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Abstract 

 
This chapter focuses on recent research to identify variable source areas from surface soil 

moisture dynamics observed at the catchment scale by means of active microwave images 

from satellites. It is hypothesized that variable source areas can be mapped if we can quantify 

the temporal variability of the surface soil moisture content. It is difficult to determine the soil 

moisture content from single synthetic aperture radar images because soil moisture, surface 

roughness, topography and vegetation all have a great effect on radar backscatter. However, 

seasonal soil moisture fluctuations can be studied by using multitemporal radar images. Two 

multitemporal image processing techniques are presented to map variable source areas. The 

first method computes the temporal standard deviation of radar backscatter. This leads to the 

definition of the so-called saturation potential index, which compares well with observed 

saturated areas. The second method makes use of a principal component analysis to separate 

the dominant effects, like topography, land use and soil moisture, on total radar backscatter. 

Again this leads to reliable mapping of the spatial patterns of variable source areas. Two 

humid catchments, the Zwalmbeek in Belgium and the Coët-Dan in France, are used in this 

study.  
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Introduction 

 
The variable source area concept is now widely accepted to explain storm runoff production in 

humid regions. The concept was first introduced by Hewlett and Hibbert (1967): “The 

yielding proportion of the watershed expands and shrinks depending on rainfall amount and 

antecedent wetness of the soil”. A major feature of variable source areas is that the area over 

which return flow and direct precipitation are generated vary seasonally and throughout a 

storm. The theory was developed because of inadequacies with the Hortonian runoff 

production mechanism (Horton, 1933) for describing storm runoff in humid catchments. In 

most humid regions infiltration capacities are high because the vegetation cover protects the 

soil from rain packing, and because the supply of humus creates an open soil structure. Under 

such conditions, rainfall intensities generally do not exceed infiltration capacities. Therefore, 

Hortonian overland flow does not occur on large areas of the catchment. 

 

Research in the 60s and 70s on the variable source area concept was supported by intensive 

field studies in small watersheds (Hewlett and Hibbert, 1967; Dunne et al., 1975; Dunne, 

1978). These authors mapped the spatial patterns of saturated areas and their seasonal 

fluctuations (e.g. Dunne et al. (1975) show seasonal variation of the saturated zone in a small 

catchment at Randboro, Quebec). Since then a number of modeling strategies have been 

developed to explain and predict these spatial patterns of saturated areas (Beven and Kirkby, 

1979; Sivapalan et al., 1987; Barling et al., 1994). These modeling efforts recognize the 

control that catchment topography, soils, antecedent storage capacity and rainfall 

characteristics exert on the spatial extent of the contributing areas. To link these hydrologic 

and geomorphologic characteristics of the catchment to variable source areas, static and/or 

quasi-dynamic wetness indices were introduced. Wetness indices define, at a moment prior to 

storm rainfall, the readiness of a catchment to produce storm runoff through the saturation 

excess mechanism. 

 

Routinely collected hydrologic data from catchments generally does not allow full validation 

of these models. Often validation is solely based on a comparison between observed and 

predicted streamflow records. This type of validation is insufficient to draw conclusions about 

the accuracy with which these models describe the temporal and spatial patterns of the 

contributing areas. More comprehensive validation procedures are required if we want to 



improve our understanding of these important hydrological processes. At first glance, it 

therefore seems that the difficulty in collecting information on saturated areas in larger 

catchments through field work hinders further progress. 

 

Recently, however, new instruments have become available to the hydrologist, in the form of 

active microwave remote sensors. Active microwave instruments on board of satellites offer 

tremendous opportunities to increase our observation capacities of large catchments. First of 

all, they are all-weather instruments, practically undisturbed by atmospheric conditions. 

Second, they are day and night instruments since they do not depend upon an additional 

energy source but produce their own electromagnetic energy to scan the Earth’s surface. 

Third, when using a special technique called “synthetic aperture radar” (SAR), they produce 

images with the required spatial resolution to be of use for catchment modelers (pixel 

resolution typically on the order of 10 m). But what makes these instruments truly powerful 

for observing variable source areas is the sensitivity of the backscattered energy to soil 

moisture. Recent studies have demonstrated the potential of observing soil moisture by means 

of SAR instruments (Ulaby et al., 1982; Cognard et al., 1995). The main difficulty with SAR 

imagery is that not only soil moisture but also surface roughness, vegetation cover and 

topography have an important effect on radar backscatter. These interactions make retrieval of 

soil moisture difficult and only achievable under particular conditions, such as bare soil or 

surfaces with low vegetation cover (Altese et al., 1996). It should be possible to separate the 

vegetation, roughness, topography and soil moisture effects on radar response using 

multifrequency and/or multipolarization measurements (Ulaby et al., 1996), but currently 

operational satellites are not equipped with sensors that provide such data. 

 

In this chapter we present recent research on the use of multitemporal SAR imagery to map 

the seasonal extent of variable source areas (Gineste et al., 1997; Verhoest et al., 1998). The 

rational of the proposed technique is based on the observation that the seasonal variability of 

surface soil moisture content is highly related to the occurrence or absence of contributing 

areas, as illustrated in Figure 1. At hillslope and catchment scales, soil moisture and its spatial 

and temporal variability are fingerprints of several hydrologic processes. During rainy periods, 

flow convergence results in relatively low temporal variability of surface soil moisture in the 

vicinity of the drainage network. In contrast, areas located at or near hillslope tops will exhibit 

more pronounced soil moisture variation in time due to successive wetting during rainfall 



events and drying through evapotranspiration and redistribution during interstorm periods. 

Therefore, by analyzing the temporal variability of the observed radar signal during a winter 

season, it should be possible to map the variable source areas at the catchment scale. 

 

The chapter is organized as follows. In section 2 we give a short description of the two 

experimental catchments used in this study. In section 3 we describe the field survey data that 

is used to test the accuracy with which the proposed remote sensing techniques predict the 

spatial patterns of seasonally observed variable source areas. Section 4 gives an overview of 

the multitemporal SAR data collected over the experimental catchments and lists the different 

image processing procedures required to prepare the SAR data for multitemporal analysis. 

Section 5 starts with a review of earlier attempts to map variable source areas from SAR 

images. We then give a detailed discussion of two new techniques that appear promising for 

mapping the spatial extent of seasonal saturation-prone areas from multitemporal SAR 

images. The first method uses the temporal standard deviation of radar backscattered energy 

to map variable source areas in humid catchments with low relief. The second method, based 

on a principal component analysis, was developed to overcome the restriction of low relief of 

the catchments. It is shown that principal component analysis allows separation of the 

different influencing factors (topography, land use, soil moisture) on the backscattering 

coefficient, and therefore results in a more robust method of mapping variable source areas. 

Finally, we summarize the main findings of this research in section 6. 

 

2. Description of test sites 

2.1 The Zwalmbeek catchment 

The Zwalmbeek catchment is situated about 20 km south of Ghent in Belgium (50°45’48”N to 

50°54’16”N and 3°40’17”E to 3°50’15”E). It is a 5
th

 Strahler-order basin with a total drainage 

area of 114 km
2
, and a drainage density of 1.55 km/km

2
. Rolling hills and mild slopes, with a 

maximum elevation difference of 150 m, characterize the topography (Figure 2). Land use is 

mainly arable crop farming and permanent pasture, but the south of the catchment is partly 

forested. The degree of urbanization is 10%, and is mainly clustered in three small towns. The 

soil type in the catchment is predominantly sandy loam (Belgian soil classification), with 

minor isolated patches of sand and clay. The climatic regime is humid temperate with a mean 

annual rainfall of 775 mm, distributed almost uniformly over the year, and a mean annual pan 

evaporation of 450 mm. The catchment is described in detail in De Troch (1977). 



 

2.2 The Coët-Dan catchment 

The Coët-Dan catchment is located near the town of Naizin, Brittany, France (48°N and 

357°10’E). It is a 2
nd

 Strahler-order basin with a drainage area of 12 km
2
. Gentle concave 

slopes (in general less than 5%, especially in the northern part) reflect the brioverian shists 

substratum with their top overlaid by dystric or aquic eutrochrepts (brown acidic, weakly 

leached soils) and their bottom by glossaquals (degraded hydromorphic soils) and fluvents 

(alluvial soils). Agriculture is intensive, and in winter the vegetation cover is particularly low. 

A land use survey performed in the winter of 1992 revealed that about 22% of the catchment 

was covered with meadows and young winter cereals (crops 5 to 15 cm high), while about 

44% was bare soil, sometimes covered with corn stubble. The mean annual rainfall if about 

700 mm, and the mean annual runoff is estimated around 300 mm. For a full description of 

the hydrology of the catchment see Mérot et al. (1994). 

 

3. Field survey of variable source areas 

3.1 The Zwalmbeek catchment 

The field data used to investigate the spatial patterns and seasonal extension of the variable 

source areas are derived from the Belgian soil map (scale 1:20,000). The Belgian soil map was 

produced during the 1960s and early 1970s for the whole territory, and contains information 

on soil texture, natural drainage conditions, and profile development. These soil 

characteristics were derived from auger observations (using augers 1.25 m deep and 5-10 cm 

diameter) taken in the field with an average density of 2 samples per ha. For our study site this 

means a total of about 23,000 samples. In addition, soil profile pits were dug with a 1 m
2
 area, 

a depth of 1 to 2 m, and a density of 1 pit each 1.5 km
2
. In this study we are mainly interested 

in the natural drainage conditions of the soils. The drainage map of the Belgian soil map 

classifies the different soils into classes ranging from well-drained to poorly-drained soils, 

according to the bore hole field observations (Table 1). These bore hole samples were used to 

measure the depth to gley and mottle. Gley can be described as a blue-grey waterlogged soil 

layer in which iron is reduced to the ferrous form. This layer can turn into a soil containing 

brownish mottles due to oxidation of iron during intermittent dry periods. The occurrence of 

these features therefore indicate the change in water table height between winter (mottle) and 

summer (gley). Figure 8b gives the drainage map for the catchment of the Zwalmbeek. As can 



be noticed from this map, the poorly-drained soils tend to occur in the valley regions of the 

catchment and correspond to the discharge areas indicated schematically in Figure 1. 

 

Figure 4 shows the rainfall histogram for the winter period of 1995-1996 together with the 

mean backscattered signal for the whole catchment, calculated from the tandem pairs of the 

eight ERS-1/2 images.  

 

Table 1. Natural Drainage Classes, Belgian Nomenclature 

Drainability 

Index 

Average winter water table depth 

(= Depth to Mottle) (cm) 

Average summer water table depth 

(= Depth to Gley) (cm) 

b > 125 --- 

c 80 – 125 --- 

d 50 – 80 --- 

h 30 – 50 --- 

e 30 – 50 > 80 

f 0 – 30 40 – 80 

g --- < 40 

A (= b + c + d) > 50 --- 

D (= c + d) 50 – 125 --- 

 

 

3.2 The Coët-Dan catchment 

The field data associated with the study performed in the Coët-Dan catchment were collected 

in one of the 1
st
-order subcatchments (drainage area: 1.2 km

2
), located in the northwest of the 

catchment. This survey involved the mapping of the saturated areas during the winter of 1992 

by visual inspection (Figure 3) and auger hole sampling. Figure 5 shows the areal extent of the 

saturated areas as observed on February 15
th

, 18
th

 and 21
st
 (Salahshour Dehchali, 1993). 

During the winter period of 1992, rainfall fell between February 8
th

 and February 16
th

 and was 

followed by a drydown period which lasted till March 3
rd

 (see Figure 12).  

 

4. SAR data collection and preliminary processing 

4.1 The ERS-satellite SAR system 

The SAR images used in this study originate from the ERS-satellite system. The first ERS 

satellite (ERS-1) was launched in 1991. This satellite carries several advanced Earth 

observation instruments, such as the Active Microwave Instrument (AMI) which combines the 

functions of a synthetic aperture radar and a wind scatterometer. The SAR instrument is a 



C-band (5.3 GHz) radar operating in VV polarization (Attema, 1991). One of the products 

generated by the Processing and Archiving Facilities (PAFs) are Precision Images with a 

spatial resolution of 30 by 30m and a pixel size of 12.5 by 12.5 m. During the winter of 1992, 

the satellite was put in the so-called “ice-phase”, allowing Earth observations at a limited 

number of locations with a repeat cycle of 3 days. The Coët-Dan catchment was located in one 

of these areas with 3-day repeat coverage. Between January 28 and March 28, 15 precision 

images (PRI) were collected over the catchment (Table 2). In 1995, a second satellite (ERS-2) 

was launched and put in the same sun-synchronous orbit as ERS-1, such that the time 

difference between overpasses is exactly 24 hours (the so-called “Tandem-phase”). From 

October 1995 to April 1996, four tandem pairs (8 PRI images) were collected over the 

Zwalmbeek catchment (Table 2). In both cases, winter-time images were selected in order to 

minimize changes in soil roughness, due to agricultural activities, and vegetation 

characteristics, thereby minimizing their effect on the total radar backscatter. 

 

Table 2. Identification of Satellite Images Used in the Analysis of Coët-Dan and Zwalmbeek. 

Date Mission Orbit Track Frame PAF Desc./Asc. 

Images for the Coët-Dan catchment    

01/28/1992 ERS-1 2807 1 963  Ascending 

02/06/1992 ERS-1 2936 1 963  Ascending 

02/09/1992 ERS-1 2979 1 963  Ascending 

02/12/1992 ERS-1 3022 1 963  Ascending 

02/15/1992 ERS-1 3065 1 963  Ascending 

02/21/1992 ERS-1 3151 1 963  Ascending 

02/24/1992 ERS-1 3194 1 963  Ascending 

02/27/1992 ERS-1 3237 1 963  Ascending 

01/03/1992 ERS-1 3280 1 963  Ascending 

04/03/1992 ERS-1 3323 1 963  Ascending 

03/10/1992 ERS-1 3409 1 963  Ascending 

03/13/1992 ERS-1 3452 1 963  Ascending 

03/16/1992 ERS-1 3495 1 963  Ascending 

03/22/1992 ERS-1 3581 1 963  Ascending 

03/28/1992 ERS-1 3667 1 963  Ascending 

Images for the Zwalmbeek catchment    

10/31/1995 ERS-1 22455 423 2583 D Descending 

11/01/1995 ERS-2 2782 423 2583 D Descending 

12/05/1995 ERS-1 22956 423 2583 I Descending 

12/06/1995 ERS-2 3283 423 2583 I Descending 

02/13/1996 ERS-1 23958 423 2583 I Descending 

02/14/1996 ERS-2 4285 423 2583 D Descending 

03/19/1996 ERS-1 24459 423 2583 I Descending 

03/20/1996 ERS-2 4786 423 2583 I Descending 



 

 

4.2 SAR image calibration 

After georeferencing the 23 images (8 for Zwalmbeek and 15 for Coët-Dan), the data had to 

be calibrated in order to be useful for multitemporal analysis. As stated before, in this study 

we have used SAR PRI (precision image) data. SAR PRIs are subjected to engineering 

corrections and relative calibration to compensate for well-understood sources of system 

variability. Absolute calibration of the precision images, on the other hand, has to be 

performed by the user. The calibration procedure used here is described in Laur et al. (1997). 

The digital numbers in the PRIs are related to the backscattering coefficient through the 

following formulas: 
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where N is the number of pixels within the area of interest (AOI), i.e., a group of pixels 

corresponding to a distributed target in the image (e.g. bare soil field) ; i,j are the range and 

azimuth locations of the pixels within the distributed target containing N pixels ; DNij is the 

digital number corresponding to the pixel at location (i,j) ; Aij is the amplitude corresponding 

to the pixel at location (i,j) ; 
0
 is the backscattering coefficient corresponding to all N pixels 

within the AOI, which is calculated from the image geometry, the earth surface being 

represented by a reference ellipsoid (Goddard Earth Model, GEM 6) ; ref is the ERS 

reference incidence angle, i.e., 23.0º ; C is a factor that accounts for updating the gain due to 

the elevation antenna pattern implemented in the processing of ERS SAR PRI products ; PRP 

is the power of the replica pulse used to generate the PRI product and is given in the header 

file of the PRI image ; RRP is the replica pulse power of a reference image taken over 

Flevoland (The Netherlands) ; and PL is the analogue to digital convertor (ADC) power loss. 

For more details on the calibration we refer to Gineste et al. (1997) and Verhoest et al. (1998). 

 

4.3 Speckle filtering 

Radar images of homogeneous rough surfaces always show a granular pattern called speckle. 

This noise-like phenomenon is the result of changes in the distances between elementary 



scatterers and the receiver caused by surface roughness, so that the received waves, although 

coherent in frequency, are no longer coherent in phase. SAR systems rely upon the coherence 

properties of the scattered signals, making these systems susceptible to speckle to a much 

greater extent than noncoherent systems, such as side-looking airborne radars (Porcello et al., 

1976). The presence of speckle noise in an imaging system reduces resolution, and thus the 

detectability of a target, and also degrades the quality and interpretability of the scene. 

 

In SAR practice, speckle is suppressed by creating n-look images. This reduces the variance of 

speckle by a factor n, but of course deteriorates the spatial resolution by that same factor. 

During the last decade techniques that do not deteriorate resolution have been proposed for 

speckle reduction. This filtering reduces the variance of speckle within homogeneous areas, 

preserves edges and line features in the scene, excludes point scatterers, and preserves the 

spatial variability. An adapted Lee sigma filter (Gineste et al., 1997) and the Gamma MAP 

filter (Lopes et al., 1990) have been used in this study to reduce speckle in the 23 SAR 

images. For more information on these filters, we refer to Verhoest et al. (1998) and Gineste 

et al. (1997). 

 

5. Spatial patterns of variable source areas through multitemporal SAR 

analysis 

5.1 Introduction 

During the last decade, several SAR data analysis techniques have been proposed to map the 

saturation-prone areas in catchments. Brun et al. (1990), based on helicopter-borne C-band 

scatterometer data, proposed to map variable source areas by applying a threshold on the 

backscattering coefficient. The reasoning behind this method is that when ponding occurs the 

radar signal drops due to specular reflection. They found that a threshold of -7 dB allowed 

estimation of the spatial patterns in the variable source areas. If the method could be applied 

successfully it would allow mapping of the extent of saturated areas on each day of radar 

observations, thereby providing a sequence of variable source area maps. This technique was 

tested by Gineste et al. (1997) based on the 15 ERS-1 images given in Table 2, but was 

rejected as an accurate way to map variable source areas. The main difficulty with an absolute 

threshold is that other surface characteristics that influence radar backscatter, such as 



vegetation cover and surface roughness when the terrain is not completely inundated (see 

Figure 3), are not taken into account. 

Another method, proposed by Rignot and van Zyl (1993) and Gineste et al. (1997), uses 

difference images to overcome the problems occurring with absolute thresholding. These 

researchers found that a two-date difference image yields more valuable information than the 

threshold method, but is still limited because the analyzed images should reflect extreme 

hydrologic conditions (inundated versus dry) before the method becomes reliable. The method 

of differencing in itself is further susceptible to other problems: changes will not be detected 

in the same fashion in high intensity regions compared to low intensity areas, which renders 

the method less reliable. Moreover, the differencing method is not very robust since the 

radiometric errors introduced in the imagery during SAR processing are multiplicative factors 

to the total radar intensity, which will not be eliminated during the differencing. 

 

This problem can be overcome by dividing the intensity values of the two dates instead of 

subtracting them. This ratio method is shown to be better adapted to the statistical 

characteristics of the radar data, but only works well when the number of looks is very high, 

since the method is very sensitive to speckle noise (Rignot and van Zyl, 1993).  

 

It is apparent from these trials using change detection techniques that accurate and reliable 

mapping of saturated areas from one image or from a pair of images is restricted to atypical 

situations. As an alternative, one can try to analyze a sequence of images taken during a 

complete season. In the following sections we present two recently developed techniques that 

appear promising for mapping the spatial patterns in variable source areas during winter 

seasons. 

 

5.2 Saturation potential index images 

Given the strong differentiation in temporal variability of soil moisture as a function of the 

position along a hillslope (see Figure 1), Gineste et al. (1997) developed a technique based on 

the backscatter temporal standard deviation as an indicator of the local saturation likelihood 

during the period of observations. It directly reflects the fact that the more the backscattering 

coefficient varies in time, the greater is the soil moisture variation, whereas saturation is 

expected to develop on parts of the catchment that are usually wetter and thus subject to less 

soil moisture variation in response to the hydrologic forcing conditions. The method uses the 



logarithmic transform of the backscattering coefficient given by equation (2). Therefore the 

speckle noise becomes additive and consequently exhibits the same strength regardless of the 

absolute backscatter level. Moreover, it has been theoretically shown that the possible range of 

backscatter variation remains about the same (on the order of 5 dB for soil conditions varying 

from dry to wet) independent of the roughness of the surface (Altese et al., 1996). A measure 

of the local backscatter temporal variation should thus allow an assessment of the extent to 

which the soils in the catchments have departed from wet conditions. 

 

Results of this method applied to the Coët-Dan data are illustrated in Figure 5. Indeed, the red 

areas (indicating low temporal standard deviation) of the derived image mainly appear where 

saturation has been reported (see Figure 5) and apparently only there. To produce the results 

given in Figure 5, the original images were speckle filtered twice using the adapted sigma 

filter, before the backscatter temporal standard deviation was computed. The resulting values 

can be interpreted as saturation potential indices (SPI). However, the backscatter temporal 

standard deviation cannot be used directly over the whole catchment as a measure of 

saturation, as other areas where little variability is to be expected (e.g., areas of dense 

vegetation such as forests where microwave penetration is impeded) are not discriminated. 

Another source of discrepancy may arise from human activities in agricultural catchments 

(compaction of top soil by cattle, harvesting, ploughing). If saturated areas appear locally 

because of these effects on the soil water regime, they are likely disconnected from the stream 

and may usually not be considered as contributing to river discharge. One way of removing 

these areas from the analysis is to combine SPI with static wetness indices, such as the 

topographic index (Beven and Kirkby, 1979). 

 

The application of the SPI technique to the Zwalmbeek catchment shows similar results, but 

also reveals another shortcoming of the SPI method. In Figure 6 the effect of topography on 

the computed SPI is clearly visible as a shift of the predicted saturated areas with respect to 

the drainage network. Therefore, a more robust technique which can separate the topographic 

and land use effects from soil moisture influences on the total backscattering is suggested in 

the next section. 

 

5.3 Principal component analysis 



The principal components transformation is a standard tool in image enhancement, image 

compression, and classification (Richards, 1986; Singh, 1989; Lee and Hoppel, 1992). It 

linearly transforms multispectral or multidimensional data into a new coordinate system in 

which the data can be represented without correlation. The new coordinate axes are 

orthogonal to each other and point in the direction of decreasing order of the variances, so that 

the first principal component contains the largest percentage of the total variance (hence the 

maximum or dominant information), the second component the second largest percentage, and 

so on. Images transformed by PCA may make evident features that are not discernable in the 

original data — local details in multispectral images, changes and trends in multitemporal 

data — that typically show up in the intermediate principal components.  

 

PCA is widely used in optical remote sensing but less so in the more recent area of SAR 

image processing. One example is provided by Lee and Hoppel (1992), who used a modified 

principal component transformation on multifrequency polarimetric SAR imagery for 

reducing speckle and for information compression. Another example is given by Henebry 

(1997) who used PCA on a temporal series of twelve images for the production of a high 

spatial resolution/low spatial noise image that served as a template for georeferencing. One of 

the principal components obtained could then be used for land cover segmentation.  

 

Figures 7-9 show the images constructed for the first 3 principal components computed from 

the 8 Zwalmbeek images. Applying PCA to these eight images leads to the separation of the 

information into several components that can be attributed to different factors influencing the 

backscatter. The first principal component accounts for 76.6% of the total variance, the second 

component for 6.6%, the third for 5.9%, and each of the remaining PCs for less than 4% 

(Verhoest et al., 1998). 

 

Figure 7 compares the first component (left image) with a local incidence angle image 

computed from the digital elevation model of the catchment. The similarity between these two 

images suggests that topographic effects are responsible for the largest contribution to the 

total variance in the sequence of SAR images and dominate the backscattering signal. A 

sequence of images taken with the same radar configuration and footprint (frame and track) 

will show a very high correlation: slopes facing the satellite will consistently return more 



energy than slopes turned away from the sensor. The principal component analysis has 

brought out these hightly correlated features in the first PC. 

 

The left image in Figure 8 represents the second principal component. This image displays a 

strong spatial organization, with the highest values grouped along the drainage network of the 

catchment. To test the hypotheses that the information contained in this image is related to the 

drainage conditions of the catchment, a drainage map for the Zwalmbeek was generated, and 

is shown in the right image of Figure 8. As can be noticed from this figure, the poorly-drained 

soils tend to occur in the valley regions of the catchment and correspond well with the areas 

with high second PC values. This suggests a radar response, brought out in the second 

principal component, to the soil moisture patterns that result from the drainage characteristics 

of the basin. These patterns are not attributable to any single event, but reflect the overall 

response of the soil to the rainfall and interstorm periods spanned by the images, as illustrated 

by Figure 1. 

 

The third principal component (left image in Figure 9) shows the influence of land cover and 

land use, as evidenced by its strong correlation with the Landsat-derived map (right image in 

Figure 9) that highlights the forested areas in the south of the catchment and the few towns on 

the basin. The land use map is the result of a supervised classification performed on a Landsat 

TM image of October 12, 1994. The classification resulted in 10 classes, such as woods, 

urbanized areas and several agricultural fields which are grouped together as shown in Figure 

9. In SAR images urban areas typically appear as bright objects, and in a sequence of images 

such areas, with their relatively static features, will produce a consistent backscattering signal. 

If there are few changes in major vegetation features over the same sequence of images, each 

canopy type will also produce a typical and temporally consistent radar response. 

 

The fourth and subsequent principal components account for a very small fraction of the total 

variance in the sequence of SAR images, and they do not seem to reveal significant features. 

These PCs are characterized mostly by noise (including speckle). 

 

As was already mentioned, the second component shown in Figure 8 is strongly related to the 

soil moisture response expected from rainfall and drainage/redistribution episodes and reflects 

the drainability of the soil. This can be further illustrated by investigating the signal's behavior 



for the negative and positive values of the second principal component. Figure 10 plots, for 

each SAR image, the average backscatter value of these two classes in the second PC. The 

negative class generally corresponds to the well-drained soils, which are found upslope, while 

the positive class mainly coincides with the poorly-drained areas. As was mentioned before, 

the discharge areas exhibit a lower temporal variability in soil moisture content than the 

upslope areas, and this is reflected in the lower variability of the radar backscattering for the 

positive PC2 areas during the winter period. During a drydown period, upslope areas show a 

larger decline in soil moisture content than near-stream areas, which corresponds to a larger 

decline in backscattered signal of the negative PC2 areas for the first four datatakes. The large 

rain event of February 13 is reflected in the large increase in signal for both positive and 

negative PC2 areas. Over the course of the following 24 hours, soil moisture was redistributed 

over the basin, leading to a decrease of soil wetness in the recharge zones but little change in 

the already saturated near-stream zones, as evidenced in Figure 10. Shrinkage of the variable 

source areas over the following weeks accounts for the decrease of the backscattered signal of 

the positive PC2 class. 

 

Applying PCA on the sequence of ERS-1 images taken over the Coët-Dan catchment, 

omitting the frost dates (January 28 and February 21), leads to similar results as obtained for 

the Zwalmbeek catchment. As the Coët-Dan basin is quite flat (slopes are generally less than 

5%), the backscattered signal is less influenced by the topography. Therefore, the first PC 

does not show the topographic effects on the backscattered signal but rather shows variations 

in land use. The second PC, as shown in Figure 11, corresponds remarkably to the SPI 

computed over the catchment. It therefore can be concluded that saturation prone areas can be 

mapped using the principal component technique on a sequence of SAR images. Again, 

slicing the histogram of the second PC into positive and negative classes leads to a similar 

behavior in the radar backscatter as was observed in the Zwalmbeek catchment. In this 

analysis, the negative PC2 areas correspond to the saturation prone areas observed during the 

field campaign.  Figure 12 shows the large variability exhibited by the positive PC2 pixels 

which reflects wetting from the first rainstorm in February and the drydown of the soil in 

those areas thereafter, while the negative areas almost remain at the same level due to their 

high moisture content. 

 

6. Conclusions 



Remote sensing offers great potential for mapping saturation prone zones within a watershed. 

For two humid catchments in Western Europe, several methods based on change detection 

techniques have been tested for this purpose. Applying a threshold on the backscattering 

coefficient is not succesful in delineating saturated areas since the choice of an absolute 

threshold cannot take account of the several surface characteristics that influence the 

backscatter. Other simple methods consist of differencing or ratioing SAR images. The 

differencing technique yields more valuable information than the threshold method, but still is 

limited due to statistical problems related with the speckle in SAR images. 

 

Based on the observation that soil moisture variability is a function of its position along a 

hillslope, the saturation potential index was introduced. This index is based on the temporal 

standard deviation of the backscattering coefficient at a certain location which is directly 

related with the variation of soil moisture at that spot. This index leads to good results for the 

Coët-Dan catchment. However, for the Zwalmbeek catchment, which has a more pronounced  

topography, influences of the change in local incidence angle were introduced in the SPI. This 

problem can be overcome by performing a principal component analysis on the sequences of 

images. This technique can separate topography and land use effects from the soil moisture 

influence on the total backscattering. In particular, it was possible to detect changes between 

scenes in the second principal component that could be linked to soil moisture variations. The 

soil moisture patterns observed are consistent with the rainfall-runoff dynamics of a watershed 

and coincide with the saturation prone areas derived from  information on the natural 

drainage condition of the soils in the Zwalmbeek catchment. 
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Figure 1: Redistribution of soil moisture along a hillslope resulting in recharge areas with high 

temporal soil moisture variability and discharge zones with low temporal soil moisture 

variability (
2
: temporal variance of soil moisture). 

 

Figure 2: Photograph of part of the Zwalmbeek catchment. 

 

Figure 3: Photograph of part of the Coët-Dan catchment. 

 

Figure 4: Daily rainfall for the 1995-1996 winter period observed at the Zwalmbeek 

catchment. Also indicated by the dashed line and right-hand scale is the average radar 

backscatter 
0
 for the catchment calculated for each tandem pair of ERS-1/2 images. 

 

Figure 5: Saturated areas observed from field campaigns on February 15, 18, and 21 for the 

Coët-Dan catchment. The right image shows the saturated potential index (SPI) for the 

Coët-Dan basin, calculated on the sequence of ERS-1 images taken during the winter period 

of 1992. The SPI varies from low (red) to high (blue). 

 

Figure 6: Saturated potential index (SPI) calculated on the sequence of 8 ERS images for the 

Zwalmbeek catchment, ranging from low (blue) to high (red). The stream network (black) is 

given in overlay. Notice the shift of the low SPI with respect to the river network. 

 

Figure 7: First principal component image calculated for the Zwalmbeek catchment (left) and 

an image of the local incidence angles calculated from the digital elevation model of the 

catchment (right). The stream network (black) is shown in overlay in both images. 

 

Figure 8: Second principal component image calculated for the Zwalmbeek catchment (left) 

and the drainage map for the catchment (right). The drainage classification scheme is 

explained in Table 1. 

 

Figure 9: Third principal component image for the Zwalmbeek (left) and a classified Landsat 

image with forested and urbanized regions in the catchment highlighted (right). 

 



Figure 10: Average radar backscatter values for the negative and positive PC2 values for the 

Zwalmbeek catchment. 

 

Figure 11: Second principal component calculated for the Coët-Dan catchment. The stream 

network (black) is given in overlay. (Red: negative values, blue positive values). 

 

Figure 12: Daily rainfall for the Coët-Dan catchment during the winter period of 1992. Also 

indicated by the solid line is the average backscatter over the basin (expressed in digital 

numbers) and by the dashed lines the average radar backscatter values for the negative and 

positive PC2 values. 


