, according to the value (0,1)
of the integer parameter Flow BC%HSPATM. It is the model that integrates
the infiltration rate on the area belonging to each 2-D node to compute the
inlet fluxes;

- nodal fluxes [M3 /5] on 3-D selected nodes, for instance given withdrawal/injection
rates at the well screens. These boundary fluxes are contained in the nansfneubc
input file;

x switching type: a list of nodes can be specified in file sfbc, whose BC’s can be
switched off from Dirichlet to Neumann type and vice versa according to current
flow regime. These boundary conditions allow to simulate atmospheric outlet
faces (seepage faces) of the given flow domain, where according to the flow
directions we can have prescribed heads or assigned fluxes. The corresponding
boundary values are re-assigned by the model at each time step.

Boundary values can vary in space and/or time; Time variation of boundary values
is set according to the following input scheme:

time 1

list of BC values at time 1

time 2

list of BC values at time 2

time n
list of BC values at time n

Linear interpolation of the given boundary values is used at intermediate time
steps.

— transport equation. BC's are be specified in the input file tranbc as Dirichlet and
Cauchy (total flux, i.e. advective + dispersive fluxes) node lists interlaced by the
corresponding Dirichlet and Cauchy prescribed relative concentrations [/] and total
fluxes [M3/T], respectively.

Current implementation of CODESA-3D does not allow time-varying transport
BC’s, also it does not allow to prescribe directly only the advective nor the dis-
persive components of the flux.

With reference to the flow and transport equations (4), CODESA-3D output data includes:

o mirroring of input data and terminal output (result.0UT file);
o print of 3-D automatically generated grid (xyz.out file);
o at each time step:

— information about convergence behavior of the nonlinear iterative scheme and lin-
ear solver both for the flow and transport equation (iter.out file);

— information about the flow mass balance errors (flow-mb.out file);

52

— information about the transport balance errors (tran-mb.out file);

— unknowns (v and ¢) and related variables (S, , k., v €tc) at user selected nodes
(result.OUT file);

— hydrographs showing the atmospheric, seepage, overland (runoff) and subsurface
fluxes (atmsf-hg.out and nansf-hg.out file);

o at the end of simulation and at user-defined selected time steps:

— unknowns (¢ and ¢) and related variables (S, k., , v etc) on all mesh nodes (psi.out,
conc.out, sw.out, ckrw.out, vel.out files);

— Darcy velocities v on all tetrahedra (vel-el.out file);

— 1, ¢, Sy on all surface nodes, along with a saturation index indicating whether the
node is saturated or not (psisurf .out, concsurf.out, swsurf.out, satsurf.out
files);

— vertical profiles of unknowns () and ¢) on user-defined surface nodes (vp-psi.out,
vp-conc.out files);

The number and the content of activated output files are chosen according to input parameters
ParIPRT and Par%IPRT1 of input file parm (Appendix B).

Appendix C shows the whole input dataset for an example test-case.

A.2 Numerical integration

With reference to a 3D domain composed by N nodes and N, finite elements, the solutions
sought ¢(z, y, z,¢) and ¢(z,y, z,t) for coupled system (4) are expressed as linear combination
of the nodal discretized unknowns ¢ = [th1, ¥s, ... ,¢bn]T and ¢ = [é1, ¢, ..., én]7 through the
linear shape functions N:

Wy, z) 2 d =Y Ni(z,y,2) - $ilt)

and

N
c(o,y,z,t)mé = ZN}(l‘, y,2) - (1)
=1

The linear shape function N;(z,y, z) is defined [34, 1]:

(ai 4 bix + ciy + d;z)

N; =
6Q2°

(22)

with Q¢ the volume of the e-th tetrahedron 3° of nodes i, j, m and n is given by: Q¢ = ||A°||/6
being A°¢ the determinant:

rrooyr oz

ry o yr oz

M YM EM

TN YN ZN

A°® = det

—_ = = =

30The superscript e, denoting variables related to the generic tetrahedron, will be omitted in the following where
not necessary.

53

The coefficients «a;, b;, ¢;, d; are the determinants of the lower rank matrices of the above ma-
trix. For example:
ry Y5 &5
a; = det TM YM ZM
TN YN EN

L oys oz

bi = —det 1 Ymr M
L1 yv zv |
[rJ 1 zZy i

c; = —det | wpp 1 zpy

TN 1 ZN

vy ys 1
dl' = —det TM YM 1
N yn 1

The other coefficients are obtained by cyclic interchange of the subscripts in the given order
i,j,m and n.

The flow and transport global coefficient matrices/vectors given in equations (11) are built
up by the assembling of elemental contributions (matrices and vectors), coming from the
tetrahedra composing the computational mesh. Process of assembly of the generic matrix X
(N x N) is usually written as:

X:ZXe

1

where X°© (N x N) is the generic elemental matrices of e-th tetrahedron, that has only four
rows and columns different from zero: i.e., only those corresponding to the nodes belonging
to the e-th tetrahedron 3'.

In the following are given the coefficients of elemental matrices (4 x 4) and vectors (4 x 1) of
the numerical model (11).

A.2.1 Flow equation

The coefficients of elemental stiffness (flow) matrix H® are:

ON; ON; ON; ON; ON; ON;
he. = K°VN;, VN; dQ=(Kf——"L 4 ge— - y ge - J dQ 23
) Qe v VA (Ks Ox Oz Ty Jy 0Oy A 0z 0z)/Qe (23)

which becomes:

(1+e0) (Kao,wbib + KfawyCici + Kfapo . didy)

heé. = k¢
A S S 360

(24)

%1These elemental matrices are stored as (4 x 4) dense matrices and then connectivity matrix TETRA is used, via
indirect addressing, to assemble them into the global matrix

54

where ¢, is each couple of global nodes of the element e, ¢ is the time averaged relative
concentration ¢ at the current time step: 32 ¢ = w;¢'t4% 4 (1 —wy)é’, with ¢ the element-wise
averaged concentration and K7, ; is the i-th diagonal coefficient of the saturated hydraulic
conductivity tensor at reference conditions (p,, pt,). Definition and assembling into left hand
side matrix of system (11) of matrix H® is done in SUBROUTINE ASSPIC and SUBROUTINE ASSNEW
according to the value (1;2) of input integer parameter Par%IFLOW, that select Picard or New-

ton linearization scheme, respectively.

FLOW3D implementation for coefficients h;; is identical to those in equation (24). The vari-
ably saturated hydraulic conductivity tensor is there simply K¢ = k¢ K¢ _,,, since ¢ is not
present. The same stands for SATC3D code where K° = (1 + €2) K¢,40-

The coefficients of elemental mass (capacity) matrix P¢ are:

P =0 / N;Nj d (25)
Q
which becomes: 33
€ € Qe
pij = 0% 55 - (1+dij) (26)

where J;; is the Kronecker delta, with 6;; = 0if i # j and 6;; = 1 if i = j.

FLOW3D implementation for coefficients p;; are identical to those in equation (26). The
overall storage term is there simply ¢¢ = ¢*. The same stands for SATC3D code where ¢¢ =
(1 + EE)SS(” .

Definition and assembling into left hand side matrix of system (11) of matrix H® is done
in SUBROUTINE ASSPIC and SUBROUTINE ASSNEW according to the value (1;2) of input integer
parameter Par’,IFLOW, that select Picard or Newton linearization scheme, respectively.

The coefficients of elemental vector q*° are made up of three different contributions
q*e Ig€—|—f€—|—1€

taking into account the gravitational term, the term referring to the time derivative of the
concentration and the term containing prescribed extracted/injected Neumann fluxes: con-
centrated and surface distributed as well. The gravitational term integration furnishes:

¢ . (1+e)?dN;
= | kLK, ——2 2L g0 27
9; /ﬂ rw xsatO,z (1 —1—6/5) Oz ()

which becomes:

o (4?10
S = ki, K ~—d; 28
9i rw xsatO,z (1 4 E/E) 6Qe ()
The term incorporating the time variation of concentration is:
ff= / ¢>€S§)eﬁ]\7id9 (29)
Q ot

32Relative concentration ¢ is considered as a constant during the solution of the flow equation.

1htetd!
%2The useful integration formula here is: [, N*N)NNZQ = e 40
L (a+b+c+d+3)

55

which becomes:

fi= 005" (30)

Definition and assembling into right hand side vector of system (11) of vector g® +f* is done
in SUBROUTINE RHSGRVCON or SUBROUTINE RHSGRV according to the value (1;0) of input inte-
ger parameter Par%ITRANS, that select coupled (flow & transport) or simply flow simulator,
respectively. The third term incorporating Neumann boundary fluxes is 34

t= [aiarat [L (31)
I a PO
which becomes:
F Q¢
p= L e 19 G2

where ||T¢|| denotes the area of the e-th tetrahedron face where the fluxis imposed. Neumann
boundary condition setting into right hand side vector of system (11) is done in SUBROUTINE
BCPIC or SUBROUTINE BCHNEW according to the value (1;2) of input integer parameter Par%IFLOW.

A.2.2 Transport equation

The coefficients of elemental stiffness matrix K¢ are made up of three different contributions:
K°=A°+B‘+C*

referring to the dispersive and advective terms, and to the Cauchy total flux prescribed on
the boundary.

Coefficients of elemental matrix A° are:

ON! ON! ON! ON! ON! ON!
g= D°VN; - VN; dQ = (D¢ L 4 Df L 4 Df 1 I / dS) 33
ij Qe J (xﬁx 6x+y6y 6y+26z 6z)ﬂe (33)
which becomes:
ERNAN e I 1 e Jjt q!
v — (Dgbib% + Dy cicl + Dididy) (34)
) 360

where N’ is the basis function calculated in the local (rotated) reference frame. SATC3D
implementation for coefficients «;; is identical to those in equations (34) with the coefficient
of dispersivity tensor D calculated with water saturation S, = 1 and the Darcy velocity (5)
computed with k., =1 and ¢ = 1.

Coefficients of elemental matrix B¢ are:

ON! _ON! NI
o vyt vl LN dQ (35)

bfj = i V- (VeNZ')N]' dQ) = /e dQ(Uz

34Current CODESA-3D implementation reads directly from boundary condition input file nansfneubc the nodal
values of the fluxes as already integrated on the belonging surface or volume. This means that term [{ is not
currently implemented.

56

which becomes:

. . . il
bi; = (vpbi +vyei + Uzdi)24Q€ (36)
Coefficients of elemental matrix C¢ are:
iy = —/ ve-nN;N; dl' =v°-n [N;N; dl' (37)
" rs
which becomes:
¢ = —(ving + viny +vin)Hrgn(l—l—é) (38)
iy z''T y'ty z 1%z 192 ¥

where where ||T'|| denotes the area of the e-th tetrahedron face where the Neumann (disper-
sive) flux is imposed.

SATC3D implementation for coefficients «;; and b;; is identical to those in equations (34)
and (36) with the coefficient of dispersivity tensor D calculated with water saturation S, = 1
and the Darcy velocity (5) computed with k., =1 and ¢/ = 1.

The coefficients of elemental mass matrix M¢ are:

m; = ¢S5, / NiN; d2 (39)
9]
which becomes:
€ € € Qe
mij = ¢S 55 - (1+0i5) (40)

Definition and assembling into left hand side matrix of system (11) of matrices K¢ and M¢
is done in SUBROUTINE ASSTRN, both for the Picard- or partial Newton-linearized transport
equation, according to the value (1;2) of variable Par%ITRANS, respectively.

The coefficients of elemental vector r*° are made up of two different contributions

€
r*° = rv® 4 rs®

taking into account volumetric and surface distributed (Neumann and Cauchy) source/sink
terms, respectively 3°.

The coefficients of elemental vector rv® are:

rvs = —/ (¢°cx+f°)N; dQ (41)
Q

which becomes:

[1£2°]]

2 (42)

rvf = —(q“ex+f°)

35Current CODESA-3D implementation reads directly from boundary condition input file tranbc the nodal values
of the Cauchy (total) fluxes as already integrated on the belonging surface or volume. This means that term r*¢ is
not currently implemented.

57

The coefficients of elemental vector rs® are:

I‘S;»8 = —(/ QdNi dF4 —I—/ chZ' dF5) (43)
Ty I's
which becomes:
AT AT
i = g 2T TATS s

58

B Appendix B

The appendix reports the catalog of CODESA-3D variables and their hierarchy.

Notes: a.) field ‘‘pippo’’ of data structure ‘‘Dim’’ in the code
will be referred to as Dim%pippo;
b.) field ‘‘pluto’’ of data structure ‘‘VG’’ in the code
of data structure MS_prop will be referred to as
MS_prop#4VGipluto.

C ___
C ___
¢

C 3-D coupled saturated flow and transport

C MP/CP, Sept/91

¢

C 3-D coupled unsaturated flow and transport

¢ GL, Oct/96

¢

C ___
¢

¢ PROGRAM CODESA-3D

¢

¢

C COupled variable DEnsity and SAturation 3-Dimensional model
¢

¢

e LIST OF DERIVED DATA USED

¢

¢ 1.) Dim - actual dimensioning parameters

¢ 2.) Par - general parameters values and arrays

¢ 3.) 10 - I/0 parameters and arrays

C 4.) CPU - CPU timing parameters and arrays

C 5.) Grid - Grid parameters and arrays

C 6.) Flow_BC - Flow Boundary Condition (BC) parameters and arrays
C 7.) Transp_BC - Transport BC parameters and arrays

C 8.) MBal - Mass balance parameters and arrays

C 9.) MS_prop - Material and solute parameters and arrays

C 9.1) VG - Van Genutchen curve data

C 9.2) HU - Huyakorn curve data

C 9.3) BC - Brooks-Corey curve data

C 10.) Sys - Linear system parameters and arrays

C 11.) ODut - Model output parameters and arrays

¢

¢

¢

¢

¢

¢

¢

¢

¢

C-——————————— DESCRIPTION OF PARAMETERS AND VARIABLES
C

C
L
C

C *MACHINE PRECISION for REAL NUMBERS#*

C

C contained in the module ‘‘mod_kind’’ (file: mod_kind.F):

C

59

Q.

Q

oo oo aaaaaaaaa

Integer Parameters:

MY_PRECISION - =4 for ‘‘simple’’ precision (4 bytes);
=8 for ‘‘double’’ precision (8 bytes).

ACTUAL DIMENSIONING PARAMETERS

contained in the data structure ‘‘Dim’’ of derived type ‘‘Dim_tag’’
(file: mod_Dim.F):

Integer Parameters:

IBOT - size of real working storage for NONSYM solver (# of
nonzero elements in the LU decomposition of system matrix)

MINBOT - minimum IBOT

INONSY - set to 1 when using the NONSYM direct solver for
unsymmetric linear systems. Can be set to 0
otherwise (this will reduce the storage requirements
when not using the NONSYM solver).

MAXBOT - INONSY*(maximum IBOT) + 1
(defined real working storage dimension for NONSYM solver)

INTBOT - INONSY*(MAXBOT + 6#(NMAX + INEW*NMAX) + 1) + 1
(defined integer working storage dimension for NONSYM
solver)

NNOD - # of nodes in 2-d mesh. These are the surface nodes for
the 3-d mesh -- they are all designated as atmospheric
boundary condition nodes (rainfall and evaporation inputs),
except for those surface nodes which are specifically
designated as non-atmospheric BC’s (see description of
NDIR, NDIRC, NQ, NSF, and IFATM).

NTRI - # of triangles in 2-d mesh

NTRI3 - # of triangles in 2-d mesh multiplied by three (3)

NSTR - # of vertical layers

NZONE - # of material types in the porous medium

N1 - maximum # of element connections to a node (symmetric case)
NicC - maximum # of element connections to a node (unsymmetric case)
N - NNOD*(NSTR + 1) = # of nodes in 3-d mesh

NT - 3*NTRI*NSTR = # of tetrahedra in 3-d mesh

NPT - N1xN

NTERM - # of nonzero elements in flow system matrices

(symmetric storage used for Picard scheme;
unsymmetric storage for Newton)

NTERMC - # of nonzero elements in transport system matrices
(unsymmetric storage)

NDIR - # of non-atmospheric, non-seepage face Dirichlet nodes
in 2-d mesh. The BC’s assigned to these surface nodes
are replicated vertically (compare NDIRC).

NDIRC - # of ’fixed’ non-atmospheric, non-seepage face Dirichlet
nodes in 3-d mesh (’fixed’ in the sense that these BC’s
are not replicated to other nodes - compare NDIR)

NP2C - # of Dirichlet nodes in 2-d mesh for the transport
(concentration) equation

60

Qoo aoaaaaaaaaaaaaa

Q

oo oo aaaaaaaaaaa

NPFC

NP

NPC

nQ

NMC

NSF
NNSFMX

NUMDIRMX

ITMX

ITMXC

NR
NPRT

NUMVP

of ’'fixed’ Dirichlet nodes in 3-d mesh for the
transport equation

NDIR#(NSTR + 1) + NDIRC = total # of non-atmospheric,
non-seepage face Dirichlet nodes in 3-d mesh
NP2C*(NSTR + 1) + NPFC = total # of Dirichlet nodes
in 3-d mesh for the transport equation

of non-atmospheric, non-seepage face Neumann nodes
in 3-d mesh

of Cauchy (third type, or mixed, BC) nodes in 3-d
mesh for the transport (concentration) equation

of seepage faces (see description of NSFNOD)
maximum # of nodes on a seepage face + 1

- maximum total # of Dirichlet nodes in 3-d mesh
maximum allowable iterations per time step in solving
the nonlinear flow equation
maximum allowable iterations per time step in solving
the nonlinear coupled flow and transport system
of nodes selected for partial output
of time values for detailed nodal output and element
velocity output (see description of IPRT, TIMPRT)

of surface nodes for vertical profile output

GENERAL PARAMETERS

contained in the data structure ‘‘Par’’ of derived type ‘‘Par_tag’’
(file: mod_Par.F):

Integer Parameters:

IMAX

INDP

INDPC

ITRANS

IFLOW

ISOLV

largest integer number (machine dependent)

=0 for input of flow uniform initial conditions (one value

read in)
=1 for input of flow nonuniform IC’s (one value read in
for each node)

=2 for calculation of fully saturated vertical hydrostatic

equilibrium IC’s (calculated in subroutine ICVHE)

=0 for input of concentration uniform initial conditions
(one value read in)

=1 for input of concentration nonuniform IC’s
(one value read in for each node)

=1 for uncoupled model (only flow)

=1 for coupled model (flow & transport)

=1 for Picard iteration scheme

=2 for Newton iteration scheme

flag for unsymmetric linear solver (flow equation)
=-5 BiCGSTAB (preconditioned with D$~{-1}$)
=-4 BiCGSTAB (not preconditioned)

=-3 TFQMR (preconditioned with D$"{-1}$)
=-2 TFQMR (not preconditioned)

=-1 TFQMR (preconditioned with K$"{-1}$)

=0 BiCGSTAB (preconditioned with K$~{-1}$)

61

ISOLVC -

IRELAX -

IRELAXC-

NSTEP -
LUMP -
LUMPC -

ITER -
ITERC -

ITMX1 -
ITMXC1
ITMX2 -

ITMXC2 -

=1 GRAMRB (minimum residual)
=2 GCRK(5) (ORTHOMIN)
=3 IBM’s NONSYM (direct solver)
flag for unsymmetric linear solver (transport equation)
=-5 BiCGSTAB (preconditioned with D$~{-1}$)
=-4 BiCGSTAB (not preconditioned)
=-3 TFQMR (preconditioned with D$"{-1}$)
=-2 TFQMR (not preconditioned)
=-1 TFQMR (preconditioned with K$"{-1}$)
=0 BiCGSTAB (preconditioned with K$~{-1}$)
=1 GRAMRB (minimum residual)
=2 GCRK(5) (ORTHOMIN)
=3 IBM’s NONSYM (direct solver)
flag for nonlinear relaxation (flow equation)
=0 no relaxation
=1 relaxation with constant relaxation parameter OMEGA
=2 relaxation with iteration-dependent relaxation parameter
OMEGA, calculated using Huyakorn et al’s adaptation
(WRR 1986 22(13), pg 1795) of Cooley’s empirical scheme
(WRR 1983 19(5), pg 1274)
flag for nonlinear relaxation (transport equation)
=0 no relaxation
=1 relaxation with constant relaxation parameter OMEGA
=2 relaxation with iteration-dependent relaxation parameter
OMEGA, calculated using Huyakorn et al’s adaptation
(WRR 1986 22(13), pg 1795) of Cooley’s empirical scheme
(WRR 1983 19(5), pg 1274)
time step index
=0 for flow distributed mass matrix; otherwise matrix is lumped
=0 for transport distributed mass matrix;
otherwise matrix is lumped
iteration index for flow nonlinear iterations for each time step
iteration index for coupled syst. nonlinear iterations for
each time step
if ITER < ITMX1, flow eq. time step size is increased
if ITER < ITMX1, coupled syst. time step size is increased
if ITMX1 <= ITER < ITMX2, flow eqn. time step size is not altered
if ITMX2 <= ITER < ITUNS, flow eqn. time step size is decreased
if ITER = ITUNS (i.e. convergence not achieved in ITUNS
iterations), we back-step unless time step size cannot
be reduced any further (DELTAT = DTMIN). Back-stepping is
also triggered if the linear solver failed (LSFAIL = TRUE)
or if the convergence or residual errors become larger
than ERNLMX (ERRGMX = TRUE).
if ITMXC1 <= ITER < ITMXC2, coupled syst. time step size
is not altered
if ITMX2 <= ITER < ITUNS, coupled syst. time step size
is decreased
if ITER = ITUNS (i.e. convergence not achieved in ITUNS
iterations), we back-step unless time step size cannot
be reduced any further (DELTAT = DTMIN). Back-stepping is
also triggered if the linear solver failed (LSFAIL = TRUE)
or if the convergence or residual errors become larger
than ERNLMX (ERRGMX = TRUE).

ITMXCGSY- maximum # of iterations for conjugate gradient linear

symmetric system solvers

ITMXCGNS- maximum # of iterations for conjugate gradient-type linear

62

oo aoaaaaaaaoaaaaaaaaa

unsymmetric system solvers
KBACK - total number of flow eqn. back-stepping occurrences
KBACKC - total number of coupled syst. back-stepping occurrences
ITTOT
ITTOTC
NITER - number of iterations for the linear solver at each
nonlinear iteration of the flow equation
NITERC - number of iterations for the linear solver at each

nonlinear iteration of the coupled system of eqns.

NITERT - number of iterations for the linear solver at each
time step of the flow equation

NITERTC- number of iterations for the linear solver at each
time step of the coupled system of eqns.

ITLIN - total number of iterations for the linear solver over all
nonlinear iterations and all time steps of the flow
equation

ITLINC - total number of iterations for the linear solver over all
nonlinear iterations and all time steps of the coupled
system of eqns.

ICNVRF -

ICNVRC -

KLSFATI - total number of linear solver failures for the flow eqn.
L2NORM - =0 to use the infinity norm in the test for convergence of

the nonlinear iterations; otherwise the L2 norm is used

Integer Arrays:

IER (7) - error flags
IP3 (3,3) - 3 x 3 permutation matrix
P4 (4,4) - 4 x 4 pernutation matrix

Real Parameters:

RMIN - smallest double precision number (machine dependent)
RMAX - largest double precision number (machine dependent)
TETAF - weighting parameter for time stepping scheme
of the flow equation
(1.0 Backward Euler; 0.5 Crank-Nicolson;
TETAF is set to 1.0 for steady state problem)
TETAC - weighting parameter for time stepping scheme
of the coupled system
(1.0 Backward Euler; 0.5 Crank-Nicolson;
TETAC is set to 1.0 for steady state problem)
DELTAT - initial and current time step size (DELTAT >= 1.0e+10
on input indicates steady state problem)

DTMIN - minimum time step size allowed

DTMAX - maximum time step size allowed

TMAX - time at end of simulation (TMAX is set to 0.0 for
steady state problem)

DTAVG - average time step size used for the simulation

DTSMAL - smallest time step size used during the simulation

DTBIG - largest time step size used during the simulation

TSMAL - first time at which DTSMAL is used

TBIG - first time at which DTBIG is used

DTMAGA - magnification factor for time step size (additive)
DTMAGM - magnification factor for time step size (multiplicative)
DTREDS - reduction factor for time step size (subtractive)

63

oo aoaaaaaaaoaaaaaaaaa

DTREDM - reduction factor for time step size (multiplicative)

TIME - time at current time level
TIMEP - time at previous time level
TOLNL - tolerance for convergence of nonlinear flow iterations

TOLNLC - tolerance for convergence of nonlinear coupled iterations

TOLCGSY- tolerance for convergence of conjugate gradient linear
system solvers (symmetric matrices)

TOLCGNS- tolerance for convergence of conjugate gradient-type linear
system solvers (unsymmetric matrices)

OMEGA - nonlinear relaxation parameter for the flow eqn.:
OMEGA > 1, over-relaxation;
OMEGA < 1, under-relaxation. Input value of OMEGA is used
only for the case NLRELX=1 (constant relaxation parameter).
Input value of OMEGA is ignored otherwise: for NLRELX=0
relaxation is not applied; for NLRELX=2 OMEGA is calculated
at each nonlinear iteration.

OMEGAC - nonlinear relaxation parameter for the coupled system of eqns.:
OMEGAC > 1, over-relaxation;
OMEGAC < 1, under-relaxation. Input value of OMEGAC is used
only for the case NLRELX=1 (constant relaxation parameter).
Input value of OMEGAC is ignored otherwise: for NLRELX=0
relaxation is not applied; for NLRELX=2 OMEGAC is calculated
at each nonlinear iteration.

OMEGAP - OMEGA value at previous nonlinear iteration

OMEGAPC- OMEGAC value at previous nonlinear iteration

ERNLMX - maximum allowable convergence or residual error in the
nonlinear solution. If the convergence or residual errors
become larger than ERNLMX, ERRGMX is set to TRUE and the
code back-steps. This avoids occurrences of overflow or
underflow when nonlinear iterations diverge

Logical Flags:

DTGMIN - flag indicating whether the current time step size
is greater than the minimum allowed
FALSE if not greater
TRUE if greater
LSFAIL - flag for linear solver
FALSE if linear solver did not fail
TRUE if linear solver failed
NORMCV - flag for convergence of the norm of pressure head
differences in the nonlinear iterative procedure
FALSE if the norm has not converged
TRUE if the norm has converged
ITAGEN - flag indicating whether we can iterate again
in the nonlinear iterative procedure
FALSE if we cannot iterate again
TRUE if we can iterate again
ERRGMX - flag indicating whether the convergence or residual errors
have become greater than the allowed maximum
FALSE if not greater
TRUE if greater
POT_BC_FLAG - flag indicating whether the BC’s are read in
terms of potential heads in the input file.
FALSE pressure head values are read
TRUE potential head values are read
POT_IC_FLAG - flag indicating whether the IC’s are read in

64

oo aaaaaaaaa

oo aaaaaa

Q

oo oo aaaoaaaaaaaaaaaaaa

terms of potential heads in the input file.
FALSE pressure head values are read
TRUE potential head values are read
FLOW_EXIT_FLAG - flag indicating whether the flow simulation
has got to an end
FALSE simulation continues
TRUE simulation is finished
COUPLED_EXIT_FLAG - flag indicating whether the coupled simulation
has got to an end
FALSE simulation continues
TRUE simulation is finished
0SC_FLAG - flag indicating whether the Orthogonal Subdomain
Collocation (0SC) scheme is adopted
FALSE 0SC not used
TRUE 0SC is used

Input/Output (I/0) PARAMETERS

contained in the data structure ‘‘I0’’ of derived type ‘‘I0_tag’’
(file: mod_IO0.F):

Integer Parameters:

MAX_FILE_LEN - maximum lenght for file names
TN<X> - input unit number (0 <= X <=12)

List of Input Units:

INO - I/0 file names ‘‘codesa3d.fnames’’

IN1 =5 - paramteters ‘parm’’

IN2 =8 - grid info ‘‘grid’’

IN3 =9 - nodes with non-atmospheric, non-seepage face
Neumann and Dirichlet BC’s ¢ ‘flow-nansfbc’’

IN4 = 10 - non-atmospheric, non-seepage face

Dirichlet BC’s

(see subroutines BCONE and BCNXT for

unit IIN4 input) ¢‘flow-nansfbc-dirich-time’’
IN5 = 11 - non-atmospheric, non-seepage face

Neumann BC’s

(see subroutines BCONE and BCNXT for

unit IINS input) ¢‘flow-nansfbc-neumann-time’’

IN6 = 12 - atmospheric BC’s (rainfall/evaporation rates)
¢‘flow-atmbc’’

IN7 = 13 - seepage face BC’s ‘‘flow-sfbc’’

IN8 = 14 - soil characteristics ‘‘flow-so0il’’

IN9 = 15 - initial conditions for flow ‘‘flow-ic’’

IN10 = 16 - initial conditions for transp ‘‘transp-ic’’

IN11 = 17 - solute properties ‘‘transp-solute’’

IN12 = 18 - transport BC’s ¢ ‘transp-bc’’

TERM - output unit number for the screen
DB<X> - output debug unit number (1 <= X <=4)
Q0UT<X> - output unit number (1 <= X <=26)

65

Q aa

oo oo aaaaaaaaaaa

List of Output Units:

TERM
0UT1
0UT2
0UT3
0UT4

0UTS

0UTe6

ouT7
0UT8
0uT9
0UT10
0UT11
0UT12
0UT13
0UT14
0UT15

0UT16
0uUT17

0UT18
0UT19
0UT20
0UT21
0uUT22
0UT23

0UT24
0UT25

0UT26

IPRT

IPRT1

= 29

= 30
= 31
= 32
= 33
= 134
= 35
= 36
= 37
= 38

= 39
= 40

= 41
= 42
= 43
= 44
= 45

= 46

= 47
= 48

= 49

terminal output

main output

X, Y, Z coordinate values

flow: convergence behavior and error norms
mass balance and convergence behavior at each
time step when solving the flow eqn.
convergence behavior at each nonlinear it. of
each time step when solving the coupled syst. of
eqns.

vertical profile output of pressure heads,
water satur. (SW) and rel. hydr. conduct.(CKRW)
vertical profile output of concentrations

atm. and seep. face’s hydrograph output
non-atm. non-seep. face’s hydrograph output
detailed HGFLAG output

detailed SFFLAG output

pressure head output at all nodes

velocity output at all nodes

concentration output at all nodes

SW output at all nodes

for input to DUAL3d and TRAN3d codes

CKRW output at all nodes

velocity output at all elements,

for input to DUAL3d and TRAN3d codes

pressure head output at surface nodes

SATSUR (see description file) output at surface nodes
SW output at surface nodes

concentration output at surface nodes
non-atmospheric, non-seepage face Dirichlet BC’s
at each time step

non-atmospheric, non-seepage face Neumann BC’s
at each time step

detailed seepage face hydrograph output
detailed non-atmospheric, non-seepage face
Dirichlet hydrograph output

detailed non-atmospheric, non-seepage face
Neumann hydrograph output

- flag for detailed output at all nodes and velocity and
water saturation output at all elements (velocity and
water saturation output in the case IPRT=4 can be used as
input to TRAN3D and DUAL3D codes)
=0 don’t print nodal pressure, velocity, water saturation,
or relative conductivity values

=1 print only nodal pressure head values

=2 print nodal pressure head and velocity values

=3 print nodal pressure, velocity, and relative
conductivity values

=4 print nodal pressure, velocity, relative conductivity,
and overall storage coefficient values, and print
element velocity and nodal water saturation values

- flag for output of input and coordinate data

66

oo aaaaaaoaaaaaaaa

Q

oo aaaaaa

in subroutines DATIN and GEN3D
=0 prints parameters only (default)
=1 prints parameters + b.c. + geom. char.
=2 prints parameters + b.c. + geom. char. + grid info
=3 prints parameters + b.c. + geom. char. + grid info,
X, Y, Z coordinate valuesg in subroutine GEN3D, and then
terminates program execution
KPRT - index to current time value for detailed output
ISEC - horizontal section number for which the potential head
and concentration values will be output if IPRT>=1.
If ISEC=0 then the output will be global, otherwise
only that section will be considered for the detailed ouput

Integer Arrays:

CONTR (NR)
NODVP (NUMVP)

Real Arrays:

TIMPRT (NPRT)

Character Strings:

- node #’s for partial output
- node #’s for surface nodes selected for
vertical profile output

- time values for detailed output. Detailed
output is produced at initial conditions
(TIME=0), at time values indicated in TIMPRT,
and at the end of the simulation (TIME=TMAX).
Detailed output consists of: values of pressure
head, velocity, water saturation, and relative
conductivity (depending on setting of IPRT)
at all nodes; velocity, and water saturation
(depending on setting of IPRT) at all elements;
vertical profiles of pressure head, water
saturation, and relative conductivity for the
NODVP surface nodes; pressure head, water
saturation, and SATSUR valuesg at the
surface nodes

IFN<X> - input unit filename (0 <= X <=12)
OFN<X> - output unit filename (1 <= X <=26)
DBFN<X> - output debug unit filename (1 <= X <=4)

Central Processing Unit (CPU) timing PARAMETERS

contained in the data structure ‘‘CPU’’ of derived type ‘‘CPU_tag’’

(file: mod_CPU.F):

Real Parameters:

MN - total cpu time for the simulation
NL - total cpu time for nonlinear scheme
OVH - total cpu time for overhead:

- data input, initialization, and output of
initial conditions (once)
- construction of tetrahedral elements (once)

67

oo oo aaaaaaaaaa

Q

oo aaaaaaaaaa

LIN - total cpu time
BAL - total cpu time

volume calculations (once)

set up of storage indices and pointers (once)
velocity calculations (every time step for the
case IPRT > 1)

hydrograph calculation (every time step)
input, interpolation, and switching control of
atmospheric boundary conditions for the next
time level (every time step)

update of pressure heads for the next time
level (every time step)

back-stepping procedure (when needed)

final output (once)

for assembly and solution of linear system
for back-calculation of fluxes at

Dirichlet nodes, for mass balance calculation,
and for hydrograph calculation

Real*4 Arrays:

VEC(9) - cpu times for different sections of nonlinear schemes:

(1) unsat characteristics

(2) initialization of system matrices

(3) assembly of local system components into
global matrices

(4) calculation of RHS without boundary cond.

(5) construction of global LHS system matrix

(6) calculation of BC contributions to RHS

(7) linear solver and calculation of residual

(8) extraction of pressure head solution
from the difference solution and
re-setting of solution and of COEF1 for
Dirichlet nodes

(9) back-calculation of fluxes at all Dirichlet
nodes, mass balance calculation,
application of nonlinear relaxation scheme
(if required), calculation of nonlinear
convergence and residual error norms,
switching control of atmospheric boundary
conditions, and calculation of new position
of the exit point along each seepage face

GRID PARAMETERS & DATAx

contained in the data structure ‘‘Grid’’ of derived type ‘‘Grid_tag’’

(file: mod_Grid.F):

Integer Parameters:

IVERT - =0 each vertical layer will be parallel to the surface,
including the base of the 3-d grid. ZRATIO is applied to
each vertical cross section.

=1 base of the 3-d grid will be flat, and ZRATIO is applied
to each vertical cross section

=2 base of the 3-d grid will be flat, as will the NSTR-1
horizontal cross sections above it. ZRATIO is applied

68

oo aaaaaaoaaaaaaaa

Q

oo aaaaaa

ISP -

only to the vertical cross section having the lowest
elevation
=0 for flat surface layer (only one Z value is read in, and
is replicated to all surface nodes); otherwise surface
layer is not flat (Z values read in for each surface node)
(for ISP=0, IVERT=0, 1, and 2 yield the same 3-d mesh,
given the same values of BASE and ZRATIO)

Real Parameters:

BASE -

value which defines the thickness or base of the 3-d mesh.
For IVERT=0, BASE is subtracted from each surface elevation
value, gso that each vertical cross section will be of
thickness BASE, and the base of the 3-d mesh will be
parallel to the surface. For IVERT=1 or 2, BASE is
subtracted from the lowest surface elevation value, say
ZMIN, so that each vertical cross section will be of
thickness (Z - ZMIN) + BASE, where Z is the surface
elevation for that cross section. The base of the 3-d mesh
will thus be flat

Integer Arrays:

TP () - # of elements connecting to each node

IVOL (NT) - sign of the volume of each element

TRIANG(4,NTRI) - element connectivities in 2-d mesh (TRIANG(4,I)
indicates material type for 2-d element I)

TETRA (5,NT) - element connectivities in 3-d mesh (TETRA(5,I)

indicates material type for 3-d element I)

Real Arrays:

X (M) - x-coordinates (for 2-d mesh on input)

Y (M) - y-coordinates (for 2-d mesh on input)

Z () - z-coordinates (surface elevation values on
input - see description of ISP)

VOLNOD (I1) - absolute value of volume assigned to each node

VOLU (NT) - absolute value of the volume of each element

VOLUR (NT) - reciprocal of VOLU

ZRATIO(NSTR) - fraction of total grid height that each layer

is to occupy (see also description of IVERT).
ZRATIO(1) is for the surface-most layer.
ZRATIO values must sum to 1

FLOW BC PARAMETERS & DATAx

contained i

(file: mod_

n the data structure ¢‘Flow_BC’’ of derived type ‘‘Flow_BC_tag’’
Flow_BC.F):

Integer Parameters:

NUMDIR -
ISFONE -

total # of Dirichlet nodes in 3-d mesh

=0 seepage face exit point updating performed by
checking all nodes on a seepage face

=1 seepage face exit point updating performed by
checking only the one node above and one node

69

oo aoaaaaaaaoaaaaaaaaa

ISFCVG -

KSF -

KSFCV -

KSFCVT -

HTIDIR -

HTINEU -

HSPATM -

HTIATM -

below the current exit point position
=0 convergence of seepage face exit points is not a
condition for convergence of the nonlinear iterative
procedure
=1 convergence of seepage face exit points is a condition
for convergence of the nonlinear iterative procedure
number of seepage face exit points which did not converge
at each nonlinear iteration
total number of seepage face exit point convergence failure
occurrences (over all nonlinear iterations and all time
steps)
total number of seepage face exit point convergence
failures (over all seepage faces, all nonlinear iterations,
and all time steps)
=0 for temporally variable non-atmospheric, non-seepage
face Dirichlet boundary conditions inputs; otherwise
non-atmospheric, non-seepage face Dirichlet boundary
conditions inputs are homogeneous in time (see also
notes following description of QPOLD)
=0 for temporally variable non-atmospheric, non-seepage
face Neumann boundary conditions inputs; otherwise
non-atmospheric, non-seepage face Neumann boundary
conditions inputs are homogeneous in time (see also
notes following description of QPOLD)
=0 for spatially variable atmospheric boundary condition
inputs; blank or =9999 if unit IIN6 input is to be ignored;
otherwise atmospheric BC’s are homogeneous in space
=0 for temporally variable atmospheric boundary condition
inputs; otherwise atmospheric BC’s are homogeneous in time
(see also notes following description of ATMINP)

Integer Arrays:

SFFLAG(5) - counter for anomalous, implausible, or
erroneous occurrences along seepage faces
(see output statements 2100,2200 in subroutine
SFINIT, 2100,2200,2300,2400 in subroutines
EXTONE, EXTALL, and 2500 in subroutine FLUXMB)

HGFLAG(8) - counter for anomalous, implausible, or
erroneous atmospheric inflow, outflow, and
runoff occurrences (see subroutine HGRAPH)

CONTP2 (NDIR) - non-atmospheric, non-seepage face Dirichlet
node #’s in 2-d mesh

CONTP (NP) - non-atmospheric, non-seepage face Dirichlet
node #’s in 3-d mesh

CONTQ (NQ) - non-atmospheric, non-seepage face Neumann
node #’s in 3-d mesh

NODDIR(NUMDIR) - node #’s for all Dirichlet nodes in 3-d mesh

NSFNUM (NSF) - # of nodes on each seepage face

SFEX (NSF) - the exit point on each seepage face. The

seepage face nodes above the exit point are
'potential’ seepage face nodes, are treated as
zero flux Neumann BC’s, and the pressure heads
here should be negative (unsaturated). The
seepage face nodes below the exit point (and
including the exit point) are ’actual’ seepage
face nodes, are treated as zero pressure

70

SFEXIT(NSF) -
SFEXP (NSF) -
IFATM (NNOD) -

IFATMP (NNOD) -
SATSUR (NNOD) -

NSFNOD (NSF,NNSFMX) -

Real Arrays:

head Dirichlet BC’s (saturated), and the
back-calculated fluxes here should be

negative (outflow).

The position of the exit point for the

first time step is calculated from the initial
conditions. The new position of the exit point
is calculated after every nonlinear iteration
of every time step, and the boundary conditions
for the seepage face nodes are adjusted to
reflect changes in the position of the exit
point.

For the case where seepage face I is
completely saturated (all seepage face

nodes are ’actual’), SFEX(I)=1. For the case
where seepage face I is completely unsaturated
(all seepage face nodes are ’potential’ and
there is no exit point), SFEX(I)=NSFNUM(I)+1.
This convention simplifies the handling of
seepage face nodes (relying on the fact that
FORTRAN 77 does not execute a DO loop if the
iteration count is zero or negative)

SFEX values at previous nonlinear iteration
SFEX values at previous time level

IFATM(I)=0 if surface node I is a Neumann
atmospheric boundary condition node

IFATM(I)=1 if surface node I is a Dirichlet
atmospheric boundary condition node

IFATM(I)=-1 if surface node I is not an
atmospheric boundary condition node

Note: surface nodesg are numbered 1,...,NNOD in
the 3-d mesh, so there is no need for a pointer
array giving the node #’s for the surface nodes
IFATM values at previous time level

SATSUR(I)=1 if surface node I is unsaturated
SATSUR(I)=2 if surface node I is Horton
saturated (infiltration excess mechanism)
SATSUR(I)=3 if surface node I is Dunne
saturated (saturation excess mechanism)

node #’s on each seepage face. The node #’s for
each seepage face must be input in descending
order by elevation. That is, along seepage face
I, Z(NSFNOD(I,J)) .GE. Z(NSFNOD(I,J+1)) must
hold for J=1,...,NSFNUM(I)-1. Seepage faces can
be defined, for instance, above a well, along a
stream bank, or along a combination of stream
bank and surface nodes. For a configuration

of seepage face and stream, the stream nodes
should be designated as non-atmospheric,
non-seepage face nodes, for instance as
Dirichlet nodes with a pressure head
distribution in hydrostatic equilibrium, the
node at the surface of the stream being
assigned a pressure head value of zero.

For output purposes, we set
NSFNOD(I,NSFNUM(I)+1)=-9999

71

oo aoaaaaaaaoaaaaaaaaa

ATMTIM(3) - most current input time values for atmospheric
BC’s, with ATMTIM(1) < ATMTIM(2) < ATMTIM(3)
and ATMTIM(2) < TIME <= ATMTIM(3)

PTIM(3) - most current input time values for
non-atmospheric, non-seepage face Dirichlet
BC’s, with PTIM(1) < PTIM(2) < PTIM(3)
and PTIM(2) < TIME <= PTIM(3)

QTIM(3) - most current input time values for
non-atmospheric, non-seepage face Neumann
BC’s, with QTIM(1) < QTIM(2) < QTIM(3)
and QTIM(2) < TIME <= QTIM(3)

PRESC (NP) - non-atmospheric, non-seepage face Dirichlet
values at current time level

Q (NQ) - non-atmospheric, non-seepage face Neumann
values at current time level

QPNEW (NP) - back-calculated flux values at non-atmospheric,
non-seepage face Dirichlet nodes at current
time level

QPOLD (NP) - QPNEW values at previous time level

Notes: (a) For a simulation using temporally homogeneous

non-atmospheric, non-seepage face Dirichlet

(Neumann) BC’s, input data on unit IIN8 (IIN9) should
contain a single value of PTIM (QTIM) (0.0)

and a single set of PINP (QINP) data.

Alternatively, to properly handle the case where the
datasets for different simulations are kept in the same
file (separated by blank lines), the input data on unit
IIN8 (IIN9) for temporally homogeneous

non-atmospheric, non-seepage face Dirichlet

(Neumann) BC’s should contain, as above, a value of PTIM
(QTIM) of 0.0 followed by the PINP

(QINP) values, and then a value of PTIM

(QINP) equal to or larger than TMAX

(1.0e+10, say) followed by the same PINP (QINP)

values specified at time 0.0.

(b) If the first input time value is greater than 0.0, we set
the initial (time 0.0) non-atmospheric, non-seepage face
Dirichlet (Neumann) BC inputs to 0.0

(c) If TIME is larger than the last PTIM (QTIM)
value on unit IIN8 (IIN9), HTIDIR (HTINEU)
is set to 1 and the last input values are used for the
rest of the simulation. To properly handle the case where
the datasets for different simulations are kept in the
same file (separated by blank lines), follow the
procedure described in (a)

ATMPOT (UNOD) - precipitation (+ve) / evaporation (-ve) fluxes
at current time level for each surface node.
These are potential infiltration/exfiltration
values.

ATMACT (NOD) - actual fluxes (infiltration/exfiltration

values) for atmospheric boundary

condition nodes at current time level.

For IFATM(I)=0, ATMACT(I) ATMPOT(I);

For IFATM(I)=1, ATMACT(I) back-calculated
flux value;

For IFATM(I)=-1, ATMACT(I) is disregarded

72

ATMOLD (NOD) - ATMACT values at previous time level
ATMINP (3,NNOD) - input atmospheric rainfall/evaporation rates

corresponding to ATMTIM times. ATMPOT(I) is
obtained from ATMINP(2,I) and ATMINP(3,I) by
linear interpolation and conversion of rate
to volumetric flux. ATMINP(1,I) values are
needed in the event that, after back-stepping,
we have ATMTIM(1) < TIME <= ATMTIM(2)

Notes: (a) For a simulation using temporally homogeneous atmospheric

rates, input data on unit IIN6 should contain a single
value of ATMTIM (0.0) and a single set of ATMINP data.
Alternatively, to properly handle the case where the
datasets for different simulations are kept in the same
file (separated by blank lines), the input data on
unit IIN6 for temporally homogeneous rates should
contain, as above, a value of ATMTIM of 0.0 followed by
the ATMINP rates, and then a value of ATMTIM equal to or
larger than TMAX (1.0e+10, say) followed by the same
ATMINP rates specified at time 0.0.

(b) If there is no ATMTIM, ATMINP input, HTIATM is set
to 1 (homogeneous in time) and atmospheric input rates
are set to 0.0.

(c) If the first input time value is greater than 0.0, we set
the initial (time 0.0) atmospheric input rates to 0.0.

(d) If TIME is larger than the last ATMTIM value on unit
IIN6, HTIATM is set to 1 and the last input atmospheric
rates are used for the rest of the simulation. To
properly handle the case where the datasets for different
gsimulations are kept in the same file (separated by blank
lines), follow the procedure described in (a).

(e) If HSPATM is nonzero and not equal to 9999 (spatially
homogeneous), each set of ATMINP data should consist of
a single value which gets copied to all surface nodes.
If HSPATM is zero (spatially variable), each set of
ATMINP data should consist of NNOD values (note that
we read in a value for each surface node, including
surface nodes which may be designated as non-atmospheric
Dirichlet or Neumann boundary conditions. IFATM controls
whether the atmospheric input for a given surface node
is actually used)

PINP(3,NP) - non-atmospheric, non-seepage face Dirichlet

values corresponding to PTIM times.

PRESC(I) is obtained from PINP(2,I) and
PINP(3,I) by linear interpolation.

PINP(1,I) values are needed in the event that,
after back-stepping, we have

PTIM(1) < TIME <= PTIM(2)

QINP(3,NP) - non-atmospheric, non-seepage face Neumann

SFQ

SFQP

values corresponding to QTIM times.
Q(I) is obtained from QINP(2,I) and
QINP(3,I) by linear interpolation.
QINP(1,I) values are needed in the event that,
after back-stepping, we have
QTIM(1) < TIME <= QTIM(2)
(NSF,NNSFMX) - back-calculated flux values at actual seepage
face nodes at current time level
(NSF,NNSFMX) - SFQ values at previous time level

73

Qoo aaaaaaaa

Q

Logical Flags:

SFCHEK - flag indicating whether it is necessary to check for
seepage face exit point convergence as a condition for
convergence of the nonlinear iterative procedure

FALSE if it is not necessary to check

TRUE

if it is necessary to check

KSFZER - flag for number of seepage face exit points which did
not converge at each nonlinear iteration
FALSE if one or more exit points did not converge

TRUE

if all exit points converged (i.e. KSF=0)

TRANSPORT BC PARAMETERS & DATAx

contained in the data structure ‘‘Transp_BC’’ of derived type
¢‘Transp_BC_tag’’ (file: mod_Transp_BC.F):

Integer Arrays:
NNP2C (NP2C)
NNPC (NPC)

NNMC (NMC)

Real Arrays:
PC (NPC)

MC1 (NMC)
MC2 (NMC)

BKTNEW (NPC+NMC)

BKTOLD (NPC+NMC)

Dirichlet node #’s in 2-d mesh for the
transport equation

Dirichlet node #’s in 3-d mesh for the
transport equation

Cauchy node #’s in 3-d mesh for the transport
equation

Dirichlet values for the transport equation
(constant in time)

total Cauchy values for the transport equation
advective component of the Cauchy values for
the transport equation (if the advective
component of the Cauchy boundary conditions is
zero, the Cauchy BC’s become Neumann boundary
conditions)

(the Cauchy BC’s MC1 and MC2 are constant in
time for TIME > 0; for time O Cauchy

values are taken to be zero. This is done to
avoid oscillations in the Crank-Nicolson
scheme.)

back-calculated flux values at Dirichlet and
Cauchy nodes for the transport equation at
current time level

BKTNEW values at previous time level

C *MASS BALANCE PARAMETERS & DATAx*

C

C contained in the data structure ¢ ‘MBal’’ of derived type
C ‘‘MBal_tag’’ (file: mod_MBal.F):

C
C
C

Real Parameters:

74

oo aoaaaaaaaoaaaaaaaaa

--Abbreviations: na = non-atmospheric

NDIN
NDOUT
NDINP
NDOUTP
NNIN
NNOUT
NNINP
NNOUTP
VNDIN
VNDOUT
VNNIN
VNNOUT
VIN

VOouT

DSTORE

ERRAS

ERREL

ETOT

VTOT

VTOTI
VTOTO
TDIN
TDOUT
TDINP
TDOUTP
TCIN
TCOUT
TCINP
TCOUTP

MTDIN
MTDOUT
MTCIN
MTCOUT
TMIN

TMOUT

MASPOR

nsf = non-seepage face
tot inflow flux from na, nsf Dir nodes at curr time level
tot outflow flux from na, nsf Dir nodes at curr time level
tot inflow flux from na, nsf Dir nodes at prev time level
tot outflow flux from na, nsf Dir nodes at prev time level
tot inflow flux from na, nsf Neu nodes at curr time level
tot outflow flux from na, nsf Neu nodes at curr time level
tot inflow flux from na, nsf Neu nodes at prev time level
tot outflow flux from na, nsf Neu nodes at prev time level
tot inflow volu from na, nsf Dir nodes over curr time step
tot outflow volu from na, nsf Dir nodes over curr time step
tot inflow volu from na, nsf Neu nodes over curr time step
tot outflow volu from na, nsf Neu nodes over curr time step
VADIN + VNDIN + VANIN + VNNIN = total inflow volume
between current and previous time levels (> 0)
VADOUT + VNDOUT + VANOUT + VNNOUT + VSFFLW = total outflow
volume between current and previous time levels (< 0)
total volume of storage change between current and
previous time levels (> 0 for net increase in storage)
absolute volume ("mass") balance error over the current
time step
relative (percent) mass balance error over the current
time step
cumulative (over all time steps) absolute mass balance
error ERRAS
cumulative (over all time steps) total net volume
VIN + VOUT
cumulative (over all time steps) total VIN
cumulative (over all time steps) total VOUT
tot mass flux in from Dirichlet nodes at curr time level
tot mass flux out from Dirichlet nodes at curr time level
tot mass flux in from Dirichlet nodes at prev time level
tot mass flux out from Dirichlet nodes at prev time level

tot mass flux in from Cauchy nodes at curr time level
tot mass flux out from Cauchy nodes at curr time level
tot mass flux in from Cauchy nodes at prev time level
tot mass flux out from Cauchy nodes at prev time level

(above fluxes are mass fluxes (volumetric flux # density)
of solute computed from the transport equation)

tot solute mass in from Dirich nodes over curr time step
tot solute mass out from Dirich nodes over curr time step
tot solute mass in from Cauchy nodes over curr time step
tot solute mass out from Cauchy nodes over curr time step
MTDIN + MTCIN = total solute mass into the porous
medium between current and previous time levels (> 0)
MTDOUT + MTCOUT = total solute mass out of the porous
medium between current and previous time levels (< 0)
total mass of solute change between current and

previous time levels (> O for net increase in solute mass)
for the transport equation. MASPOR is computed from the
(porosity * retardation factor) coefficient in the time
derivative of concentration term in the transport equation.
Note that we neglect the contributions of the specific
storage and the (density ratio * EPSLON * concentration)
terms in computing MASPOR. Indeed these terms are not

75

Qoo aaaaaaoaaaaaaaaa

[

Qoo

ERRAST

ERRELT

ETOTT

considered at all in the transport equation being solved
in this code, and thus are neglected also in the assembly
of the system matrices. (See pg 22 of the ENEL code manual,
"Parte 1: Modello Matematico'", G. Gambolati & G. Pini,
Padova, December 1989)

absolute solute mass balance error over the

current time step for the transport equation

relative (percent) solute mass balance error over the
current time step for the transport equation
cumulative (over all time steps) absolute mass balance
error ERRAST for the transport equation

MTOTT - cumulative (over all

TMIN + TMOUT
MTOTTI - cumulative (over all
MTOTTO - cumulative (over all

OVFLOW - total overland flow (surface runoff) flux produced at

time steps) total net solute mass

time steps) total TMIN
time steps) total TMOUT

atmospheric surface nodes. Overland flow occurs during
rainfall periods when the actual flux is less than the
potential flux, and accounts for both Horton and Dunne
saturation mechanisms.

REFLOW - total return flow flux produced at atmospheric surface
nodes. Return flow occurs during rainfall periods when
the actual flux is negative (outflow rather than inflow).
In this case all of the potential flux becomes overland
flow, and the magnitude of the actual flux becomes the
return flow component of surface runoff

SFFLW - total subsurface flow flux produced at seepage faces
at the current time level

SFFLWP - total subsurface flow flux produced at seepage faces
at the previous time level
VSFFLW - total subsurface flow volume produced at seepage faces

between current and previous time levels

APOT - total atmospheric potential flux at the current time level,
used for hydrograph output. Note that we disregard
contribution of non-atmospheric, non-seepage face
surface nodes in the calculation of APOT.

AACT - total atmospheric actual flux at the current time level,
used for hydrograph output. AACT=ADIN+ADOUT+ANIN+ANOUT.

ADIN - tot
ADOUT - tot
ADINP - tot
ADOUTP - tot
ANIN - tot
ANOUT - tot
ANINP - tot
ANOUTP - tot
VADIN - tot
VADOUT - tot
VNDIN - tot
VNDOUT - tot

inflow
outflow
inflow
outflow
inflow
outflow
inflow
outflow
inflow
outflow
inflow
outflow

flux
flux
flux
flux
flux
flux
flux
flux
volu
volu
volu
volu

from
from
from
from
from
from
from
from
from
from
from
from

atmosph
atmosph
atmosph
atmosph
atmosph
atmosph
atmosph
atmosph
atmosph
atmosph
na, nsf
na, nsf

Dir
Dir
Dir
Dir
Neu
Neu
Neu
Neu
Dir
Dir
Dir
Dir

nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes
nodes

at curr time

at curr time

at prev time
at prev time
at curr time

at curr time
at prev time
at prev time
curr time step
curr time step
curr time step
curr time step

over
over
over
over

level
level
level
level
level
level
level
level

MATERIAL and SOLUTE PARAMETERS & DATA

contained in the data structure

¢‘MS_prop’’ of derived type
¢‘MS_prop_tag’’ (file: mod_MS_prop.F):

76

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Integer Parameters:

IVGHU -

KSLOPE -

=0 for van Genuchten moisture curves

=1 for extended van Genuchten moisture curves

=2 for moisture curves from Huyakorn et al (WRR 20(8) 1984,
WRR 22(13) 1986) with Kr=Se*#*n conductivity relationship

=3 for moisture curves from Huyakorn et al (WRR 20(8) 1984,
WRR 22(13) 1986) with conductivity relationship from
Table 3 of 1984 paper (log_10 Kr(Se) curve)

=4 for Brooks-Corey moisture curves

=0 for analytical differentiation of moisture curves

=1 for "chord slope'" and analytical differentiation

=2 for "chord slope'" and centered difference formulas

=3 for localized "chord slope" and analytical
differentiation

=4 for localized "tangent slope" differentiation

(the "chord slope" formula is the tangent approximation

suggested by Huyakorn et al (WRR 20(8) 1984), wherein

derivatives are approximated using pressure heads at

the current and previous nonlinear iterations; "tangent

slope" differentiation is a different tangent approximation

wherein derivatives are approximated using pressure heads

at the endpoints of a given range (eg: endpoints PKRL, PKRR

for the derivative of relative hydraulic conductivity). For

KSLOPE=1,2 the chord slope formula is used at every

iteration and at all nodes (with some exceptions as

dictated by TOLKSL). For KSLOPE=3 or 4 the chord or tangent

slope formulas are used only at those nodes whose pressure

heads fall within given ranges (see PKRL, PKRR, etc), hence

’localized’; for nodes whose pressure heads fall outside

these ranges, analytical differentiation is used.)

Real Parameters:

PKRL, -
PKRR

PSEL, -
PSER

PDSE1L, -
PDSE1R,
PDSE2L,
PDSE2R

DKRTAN -

TOLKSL -

left and right endpoints of the pressure head range within
which the chord slope (case KSLOPE=3) or tangent slope
(case KSLOPE=4) formula is used to evaluate the derivative
of relative hydraulic conductivity

left and right endpoints of the pressure head range within
which the chord slope (case KSLOPE=3) or tangent slope
(case KSLOPE=4) formula is used to evaluate the derivative
of effective saturation (moisture content for the case

of extended van Genuchten curves, IVGHU=1)

left and right endpoints of the two pressure head ranges
within which the chord slope (case KSLOPE=3) or tangent
slope (case KSLOPE=4) formula is used to evaluate the
second derivative of effective saturation (moisture content
for the case of extended van Genuchten curves, IVGHU=1).
(Two ranges are specified since in general d(Se)/dP is
non-monotonic.)

tangent slope approximation of d(Kr)/dP, the derivative of
relative hydraulic conductivity Kr wrt to pressure head P.
i.e. DKRTAN = (Kr(PKRR) - Kr(PKRL))/(PKRR - PKRL)
tolerance for chord slope formula. Whenever the chord slope
formula is to be applied (for KSLOPE=1 or 2 at every iter-
ation and at all nodes; for KSLOPE=3 at those nodes whose
pressure heads fall within given ranges), it is applied

77

oo aoaaaaaaaoaaaaaaaaa

RHOO -

EPSLON -

DIFFUS -
PMIN -

only if the absolute pressure head difference (between the
current and previous nonlinear iterations) is larger than
TOLKSL. If the difference is smaller than TOLKSL, then
differentiation is done either analytically (KSLOPE=1,3) or
with a centered difference formula (KSLOPE=2)

density of fresh water

Note: density of water in solution, RHO, is defined

as RHO = RHOO * (1 + EPSLON # CNEW), which gives

RHOO / RHO = 1 / (1 + EPSLON * CNEW). We use this latter
formula, and hence RHO is never explicitly used in this
code.)

density difference ratio

(EPSLON = (RHOMAX - RHOO) / RHOO, where RHOMAX is the
maximum density of water in solution)

molecular diffusion coefficient

’air dry’ pressure head value (for switching control of
atmospheric boundary conditions during evaporation)

Real Arrays:

SNODI (N)
PNODI (N)
RNODI (N)

ETAI (D)
DETAI (N)
CKRW (1)
SW (M)

DSETAN (I1)

DDSELT (II)
DDSE2T (II)

- specific storage at each node
- porosity at each node
- retardation factor at each node

- overall storage coefficient (general storage
term) at each node

- derivative of ETAI wrt press. head at each node

- relative hydraulic conductivity at each node

- water saturation (moisture content/porosity)
at each mnode

- tangent slope approximation of d(Se)/dP, the
derivative of effective saturation Se (moisture
content for case IVGHU=1) wrt to pressure
head P.

i.e. DSETAN = (Se(PSER) - Se(PSEL)) /
(PSER - PSEL)

- tangent slope approximations of dd(Se)/dPP, the
second derivative of effective saturation Se
(moisture content for case IVGHU=1) wrt to
pressure head P.

i.e. DDSEIT = (DSe(PDSE1R) - DSe(PDSE1L)) /
(PDSE1R - PDSE1L)

DDSE2T = (DSe(PDSE2R) - DSe(PDSE2L)) /

(PDSE2R - PDSE2L)

where DSe is the derivative of Se.

(DSETAN, DDSE1T, and DDSE2T contain tangent

slope values at each node only for the case

IVGHU=1; for the other IVGHU cases the tangent

slope values are constant for all nodes and are

stored in DSETAN(1), DDSE1T(1), and DDSE2T(1).)

ETAE (NT) - overall storage coefficient for each element
CKRWE (NT) - relative hydraulic conductivity for each

element

SWE (NT) - water saturation (moisture content/porosity)
PERMX (NSTR,NZONE) - saturated hydraulic conductivity-xx
PERMY (NSTR,NZONE) - saturated hydraulic conductivity-yy
PERMZ (NSTR,NZONE) - saturated hydraulic conductivity-zz

78

oo aoaaaaaaaoaaaaaaaaa

ALFAL (NSTR,NZONE) - longitudinal dispersivity

ALFAT (NSTR,NZONE) - transverse dispersivity

ELSTOR(NSTR,NZONE) - specific storage

POROS (NSTR,NZONE) - porosity (moisture content at saturation)
at each element

RETARD(NSTR,NZONE) - retardation factor

Derived data type VG (Van Genutchen curve coefficients) in file
mod_VG.F:

Real Parameters:

N, - parameters for van Genuchten and extended van Genuchten
M, moisture curves (other ’VG’ parameters - specific storage,
RMC, porosity, and VGPNOT - are assigned nodally). VGM is
PSAT derived from VGN. VGRMC is residual moisture content.
For IVGHU=0, VGPNOT is (porosity - VGRMC)/porosity,
or (1 - residual water saturation).
For IVGHU=1, VGPNOT is a continuity parameter, derived by
imposing a continuity requirement on the derivative of
moisture content with respect to pressure head

Real Arrays:
PNOT (N) - (porosity - VGRMC)/porosity for van Genuchten
curves (IVGHU=0); continuity parameter ’PNOT’

for extended van Genuchten curves (IVGHU=1)

Derived data type HU (Huyakorn curve coefficients) in file
mod_HU.F:

Real Parameters:

N, - parameters for moisture curves from
A, Huyakorn et al (WRR 20(8) 1984, WRR 22(13) 1986)
B, (other 'HU’ parameters - specific storage

ALFA, and porosity - are assigned nodally). HUN is

BETA, only used for IVGHU=2; HUA and HUB are only used

GAMA, for IVGHU=3. HUSWR is residual water saturation, which
PSIA, is equivalent to residual moisture content/porosity.

Derived data type BC (Brooks-Corey curve coefficients) in file
mod_BC.F:
Real Parameters:
BETA,- parameters for Brooks-Corey moisture curves (other ’BC’
RMC, parameters - specific storage and porosity - are assigned
PSAT nodally). BCRMC is residual moisture content.

Real Arrays:

PORM(N) - (porosity - BCRMC)/porosity for Brooks-Corey
curves (IVGHU=4)

79

oo oo aoaaaaaaaaaaaaaa

LINEAR SYSTEM PARAMETERS & DATA

contained in the data structure ‘‘Sys’’ of derived type
‘‘Sys_tag’’ (file: mod_Sys.F):

Integer Parameters:

NDZ - # of zero elements on the diagonal of the system matrices
(signals an error condition)

Integer Arrays:
IA (NTERM) -
IAC (NTERMC) -

TOPOL (N+1) -

TOPOLC (N+1) -
JA (N1*N) -
JAC (N1xI) -

TETJA (4,4,NT) -

TETJAC(4,4,NT) -

Real Arrays:

INSYM (INONSY*(6% -
N + IBOT + 1)

RNSYM (INONSY#IBOT -
+ 1)

COEF1 (NTERM) -
COEF2 (NTERM) -
COEF3 (NTERM) -

COEF1C (NTERMC) -

COEF2C (NTERMC) -
SCR1 (NTERMC) -
SCR1 (NTERMC) -
TNOTI (N) -

row indices in storage of system matrices for
unsymmetric case

row indices in storage of system matrices for
the transport equation

pointer to first nonzero element of each row
which is stored in the system matrices (the
diagonal entry in symmetric storage case)
pointer to first nonzero element of each row
which is stored in the system matrices for the
transport equation

column indices (in ascending order) in storage
of system matrices

column indices (in ascending order) in storage
of system matrices for the transport equation
gives the index within JA (global position) of
each component of the 4 x 4 local system
matrices (upper triangle of 4 x 4 arrays only
in this case since the system is symmetric)
gives the index within JAC (global position)
of each component of the 4 x 4 local system
matrices

integer scratch vector for NONSYM solver
+ 1)
real scratch vector for NONSYM solver

global stiffness matrix; also used to store
the LHS system matrix, which is the Jacobian
in the Newton case

global mass matrix

derivative term components of the Jacobian for
Newton scheme; also used as a scratch vector
global stiffness matrix for the transport
equation (ITRANS=1) or Jacobian matrix for
the Newton transport equation (ITRANS=3);
also used to store the LHS system matrix
global mass matrix for the transport equation
scratch vector

scratch vector

RHS system vector for the flow equation

80

oo aaaaaaaaaaa

Q

oo aaaaaaa Qe

TNOTIC(I)

XT5 (M)
XT5C (W)
LHSP (NP)
LHSC (NPC)
LHSATM(NNOD)
LMASS (4,4)

LMASSC(4,4)

BI (4,NT)
cI (4,NT)
DI (4,NT)

LHSSF (NSF,NNSFMX)

RHS system vector for the transport equation
TNOTI before imposition of Dirichlet boundary
conditions (needed for back-calculation of
fluxes used in mass balance calculations)
TNOTIC before imposition of Dirichlet boundary
conditions (needed for back-calculation of
fluxes used in mass balance calculations)
values of diagonal elements of LHS system
matrix for the flow equation corresponding

to Dirichlet nodes before imposition of
Dirichlet BC’s (needed for back-calculation of
fluxes used in mass balance calculations)
values of diagonal elements of LHS system
matrix for the transport equation corresponding
to Dirichlet nodes before imposition of
Dirichlet BC’s (needed for back-calculation of
fluxes used in mass balance calculations)
values of diagonal elements of LHS system
matrix corresponding to atmospheric Dirichlet
nodes before imposition of Dirichlet

BC’s (needed for back-calculation of fluxes
used in mass balance calculationg, and for
switching control of atmospheric BC’s)

local mass matrix for the flow equation,
without the specific storage term and

without the volume term

local mass matrix for the transport equation,
without the porosity term, retardation factor,
and volume term

coefficients ’b-i / 6’ of the basis functions
coefficients ’c-i / 6’ of the basis functions
coefficients ’d-i / 6’ of the basis functions
values of diagonal elements of LHS system
matrix corresponding to seepage face Dirichlet
nodes before imposition of Dirichlet

BC’s (needed for back-calculation of fluxes
used in mass balance calculationg, and for
calculation of new position of the exit

point along each seepage face)

MODEL OUTPUT PARAMETERS & DATAx

contained in the data structure ‘‘Out’’ of derived type
‘‘Out_tag’’ (file: mod_Out.F):

Integer Parameters:

CNODE - node in which there is the maximum norm of the
concentration
IKMAX - node with largest pressure head difference in absolute

value between current and previous nonlinear iterations
IKMAXC - node with largest concentration difference in absolute
value between current and previous nonlinear iterations

ISURMX
ISURMN

81

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Integer Arrays:

IKMAXV (ITMX) - for each nonlinear iteration in solving the

flow eqn., gives the

node number at which the largest solution
difference, in normalized pressure head
between the current and previous nonlinear
iterations was found

TIKMAXVC (ITMXC) - for each nonlinear iteration in solving the

coupled flow and transport system, gives the
node number at which the largest solution
difference, in either normalized potential head
or in concentration (already normalized - see
description of CNEW), between the current and
previous nonlinear iterations was found

Real Parameters:

PL2 -

FL2 -

DIFPSI -

absolute value of pressure head difference at node IKMAX
(i.e. infinity norm of the convergence error), used in
comparison with TOLUNS for convergence test in the case
L2NORM=0

square root of the sum of squares of pressure head
differences over all nodes (i.e. L2 norm of the convergence
error), used in comparison with TOLUNS for convergence test
in the case L2NORM nonzero

residual error in the nonlinear solution calculated using
the infinity norm (for the nonlinear system f(x)=0, the
residual error at iteration "m" is the norm of f(x$"m$))
residual error in the nonlinear solution calculated using
the L2 norm

pressure head difference at the

node given in IKMAX

Real Arrays:

uu (NT) - velocity-x for each element

vV (NT) - velocity-y for each element

W (NT) - velocity-z for each element

UNOD (W) - velocity-x at each node

VNOD (M) - velocity-y at each node

WNOD (M) - velocity-z at each node

PNEW (M) - potential heads at current time level (and at
current nonlinear iteration when solving the
coupled flow and transport system)

CNEW (M) - gsolute concentrations at current time level,
current nonlinear iteration
Note: concentrations referred to, input, and
used in this code are normalized, with
0 <= conc <= 1, since the transport equation
modeled in this code is written using relative
(dimensionless) concentrations

PSINEW(N) - pressure heads at current time level, current
nonlinear iteration

POLD (M) - potential heads at previous nonlinear iteration

COLD (M) - concentrations at previous nonlinear iteration

PSIOLD(N) - pressure heads at previous nonlinear iteration

82

oo aoaaaaaaaoaaaaaa

PTNEW (N)

CTNEW (N)

PSITNEW(N)

PTOLD (N)

PSITOLD (N)

PTIMEP (II)

CTIMEP (ll)

PDIFF (N)

CDIFF (N)

PSIDIFF (N)

PL2V
FINFV
FL2V

(ITMX)
(ITMX)
(ITMX)

DIFPSIV (ITMX)

PSIMAXNV (ITMX)
PSIMAXOV (ITMX)
DIFFPV (ITMXC)
PMAXNV (ITMXC)
PMAXOV (ITMXC)
DIFPMX (ITMXC)
DIFFCV (ITMXC)
CMAXNV (ITMXC)
CMAXOV (ITMXC)
DIFCMX (ITMXC)

weighted potential heads at current nonlinear
iteration (using weighting parameter TETAC)
weighted concentrations at current nonlinear
iteration (using weighting parameter TETAC)
weighted pressure heads at current nonlinear
iteration

weighted potential heads at previous
nonlinear iteration

weighted pressure heads at previous nonlinear
iteration

potential heads at previous time level (initial
conditions on input)

concentrations at previous time level (initial
conditions on input)

difference in potential heads between nonlinear
iterations

difference in cincentrations between nonlinear
iterations

difference in pressure heads between nonlinear
iterations

PL2 values for each nonlinear flow iteration
FINF values for each nonlinear flow iteration
FL2 values for each nonlinear flow iteration
normalized pressure head difference at the
node given in IKMAXV for each nonlinear
iteration

current iteration pressure head value used in
calculation of DIFFPSIV

previous iteration pressure head value used in
calculation of DIFFPSIV

normalized potential head difference at the
node given in IKMAXV for each nonlinear
iteration

current iteration potential head value used in
calculation of DIFFPV

previous iteration potential head value used in
calculation of DIFFPV

the largest potential head difference between
the current and previous nonlinear iterations
concentration difference at the node given in
IKMAXV for each nonlinear iteration

current iteration concentration value used in
calculation of DIFFCV

previous iteration concentration value used in
calculation of DIFFCV

the largest concentration difference between
the current and previous nonlinear iterations

83

C Appendix C

The appendix reports the whole input dataset for the Henry test-case.
the screen output of the CODESA-3D run on a Silicon Graphics (SGI) computer equipped
with RISC10000 processor, 512 Mbyte of RAM and running IRIX/6.4 operating system (filu-

ferru.crs4.it). In what follows, refer to Appendix B for the meaning of variables.

C.1 List of 1/0 files: the codesa3d.fnames file

The whole list of input and output file names is specified in the input file codesa3d.fnames

which is read at the beginning of the code run.

parm
grid
nansfbcnod.flow
nansfdirbc.flow
nansfneubc.flow
atmbc.flow—none
sfbc.flow—none
soil

ic.flow

ic.tran

solute

bc.tran
result.OUT
Xyz.out
iter.out
flow-mbe.out
coupled-mbe.out
vp-pot.out
vp-conc.out
atmsf-hg.out
nansf-hg.out
hgflag.out
sfflag.out
psi.out

vel.out
conc.out

sw.out

ckrw.out
vel-el.out
potsurf.out
satsurf.out
swsurf.out
concsurf.out
nansfbc-dir-time.out
nansfbc-neu-time.out
sf-hg.out

84

unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit

5

8

9

10
11
12
13
14
15
16
17
18

! << input files>>

unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit

4

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

! << output file >>

It also contains

nansf-hg-dir.out unit 48

nansf-hg-neu.out unit 49
debugl.out unit 61
debug2.out unit 62
debug3.out unit 63
debug4.out unit 64

C.2 Basic parameters: the parm file

The file parm contains the numerical simulation parameters, the time-stepping constants,and
the output options, along with the specification of the partial output nodes.

0 IPRT1
2 1 .TRUE. IFLOW ITRANS OSC-FLAG
0o .01 KSLOPE TOLKSL
-3.0 -1.0 -3.0 -1.0 PKRL PKRR PSEL PSER
-3.0 -2.5 -1.5 -1.0 PDSE1L PDSE1R PDSE2L PDSE2R
0 1 ISFONE ISFCVG
.5 0 .5 0 TETAF LUMP TETAC LUMPC
100 12 20 l.e-4 ITMX ITMX1 ITMX2 TOLNL
100 7 12 .01 ITMXC ITMXC1 ITMXC2 TOLNLC
0 1.0e+20 L2NORM ERNLMX
-3 0 .8 ISOLV TIRELAX OMEGA
-1 0 1.0 ISOLVC TRELAXC OMEGAC
100 1.0e-10 5500 1.0e-10 ITMXCGSY TOLCGSY ITMXCGNS TOLCGNS
.0 1.e22 10. 200. 1080. TIMEP DELTAT DTMIN DTMAX TMAX
.0 1.25 .0 .6 DTMAGA DTMAGM DTREDS DTREDM
3 0 0 IPRT ISEC NPRT TIMPRT
3 1 2 3 NUMVP NODVP
47 NR (# OF QUPUT NODES)

2 5 8 11 62
318 321 324 327 330
333 336 339 342 345
348 351 354 357 360
363 366 369 372 37b
378 633 636 639 642
645 648 6b1 654 657
660 663 666 669 672
675 678 681 684 687

C.3 2-D ground surface: the grid file

The file grid contains the definition of the 2-D ground surface grid wich is automatically repli-
cated to create the 3-D box. The file is virtually subdived in three parts: the first one contains
the 3-D grid generation options, the second contains the topology array Grid%TRIANG, which

85

defines element connectivity along with the hydrogeological zone, and the third one contains
the 2-D ground surface coordinate array Grid%COQRD.

1 10 20 NZONE NSTR N1
231 400 NOD NE

201.0 IVERT ISP BASE
1.1 .1 .4 .1 .1 .1 .1 .1 .1 ZRATIO(1:NSTR)
.0 Z(1)

2 13 1
13 12 1
314 1
14 13 1
4 15 1
15 14 1
516 1
16 15 1
6 17 1
(omitted).
214 226 225 1
215 216 227
215 227 226
216 217 228
216 228 227
217 218 229
217 229 228
218 219 230
218 230 229
219 220 231
219 231 230

O W W NN R

[e T = T S =

TRIANG(:,NTRI)

.00000E+00 1.0000
.00000E+00 .90000
.00000E+00 .80000
.00000E+00 .70000
.00000E+00 .60000
.00000E+00 .50000
.00000E+00 .40000
.00000E+00 .30000
.00000E+00 .20000
.00000E+00 .10000
.00000E+00 .00000E+00

.10000 1.0000
.10000 .90000
.10000 .80000
.10000 .70000
.10000 .60000
.10000 .50000
.10000 .40000
.10000 .30000
.10000 .20000
.10000 .10000

86

.10000 .00000E+00

.. (omitted).

2.0000 .80000

2.0000 .70000

2.0000 .60000

2.0000 .50000

2.0000 .40000

2.0000 .30000

2.0000 .20000

2.0000 .10000

2.0000 .00000E+00 COORD(: ,NNOD)

C.4 Boundary condition files
C.4.1 Flow equation

The file nansfbcnod . f1low contains the list of non-atmospheric non-seepage face nodes (Dirich-
let and Neumann) for the flow equation. The first line in the file contains the logical flag to
select total h head as input variable for flow boundary conditions.

.T. << the BC values are in terms of total head h >>
0 NDIR
121 NDIRC

221 222 223 224 225 226 227 228 229 230 231

452 453 454 455 456 457 458 459 460 461 462

683 684 685 686 687 688 689 690 691 692 693

914 915 916 917 918 919 920 921 922 923 924

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
121 NQ

123456789 10 11

232 233 234 235 236 237 238 239 240 241 242

463 464 465 466 467 468 469 470 471 472 473

694 695 696 697 698 699 700 701 702 703 704

925 926 927 928 929 930 931 932 933 934 935

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

87

The file nansfdirbc.flow contains the boundary Dirichlet equivalentfreshwater total heads
h at the sea side (on the left side of Figure 6) of the Henry domain. Since only one time
sequence of values is given, the BC's are assumed fixed in time.

0 TIME

.0 0 0 0 0 0 0 0 0 0

.0

.26E-02 .2BE-02 .2BE-02 .2BE-02 .25E-02 .2BE-02 .2BE-02 .2BE-02 .2BE-02 .2BE-02
25E-02

.50E-02 .50E-02 .50E-02 .50E-02 .50E-02 .50E-02 .50E-02 .50E-02 .50E-02 .50E-02
.7BE-02 .7BE-02 .7bE-02 .7BE-02 .7BE-02 .7bE-02 .7bE-02 .7BE-02 .7BE-02 .75E-02
.10E-01 .10E-01 .10E-01 .10E-01 .10E-01 .10E-01 .10E-01 .10E-01 .10E-01 .10E-01
.13E-01 .13E-01 .13E-01 .13E-01 .13E-01 .13E-01 .13E-01 .13E-01 .13E-01 .13E-01
.15E-01 .15E-01 .15E-01 .15E-01 .15E-01 .15E-01 .15E-01 .15E-01 .15E-01 .15E-01
.18E-01 .18E-01 .18E-01 .18E-01 .18E-01 .18E-01 .18E-01 .18E-01 .18E-01 .18E-01
.20E-01 .20E-01 .20E-01 .20E-01 .20E-01 .20E-01 .20E-01 .20E-01 .20E-01 .20E-01
.23E-01 .23E-01 .23E-01 .23E-01 .23E-01 .23E-01 .23E-01 .23E-01 .23E-01 .23E-01

.26E-01 .25E-01 .25E-01 .25E-01 .25E-01 .25E-01 .2BE-01 .2BE-01 .2BE-01 .2BE-01

The file nansfneubc. flow contains the Neumann fluxes at the inland side of the Henry domain
(on the right side of Figure 6). Since only one time sequence of values is given, the BC’s are
assumed fixed in time.

0. TIME

.165E-06

.33E-06 .33E-06 .33E-06 .33E-06 .33E-06 .33E-06 .33E-06 .33E-06 .33E-06
.165E-06

.33E-06

.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06
.33E-06
.33E-06
.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06
.33E-06
.33E-06
.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06
.33E-06
.33E-06
.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06
.33E-06
.33E-06
.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06

88

.33E-06
.33E-06
.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06
.33E-06
.33E-06
.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06
.33E-06
.33E-06
.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06
.33E-06
.33E-06
.66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06 .66E-06
.33E-06
.165E-06
.33E-06 .33E-06 .33E-06 .33E-06 .33E-06 .33E-06 .33E-06 .33E-06 .33E-06
.165E-06

For the Henry problem there are no atmospheric and seepage face boundary conditions so
the contents of files atmbc.flow-none and sfbc.flow-none are:

9999 HSPATM <<no atmospheric boundary conditions>>

G
and:

G
0 NSF <<no seepage face’s boundary conditions>>

G
respectively.

C.4.2 Transport equation

The file bc. tran, differently from the flow boundary condition files, contains both the nodes
and the values of boundary conditions for the transport equation.

12 3 4 5 6 7 8 9 10 11

232 233 234 235 236 237 238 239 240 241 242

463 464 465 466 467 468 469 470 471 472 473

694 695 696 697 698 699 700 701 702 703 704

925 926 927 928 929 930 931 932 933 934 935

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

89

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
0O 0 0 0000 0 0 0O
111 11 1 1 1 1 1 1
111 11 1 1 1 1 1 1
111 11 1 1 1 1 1 1
111 11 1 1 1 1 1 1
111 11 1 1 1 1 1 1
111 11 1 1 1 1 1 1
0 NMC

C.5 Initial condition files

C.5.1 Flow equation

The file ic.f1low contains the initial conditions of the equivalent freshwater total heads.

.T. << total heads flag (when false ICs are given as pressure heads)>>
0 INDP h [m] << homogeneous condition>>

C.5.2 Transport equation

The file ic.tran contains the initial conditions of the equivalent freshwater total heads.

0 INDPC << homogeneous condition>>

90

C.6 Material and solute properties files

The material (soil and aquifer) properties are described in file soil:

-10 PMIN (m)

3 IVGHU(O VG, 1 XVG, 2 HU **n, 3 HU #*G, 4 BC)

3.35 0.08 -3.0 VGN, VGRMC, VGPSAT

0.015 2.0 3.0 -10.0 0.01 HUALFA,HUBETA,HUGAMA,HUPSIA,HUSWR

2.0 HUN

2.0 3.5 HUA, HUB

3.3 0.02 -0.25 BCBETA, BCRMC, BCPSAT
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
1.0E-02 1.0E-02 1.0E-02 1.00E-03 0.35E+00
PERMX PERMY PERMZ ELSTOR POROS

1000.0 0.025 6.6e-6 0.0 RHOO EPSLON DIFFUS EPSLON1

0.0 0.0 1.0
0.0 0.0 1.0
0.0 0.0 1.0
0.0 0.0 1.0
0.0 0.0 1.0
0.0 0.0 1.0
0.0 0.0 1.0
0.0 0.0 1.0
0.0 0.0 1.0
0.0 0.0 1.0

ALFAL ALFAT RETARD

C.7 Screen output: the result.0uUT file

What follows is the screen output of the CODESA-3D model for the Henry steady state case:

CODESA-3D: COUPLED FLOW AND TRANSPORT CODE: 2 NxN SYSTEMS SOLVED

SOLUTION OF THE COUPLED PROBLEM

91

NEWTON SCHEME FOR FLOW EQUATION
PICARD SCHEME FOR TRANSPORT EQUATION

IPRT1 (FOR OUTPUT OF DATA) = 0
IPRT (FOR DETAILED NODAL OUTPUT) 3
ISEC (HOR. SEC. FOR DET. OUTPUT) 0
NPRT (# OF TIME VALUES FOR DET OUTPUT) = 0
NUMVP (# OF SURF NODES FOR VP OUTPUT) = 3
NR (# OF NODES FOR PARTIAL OUTPUT) = 47
IFLOW (1 PICARD, 2 NEWTON, 3 HUY-NEWT) = 2
ITRANS (0O FLOW ONLY, 1 PICARD, 2 NEWTON) = 1
0SC_FLG (.F. W/0 0SC, .T. W/ 0SC) = T
TETAF (1 BKWD EULER, .5 C-N; FLOW EQ.) = 5.00000E-01
LUMP (MASS LUMPING IF NOT 0; FLOW EQ.) = 0
TETAC (1 BKWD EULER, .5 C-N; TRNSPT EQ) = 5.00000E-01
LUMPC (MASS LUMPING IF NOT O; TRNSP EQ) = 0
ITMX (MAX NONWNLINEAR ITER; FLOW) = 100
ITMX1 (DELTAT INCREASE THRESHOLD) = 12
ITMX2 (DELTAT DECREASE THRESHOLD) = 20
TOLNL (TOLERANCE FOR NONLINEAR ITER) = 1.00000E-04
ITMXC (MAX NONLINEAR ITER; COUPLED SYS) = 100
ITMXC1 (DELTAT INCREASE THRESHOLD) = 7
ITMXC2 (DELTAT DECREASE THRESHOLD) = 12
TOLNLC (TOLERANCE FOR NONLINEAR ITER) = 1.00000E-02
L2NORM (0 L_INF, ELSE L_2 NORM FLOW EQ.) = 0

ERNLMX (MAX CVG OR RESID ERR FLOW EQ.) 1.00000E+20
IRELAX (O NORELX,1 CONS RELX,2 VAR RELX)= 0
IRELAXC (O NORELX,1 CONS RELX,2 VAR RELX)= 0

ISOLV (-5 BiCGSTAB w/ diag precond,
-4 BiCGSTAB without precond,
-3 TFQMR w/ diag precond,
-2 TFQMR without precond,
-1 TFQMR w/ K°-1 precond,
0 BiCGSTAB w/ K°-1 precond,
1 GRAMRB (min residual),
2 GCRK(5) (ORTHOMIN),
3 NONSYM (direct solver)) -3
ISOLVC (O GCSTAB,1 GRAMRB,2 GCRK,3 NSYM) -1
ITCGSY (MAX ITER FOR CG LIN SYM SOLVER) = 100

TLCGSY (TOLER. FOR CG LIN SYM SOLVER) = 1.00000E-10
ITCGNS (MAX ITER FOR CG LIN NONSYM SLVR) = 5500

TLCGNS (TOLER. FOR CG LIN NONSYM SOLVER) = 1.00000E-10
TIMEP (INITIAL TIME) = 0.00000E+00
DELTAT (INITIAL TIME STEP SIZE) 1.00000E+23
DTMIN (MINIMUM TIME STEP SIZE) 1.00000E+02
DTMAX (MAXIMUM TIME STEP SIZE) 2.00000E+03
TMAX (TIME AT END OF SIMULATION) 1.08000E+04
DTMAGA (MAG. FACTOR FOR DELTAT, ADD.) = 0.00000E+00

92

1

© 0 N 0ok WwN

e
o

DTMAGHM
DTREDS
DTREDM

NNOD
NTRI
NZONE
NSTR
N1

IVERT
ISP

BASE

LAYER
LAYER
LAYER
LAYER
LAYER
LAYER
LAYER
LAYER
LAYER
LAYER

NP (TOT # OF DIRICH NODES; FLOW EQ.)

PMIN

(NUM. NODI RET. BIDIMENSIONALE)

(MAG. FACTOR FOR DELTAT, MULT.)

(RED. FACTOR FOR DELTAT, SUB.)

(RED. FACTOR FOR DELTAT, MULT.)

(NUM. TRIANGOLI RET. BIDIM.)

(NUMERO ZONE (MATERIAL TYPES))
(NUMERO STRATI)
(NUM. MAX CONTATTI NODALI)

(TYPE OF VERTICAL DISCRETIZATION)

(0 FLAT SURFACE,
(1 NOT FLAT reads upp. surf values)

(2 NOT FLAT reads upper and bottom) 0
= 1.00000E+00

(THICKNESS OR

e
o

1

©O© 0 ~N O 0O WwN

ZRATIO =
ZRATIO =
ZRATIO =
ZRATIO =
ZRATIO =
ZRATIO =
ZRATIO =
ZRATIO =
ZRATIO =
ZRATIO =

[= T e T = T = S S

BASE OF 3-D MESH)

.00000E-01
.00000E-01
.00000E-01
.00000E-01
.00000E-01
.00000E-01
.00000E-01
.00000E-01
.00000E-01
.00000E-01

(AIR DRY PRESSURE HEAD VALUE)

1.25000E+00

0.00000E+00

231
400

1]
-

20

1]
N

= 121

IVGHU (0 VG, 1 XVG, 2 HU **n, 3 HU **G, 4 BC) =

HUALFA
HUBETA
HUGAMA
HUPSIA
HUSWR
HUA
HUB

-9

6.00000E-01

.99999E+09

.50000E-02

2.00000E+00

.00000E+00
.00000E+01
.00000E-02

2.00000E+00

.50000E+00

SATURATED HYDRAULIC CONDUCTIVITY, SPECIFIC STORAGE, AND POROSITY VALUES
LAYER MAT.TYPE X-PERM

1

[= T = T = S SN SR SO

1
1
1
1
1
1
1
1
1
1

.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02

[= T T T e = S S

Y-PERM
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02

93

[= T T T e = S S

Z-PERM

.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02
.00000E-02

S

[= T T T e = S S

TORAGE

.00000E-03
.00000E-03
.00000E-03
.00000E-03
.00000E-03
.00000E-03
.00000E-03
.00000E-03
.00000E-03
.00000E-03

W wwwwwwwww

POROSITY
.50000E-01
.50000E-01
.50000E-01
.50000E-01
.50000E-01
.50000E-01
.50000E-01
.50000E-01
.50000E-01
.50000E-01

LONGITUDINAL AND TRANSVERSE DISPERSIVITY VALUES AND RETARDATION FACTORS

LAYER MAT.TYPE ALFA-L ALFA-T RETARD FAC

RHOO (DENSITY OF FRESH WATER) = 1.00000E+03
EPSLON (DENSITY DIFFERENCE RATIO) = 2.50000E-02
DIFFUS (MOLECULAR DIFFUSION COEFFICIENT)= 6.60000E-06
EPSLON1 (VISCOSITY DIFFERENCE RATIO) = 0.00000E+00
1 1 0.00000E+00 0.00000E+00 1.00000E+00

2 1 0.00000E+00 0.00000E+00 1.00000E+00

3 1 0.00000E+00 0.00000E+00 1.00000E+00

4 1 0.00000E+00 0.00000E+00 1.00000E+00

5 1 0.00000E+00 0.00000E+00 1.00000E+00

6 1 0.00000E+00 0.00000E+00 1.00000E+00

7 1 0.00000E+00 0.00000E+00 1.00000E+00

8 1 0.00000E+00 0.00000E+00 1.00000E+00

9 1 0.00000E+00 0.00000E+00 1.00000E+00

10 1 0.00000E+00 0.00000E+00 1.00000E+00
NPC (TOT # OF DIRICH NODES; TRNSPT EQ) = 187
N (# OF NODES IN 3-D MESH) = 2541
NT (# OF TETRAHEDRA IN 3-D MESH) = 12000
NTERM (# OF NONZERO TERMS; FLOW EQ) = 33621
NTERMC (# OF NONZERO TERMS; TRANSP EQ) = 33621

TIME STEP: 1 DELTAT: 1.7000E+38 TIME: 1.7000E+38

3k ok ok ok ok ok ok ok %k ok ok ok ok ok ok skook ok ok ok ok ok 3k 3k sk ok ok ok ok ok ok 3k 3k 3k 3k ok ok ok ok ok ok %k %k ok ok 3k 3k 3k ok %k %k ok sk ok ok ok Kk ok ok ok ok ok

>>> COUPLED SYST. NONLINEAR STEP: 1 FOR THE TIME: 1.7000E+38

>>> LINEAR SOLUTION OF FLOW EQ. >>>:
128 6.530405E-11 1.949089E-10 <<NONSYMMETRIC SOLVER>>
>>> LINEAR SOLUTION OF FLOW EQ. >>>:
98 9.180640E-11 2.719063E-12 <<NONSYMMETRIC SOLVER>>
>>> LINEAR SOLUTION OF FLOW EQ. >>>:
98 7.518996E-11 8.566516E-13 <<NONSYMMETRIC SOLVER>>

FLOW EQ. NONLINEAR CONVERGENCE BEHAVIOR FOR THE TIME: 1.7000E+38
iter at node psinew psiold press-head-dif L2norm-press-head-dif res—err-L2 res—err-infty

1 2541 1.0250E+00 1.0000E+00 2.5000E-02 4.2229E-01 6.2700E-06 6.6000E-07
2 2520 1.0217E+00 1.0007E+00 2.1041E-02 6.2899E-01 1.3756E-04 2.3000E-05
3 11 2.5691E-02 2.5691E-02 -5.2434E-14 8.5472E-13 3.7433E-16 3.2919E-17
FLOW EQ. CONVERGENCE ACHIEVED IN 3 NONLINEAR ITERATIONS

USING A TOTAL OF 324 LINEAR ITERATIONS

>>> LINEAR SOLUTION OF TRANSPORT EQ. >>>:

11 5.775928E-11 3.056887E-19 <<NONSYMMETRIC SOLVER>>

(omitted).

94

>>> COUPLED SYST. NONLINEAR STEP: 31 FOR THE TIME: 1.7000E+38
cnvrg parameter (DIFMAX): 1.2108E-02 exiting tolerance: 1.0000E-02

>>> LINEAR SOLUTION OF FLOW EQ. >>>:
114 9.731387E-11 1.021949E-12 <<NONSYMMETRIC SOLVER>>
>>> LINEAR SOLUTION OF FLOW EQ. >>>:
115 8.448196E-11 1.576940E-12 <<NONSYMMETRIC SOLVER>>

FLOW EQ. NONLINEAR CONVERGENCE BEHAVIOR FOR THE TIME: 1.7000E+38
iter at node psinew psiold press-head-dif L2norm-press-head-dif res—err-L2 res—err-infty

1 2486 1.0232E+00 1.0234E+00 -1.6146E-04 1.4981E-03 2.9729E-07 4.3138E-08
2 2475 1.0228E+00 1.0227E+00 9.9298E-05 8.8282E-04 3.7089E-07 5.2470E-08
FLOW EQ. CONVERGENCE ACHIEVED IN 2 NONLINEAR ITERATIONS

USING A TOTAL OF 229 LINEAR ITERATIONS

>>> LINEAR SOLUTION OF TRANSPORT EQ. >>>:
14 8.999280E-11 2.894268E-19 <<NONSYMMETRIC SOLVER>>

COUPLED SYSTEM NONLINEAR CONVERGENCE BEHAVIOR FOR THE TIME: 1.7000E+38

iter at node pnew pold pdiff cnew cold cdiff
1 1826 1.705E-02 0.00OE+00 6.556E-01 1.003E+00 0.00OE+00 1.003E+00
2 2454 2.013E-02 1.847E-02 6.390E-02 7.361E-01 4.442E-02 6.917E-01
3 915 7.500E-03 7.500E-03 O0.000E+00 7.474E-01 2.924E-01 4.550E-01
4 1785 1.734E-02 1.760E-02 -1.001E-02 6.837E-01 3.557E-01 3.280E-01
5 2432 2.115E-02 2.123E-02 -2.746E-03 4.974E-01 2.430E-01 2.545E-01
6 2212 2.067E-02 2.045E-02 8.464E-03 3.464E-01 5.720E-01 -2.256E-01
7 2226 2.038E-02 2.074E-02 -1.375E-02 7.163E-01 4.952E-01 2.211E-01
8 2006 1.924E-02 1.899E-02 9.426E-03 b5.269E-01 6.937E-01 -1.668E-01
9 2442 2.156E-02 2.147E-02 3.333E-03 3.157E-01 4.473E-01 -1.316E-01
10 2432 2.13B6E-02 2.160E-02 -9.411E-03 4.796E-01 3.359E-01 1.437E-01
11 2002 1.926E-02 1.919E-02 2.714E-03 4.145E-01 b5.366E-01 -1.222E-01
12 2013 1.904E-02 1.917E-02 -4.827E-03 6.611E-01 b5.554E-01 1.057E-01
13 1793 1.742E-02 1.736E-02 2.311E-03 b5.268E-01 6.119E-01 -8.512E-02
14 2440 2.162E-02 2.152E-02 4.063E-03 3.719E-01 4.532E-01 -8.136E-02
15 2453 2.17BE-02 2.195E-02 -7.582E-03 6.086E-01 5.270E-01 8.160E-02
16 2002 1.924E-02 1.918E-02 2.141E-03 4.487E-01 b5.172E-01 -6.856E-02
17 2013 1.908E-02 1.916E-02 -3.024E-03 6.373E-01 5.801E-01 5.726E-02
18 2442 2.147E-02 2.147E-02 -1.077E-05 4.288E-01 3.835E-01 4.530E-02
19 2439 2.161E-02 2.152E-02 3.589E-03 3.972E-01 4.414E-01 -4.429E-02
20 2453 2.182E-02 2.196E-02 -5.300E-03 5.911E-01 5.488E-01 4.221E-02
21 2002 1.923E-02 1.919E-02 1.346E-03 4.669E-01 5.010E-01 -3.408E-02
22 2013 1.910E-02 1.914E-02 -1.631E-03 6.234E-01 b5.959E-01 2.748E-02
23 2433 2.154E-02 2.156E-02 -7.882E-04 4.340E-01 4.077E-01 2.633E-02
24 2213 2.059E-02 2.057E-02 8.043E-04 4.830E-01 5.074E-01 -2.444E-02
26 1993 1.919E-02 1.921E-02 -6.356E-04 4.870E-01 4.654E-01 2.164E-02
26 2004 1.913E-02 1.910E-02 9.388E-04 6.008E-01 6.184E-01 -1.764E-02
27 1784 1.738E-02 1.739E-02 -3.888E-04 b5.698E-01 b5.557E-01 1.407E-02
28 2432 2.158E-02 2.160E-02 -9.226E-04 4.366E-01 4.208E-01 1.582E-02

95

29 2212 2.058E-02 2.056E-02 6.878E-04 4.868E-01 5.011E-01 -1.430E-02
30 1993 1.920E-02 1.921E-02 -4.186E-04 4.821E-01 4.700E-01 1.211E-02
31 2004 1.912E-02 1.911E-02 5.380E-04 6.049E-01 6.146E-01 -9.704E-03
COUPL. SYSTEM CONVERGENCE ACHIEVED IN 31 NONLINEAR ITERATIONS
USING A TOTAL OF 434 TRANSP. LINEAR ITERATIONS

INFLOW (I) AND OUTFLOW (O) FROM ATM (A) AND NON-ATM, NON-SEEP FACE (W) BC’S;
>C F’ CURRENT FLUX; ’P F’ PREVIOUS FLUX; ’VOL’ VOLUME

IA DIRIC OA DIRIC IN DIRIC ON DIRIC IA NEUMN OA NEUMN IN NEUMN ON NEUMN

CF 0.0E+00 0.0E+00 2.8E-05 -9.4E-05 O0.0E+00 O0.0E+00 6.6E-05 0.0E+00

PF 0.0E+00 0.0E+00 O0.0E+00 O0.0E+00 O0.0E+00 O0.0E+00 6.6E-05 0.0E+00

VOL 0.0E+00 0.0E+00 2.8E-05 -9.4E-05 0.0E+00 O0.0E+00 1.3E-04 0.0E+00

TOTAL I VOL TOTAL O VOL STOR CHNG VOL | ABS MASS BAL ERR REL MASS BAL ERR,%

1.599E-04 -9.393E-05 0.00000E+00 | 6.60000000E-05 4.1267158384E+01

PARTIAL OUTPUT: FLOW EQUATION
NODE POTENL HEAD NODE POTENL HEAD NODE POTENL HEAD NODE POTENL HEAD

2 2.B77T7E-02 5 2.5747E-02 8 2.5737E-02 11 2.5623E-02
62 2.2297E-02 318 2.0807E-02 321 2.0023E-02 324 2.0019E-02
327 2.0015E-02 330 2.0011E-02 333 1.9189E-02 336 1.9184E-02
339 1.9179E-02 342 1.8310E-02 345 1.8305E-02 348 1.8300E-02
351 1.8294E-02 354 1.7368E-02 357 1.7361E-02 360 1.7355E-02
363 1.7349E-02 366 1.6354E-02 369 1.6346E-02 372 1.6339E-02
375 1.5263E-02 378 1.5254E-02 633 1.2976E-02 636 1.2965E-02
639 1.1606E-02 642 1.1592E-02 645 1.1581E-02 648 1.1567E-02
651 1.0073E-02 654 1.0058E-02 657 1.0046E-02 660 1.0031E-02
663 8.3971E-03 666 8.3852E-03 669 8.3738E-03 672 6.6465E-03
675 6.6356E-03 678 6.6294E-03 681 6.6209E-03 684 5.0000E-03
687 5.0000E-03 690 5.0000E-03 693 5.0000E-03

PARTIAL OUTPUT: TRANSPORT EQUATION
NODE CONCENTRATN NODE CONCENTRATN NODE CONCENTRATN NODE CONCENTRATN

2 0.0000E+00 5 0.0000E+00 8 0.0000E+00 11 0.0000E+00
62 3.5008E-11 318 2.3631E-09 321 1.9850E-08 324 2.5675E-08
327 1.3909E-08 330 8.3781E-08 333 2.8305E-07 336 2.7811E-07
339 2.8411E-07 342 2.4207E-06 345 2.1352E-06 348 2.0337E-06
351 2.7239E-06 354 1.0203E-05 357 1.1195E-05 360 1.1387E-05
363 8.6353E-06 366 4.9959E-05 369 4.8377E-05 372 4.8314E-05
375 1.8193E-04 378 1.4866E-04 633 7.7202E-03 636 7.9781E-03
639 2.0067E-02 642 1.9035E-02 645 1.9222E-02 648 1.8780E-02
651 3.9927E-02 6564 4.0337E-02 657 4.0546E-02 660 4.0639E-02
663 8.5258E-02 666 8.6244E-02 669 8.777TE-02 672 2.1326E-01
675 2.0627E-01 678 2.0761E-01 681 2.0707E-01 684 3.7073E-01
687 3.7180E-01 690 3.7301E-01 693 3.7536E-01
SOLUZIONE SUI NODI DI OUTPUT
NODE PRESSIONE SW CKRW NODE PRESSIONE SW CKRW
2 2.B78E-02 1.000E+00 1.000E+00 5 2.B75E-02 1.000E+00 1.000E+00

96

8 2.B74E-02 1.000E+00 1.000E+00 11 2.562E-02 1.000E+00 1.000E+00

62 2.230E-02 1.000E+00 1.000E+00 318 1.208E-01 1.000E+00 1.000E+00
321 1.200E-01 1.000E+00 1.000E+00 324 1.200E-01 1.000E+00 1.000E+00
327 1.200E-01 1.000E+00 1.000E+00 330 1.200E-01 1.000E+00 1.000E+00
333 1.192E-01 1.000E+00 1.000E+00 336 1.192E-01 1.000E+00 1.000E+00
339 1.192E-01 1.000E+00 1.000E+00 342 1.183E-01 1.000E+00 1.000E+00
345 1.183E-01 1.000E+00 1.000E+00 348 1.183E-01 1.000E+00 1.000E+00
351 1.183E-01 1.000E+00 1.000E+00 364 1.174E-01 1.000E+00 1.000E+00
367 1.174E-01 1.000E+00 1.000E+00 360 1.174E-01 1.000E+00 1.000E+00
363 1.173E-01 1.000E+00 1.000E+00 366 1.164E-01 1.000E+00 1.000E+00
369 1.163E-01 1.000E+00 1.000E+00 372 1.163E-01 1.000E+00 1.000E+00
375 1.153E-01 1.000E+00 1.000E+00 378 1.153E-01 1.000E+00 1.000E+00
633 2.130E-01 1.000E+00 1.000E+00 636 2.130E-01 1.000E+00 1.000E+00
639 2.116E-01 1.000E+00 1.000E+00 642 2.116E-01 1.000E+00 1.000E+00
645 2.116E-01 1.000E+00 1.000E+00 648 2.116E-01 1.000E+00 1.000E+00
651 2.101E-01 1.000E+00 1.000E+00 654 2.101E-01 1.000E+00 1.000E+00
657 2.100E-01 1.000E+00 1.000E+00 660 2.100E-01 1.000E+00 1.000E+00
663 2.084E-01 1.000E+00 1.000E+00 666 2.084E-01 1.000E+00 1.000E+00
669 2.084E-01 1.000E+00 1.000E+00 672 2.066E-01 1.000E+00 1.000E+00
675 2.066E-01 1.000E+00 1.000E+00 678 2.066E-01 1.000E+00 1.000E+00
681 2.066E-01 1.000E+00 1.000E+00 684 2.050E-01 1.000E+00 1.000E+00
687 2.050E-01 1.000E+00 1.000E+00 690 2.050E-01 1.000E+00 1.000E+00
693 2.050E-01 1.000E+00 1.000E+00

HGFLAG: (1) (2) (3) (4) (8) () (7) (8)

0 0 0 0 0 0 0 0

TOTAL NUMBER OF BACK-STEPPING OCCURRENCES : 0

TOTAL NUMBER OF LINEAR SOLVER FAILURES : 0

TOT CPU FOR THE SIMULATION = 45.00 SECONDS 100.00 %

TOT CPU FOR COUPLED SYSTEM ITERAT. = 43.00 SECONDS 95.56 Y%

(OF WHICH 29.00 SECONDS FOR NONLINEAR FLOW ITERAT 64.44 %)

TOT CPU FOR OVERHEAD (SEE CODE DESC.) = 2.00 SECONDS 4.44 Y,

TOT CPU FOR UNSAT CHARACTERISTICS = 1.00 SECONDS 2.22 %

TOT CPU FOR INIT. OF FLOW SYSTEM MATRICES = 1.00 SECONDS 2.22 %

TOT CPU FOR LOCAL FLOW SYSTEM ASSEMBLY = 3.00 SECONDS 6.67 %

TOT CPU FOR FLOW RHS CALCULATION W/0 BC’S = 0.00 SECONDS 0.00 %

TOT CPU FOR FLOW GLOBAL LHS SYSTEM MATRIX = 0.00 SECONDS 0.00 %

TOT CPU FOR FLOW BC CONTRIBUTIONS TO RHS = 2.00 SECONDS 4.44 %

TOT CPU FOR FLOW LINEAR SOLVER & RESIDUAL = 21.00 SECONDS 46.67 %

SUM OF FLOW TIME VEC(1:7) = 28.00 SECONDS 62.22 Y%

TOT CPU FOR ASSEMB. & SOLUT. FLOW. EQ. = 24.00 SECONDS 53.33 %

TOT CPU FOR FLOW MASS BALANCE CALCULATION = 0.00 SECONDS 0.00 %

TOT CPU FOR INIT. OF TRANSP. SYSTEM MATRICES = 0.00 SECONDS 0.00 %
TOT CPU FOR LOCAL TRANSP. SYSTEM ASSEMBLY = 4.00 SECONDS 8.89 %
TOT CPU FOR TRANSP. RHS CALCULATION W/0 BC’S = 0.00 SECONDS 0.00 %
TOT CPU FOR TRANSP. GLOBAL LHS SYSTEM MATRIX = 0.00 SECONDS 0.00 %

97

TOT CPU FOR TRANSP. BC CONTRIBUTIONS TO RHS = 0.00 SECONDS 0.00 %
TOT CPU FOR TRANSP. LINEAR SOLVER & RESIDUAL = 9.00 SECONDS 20.00 %

SUM OF TRANSP TIME VEC(1:7) = 13.00 SECONDS 28.89 %

13.00 SECONDS 28.89 Y%
0.00 SECONDS 0.00 %

TOT CPU FOR ASSEMB. & SOLUT. TRANSP. EQ.
TOT CPU FOR TRANSP MASS BALANCE CALCULATION

TOT # OF TIME STEPS = 1
SMALLEST TIME STEP SIZE = 1.700E+38 AT TIME 1.700E+38
LARGEST TIME STEP SIZE = 1.700E+38 AT TIME 1.700E+38
AVERAGE TIME STEP SIZE = 1.700E+38
TOT CPU TIME / (# OF TIME STEPS) = 4 .500E+01 SECONDS
TOT # OF NONLIN ITER FOR FLOW EQ = 62
TOT # OF LIN ITER FOR FLOW EQ = 6660

(= 0 IF ISOLV = 3)
AVG NL ITER FOR FLOW EQ / TIME STEP = 62.00
AVG LIN ITER FOR FLOW EQ / TIME STEP = 6660.00

(= 0 IF ISOLV = 3)
AVG LIN ITER FOR FLOW EQ / NONLIN ITR = 107 .42

(= 0 IF ISOLV = 3)
FLOW NONLIN ITER TIME / TIME STEP = 29.00 SECONDS
FLOW NONLIN ITER TIME / NONLIN STEP = 0.47 SECONDS
TOT SIMULATION TIME / NONLIN STEP = 0.73 SECONDS
TOT # OF NONLIN ITER FOR COUPLED SYS = 31
TOT # OF LIN ITER FOR COUPLED SYS = 434

(= 0 IF ISOLV = 3)
AVG NL ITER FOR CPLD SYS / TIME STEP = 31.00
AVG LIN ITER FOR CPLD SYS / TIME STEP = 434.00

(= 0 IF ISOLV = 3)
AVG LIN ITER FOR CPLD SYS / NONLIN ITR = 14.00

(= 0 IF ISOLV = 3)
CPLD SYS NONLIN ITER TIME / TIME STEP = 43.00 SECONDS
CPLD SYS NONLIN ITER TIME / NONLIN STEP = 1.39 SECONDS
TOT SIMULATION TIME / NONLIN STEP = 1.45 SECONDS

98

References

[1]

[2]

[3]
[4]

[5]
[6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

Akin,]. E. Application and implementation of Finite Element Methods. Academic
Press, London, 1984.

Barrett, R., and et al. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

Bear,). Hydraulics of Groundwater. McGraw-Hill, New York, NY, 1979.

Bixio, A. C., and Mazzia, A. Strongly coupled flow and transport problems: validation
of the SATC3D code and other numerical developments. Tech. rep., Dipartimento di
Metodi e Modelli Matematici per le Scienze Applicate, Universita di Padova, Padova,
Italia, 1998.

Comincioli, V. Analisi Numerica. McGraw-Hill, Milano, 1990.

Ennabli, M. Etude sur modél mathé matique des aquiféres du Nord-Est de la Tunisie.
PhD thesis, CIG-Ecoles des Mines, Paris, France, 1977.

Freeze, R. A., and Cherry,]J. A. Groundwater. Prentice-Hall, New Jersey, 1979.

Freund, R. W. A transpose free quasi-minimal residual algorithm for non-hermitian
linear systems. SIAMjsc 14, 2 (1993), 470-482.

Frind, E. O. Simulation of long-term transient density-dependent transport in ground-
water. Adv. Water Resour. 5 (1982), 73-88.

Gambolati, G., Paniconi, C., and Putti, M. Numerical modeling of contaminant trans-
port in groundwater. In Migration and Fate of Pollutants in Soils and Subsoils, series =
NATO ASI Series G: Ecological Sciences (Berlin, 1993), vol. 32, Springer-Verlag, pp. 381-
410,

Gambolati, G., Pini, G., Putti, M., and Paniconi, C. Codici 2-D e 3-D agli elementi
finiti per la dispersione ed il trasporto di polveri di carbone in terreni saturi ed insaturi.
Relazione tecnica finale: Manuale FLOW2D. Rapporto tecnico, Dip. Metodi e Modelli
Matematici per le Scienze Applicate, Universita di Padova, Gennaio 1993.

Gambolati, G., Pini, G., Putti, M., and Paniconi, C. Finite element modeling of the
transport of reactive contaminants in variably saturated soils with LEA and non-LEA
sorption. In Environmental Modeling, Vol. 1I: Computer Methods and Software for
Simulating Environmental Pollution and its Adverse Effects. Computational Mechanics
Publications, Southampton, UK, 1994, ch. 7, pp. 173-212.

Gambolati, G., Pini, G., Putti, M., Paniconi, C., and Ferraris, S. Codici 2-D e 3-D agli
elementi finiti per la dispersione ed il trasporto di polveri di carbone in terreni saturi
ed insaturi. Relazione tecnica finale: Modelli 3D LEA e non-LEA. Rapporti Tecnici,
Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Universita di
Padova, Padova, Italy, 1994.

Gambolati, G., Pini, G., Putti, M., and Sartoretto, F. Studio per I'impostazione e l'e-
laborazione di un modello 3-D agli elementi finiti per I'intrusione del cuneo salino in
acquiferi costieri. Rapporti Tecnici, Dipartimento di Metodi e Modelli Matematici per
le Scienze Applicate, Universita di Padova, Padova, Italy, 1991.

99

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

Gambolati, G., Putti, M., and Paniconi, C. Three-dimensional model of coupled
density-dependent flow and miscible salt transport. In Seawater Intrusion in Coastal
Aquifers — Concepts, Methods and Practices,). Bear, A. H.-D. Cheng, S. Sorek,
D. Ouazar, and 1. Herrera, Eds. Kluwer Academic, Dordrecht, The Netherlands, 1999,
ch. 10, pp. 315-362.

Henry, H. R. Effects of dispersion on salt encroachment in coastal aquifers. In Sea
Water in Coastal Aquifers (1964), U.S. Geol. Surv. Water Supply Paper, No. 1613-C,
pp. 70-84.

Hestenes, M. R., and Stiefel, E. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Standards 49, 6 (1952), 409-436.

Hughes, T. J. R. The Finite Element Method. Prentice-Hall, London, 1987.

Khlaifi, 1., Lecca, G., Giacomelli, A., Tarhouni,]J., and Paniconi, C. GIS data analy-
sis and application of a 3-D variably saturated seawater intrusion model to the Ko-
rba aquifer. In Abstracts of the Chapman Conference on Application of GIS, Remote
Sensing, Geostatistics, and Solute Transport Modeling to the Assessment of Non-Point
Source Pollutants in the Vadose Zone (Riverside, California, CA, October 19-24, 1997).

Kolditz, O., Ratke, R., Diersch, H. G., and Zielke, W. Coupled groundwater flow and
transport: 1. Verification of variable density flow and transport models. Adv. Water
Resour. 21,1 (1998), 27-46.

Lecca, G., Khlaifi, 1., Leonardi, E., Bettio, F., Muscas, L., Tarhouni, J., and Paniconi,
C. A modular approach to the Korba aquifer seawater intrusion study, 2, Simulation,
data manipulation, and visualization for the 3-d model. In Proc. of the 15th Salt Water
Intrusion Meeting (SWIM) (Ghent, Belgium, 1999), W. D. Breuck and L. Walschot, Eds.,
vol. 79, Flemish Journal of Natural Science, pp. 62-68.

Lecca, G., Khlaifi, 1., Tarhouni, J., and Paniconi, C. Modeling seawater intrusion in
the Korba aquifer (Tunisia). In Proc. of the XII International Conference on Compu-
tational Methods in Water Resources (Southampton, UK, 1998), V. N. Burganos, G. P.
Karatzas, A. C. Payatakes, C. A. Brebbia, W. G. Gray, and G. F. Pinder, Eds., vol. 11,
Computational Mechanics Publications, pp. 209-216.

Maidment, D. R. Handbook of hydrology. McGraw-Hill, New York, NY, 1993.

Muscas, L., Paniconi, C., Saleri, F., and Sciabica, M. G. Modello matematico di un
sistema acquifero. il caso di Capoterra (Sardegna). Geologica Romana 30 (1994), 327-
333.

Paniconi, C. Soil moisture characteristic equations for variably saturated flow codes.
Unpublished, 1995.

Paniconi, C., and Putti, M. A comparison of Picard and Newton iteration in the nu-
merical solution of multidimensional variably saturated flow problems. Water Resour.
Res. 30, 12 (1994), 3357-3374.

Putti, M., and Paniconi, C. Finite element modeling of saltwater intrusion problems. In
Advanced Methods for Groundwater Pollution Control (New York, NY, 1995), vol. 364
of CISM (Int. Centre for Mechanical Sciences) Courses and Lectures, Springer-Verlag,
pp. 65-84.

Putti, M., and Paniconi, C. Picard and Newton linearization for the coupled model of
saltwater intrusion in aquifers. Adv. Water Resour. 18, 3 (1995), 159-170.

100

[29]

[30]
[31]

[32]

[33]

[34]

Rumynin, V. G., Mironenko, V. A., Sindalovsky, Boronina, A. V., Konosavsky, Gallo,
C., and Leonardi, E. Conceptual and numerical modelling of density induced migration
of radioactive contaminants at the Lake Karachai waste disposal site. In Calibration
and Reliability in Groundwater Modelling, series = Proceedings of the ModelCARE 99
Conference, Zurich, Switzerland, September 1999 (2000), vol. 265, IAHS Publ.

Saad, Y. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., 1996.

Saad, Y., and Schultz, M. H. GMRES: A generalized minimal residual algorithm for
solving non-symmetric linear systems. SIAMjssc 7 (1986), 856-869.

van der Vorst, H. A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
the solution of non-symmetric linear systems. SIAMjssc 13 (1992), 631-644.

Walraevens, K. SWIMCA salt water management in coastal aquifers:, Development of
water resource management tools for problems of seawater intrusion and contamination
of fresh-water resources in coastal aquifers. Final Report. Tech. rep., EC Initiative
Avicenna, AVI-CT95-73, Ghent, Belgium, 2000.

Zienkiewicz, O. C. The Finite Element Method. McGraw-Hill, New York, NY, 1986.

101

