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Journal: Water Resources ResearchMS No.: ????First author: R. Deidda 1Rainfall downscaling in a space-time multifractal frameworkR. DeiddaCRS4, Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna. Cagliari, ItalyReceived ?????? { Accepted ??????Abstract. A space-time multifractal analysis on radarrainfall sequences selected from the Global AtmosphericResearch Program (GARP) Atlantic Tropical Experi-ment (GATE) database is presented. It is shown thatspace-time rainfall can be considered with a good ap-proximation to be a self-similar multifractal process, sothat a multifractal analysis can be carried out assumingTaylor's hypothesis to hold for rainfall over a wide rangeof spatial and temporal scales. The advection velocityneeded to rescale the time dimension is estimated us-ing di�erent tracking techniques. On each selected rain-fall sequence, a very good scaling is observed for spatialscales ranging from 4 km to 256 km, and for time scalesfrom 15 minutes to 16 hours. A recently developed scale-covariant multifractal model is then reformulated fornumerical simulation of space-time rainfall �elds. Thetwo parameters of the log-Poisson distribution used ascascade generator within the model are systematicallyestimated from each selected rainfall sequence and thedependence of one of these parameters on the large scalerain rate is highlighted. The model is then applied todisaggregate large scale rainfall, and some comparisonsbetween synthetically downscaled and observed rainfallare discussed.1 IntroductionMultifractal theory [Falconer, 1990; Feder, 1988], ini-tially applied to modeling velocity uctuations in tur-bulent ows [Benzi et al., 1984], has been progressivelyemployed, in recent years, also to rainfall modeling. Themain reason for the increasing use of the multifractalformalism lies in its capability to achieve, over a widerange of spatial and/or temporal scales, a strong con-trol on the statistical moments of a given distribution ofmeasures, such as turbulent velocity gradients or rainfallCorrespondence to: Roberto Deidda

data.Most of the research dealing with multifractal analysisand simulation of rainfall addresses mainly two objec-tives: 1) \time modeling", i.e., analysis of time seriesof precipitation and simulation of synthetic series withone-dimensional multifractal models preserving scalinglaws observed in real rainfall [Deidda et al., 1999; Geor-gakakos et al., 1994; Hubert et al., 1993; Ladoy et al.,1993; Menabde et al., 1997; Rodriguez-Iturbe et al.,1989; Svensson et al., 1996], and 2) \space modeling",i.e., analysis and simulation of rainfall distribution inspace with two-dimensional multifractal models [Dei-dda, 1999; Gupta andWaymire, 1993; Kumar and Foufoula-Georgiou, 1993a,b; Lovejoy and Schertzer, 1990; Olsonand Niemczynowicz, 1996; Over and Gupta, 1994; Svens-son et al., 1996; Tessier et al., 1993]. In the �rst case,the statistical behavior of rainfall in time is often inves-tigated and eventually simulated without explicit con-sideration of the spatial distribution and extension ofthe precipitation �eld itself. In the second case, thespatial statistical properties of rainfall, accumulated ona �xed time duration, are typically analyzed and simu-lated without explicitly taking into account the evolu-tion in time of spatial patterns of rainfall. Nevertheless,both these approaches are a�ected by some limitations,namely they are unable to preserve the covariant prop-erties that characterize real rainfall in both space andtime.For many hydrological applications, a more suitableapproach to modeling precipitation �elds is needed in or-der to simulate, in both space and time, the statisticalproperties observed in real-world precipitation events.For example, the recent profusion of centers for numer-ical weather forecasting is making rainfall �eld predic-tions available for use as input to rainfall-runo� hydro-logical models for forecasting ood events. In doing so,there is a need to �ll the gap in space-time scales be-tween meteorological and hydrological models (\rainfalldownscaling"), i.e., to disaggregate the large scale rain-



Journal: Water Resources ResearchMS No.: ????First author: R. Deidda 2fall forecasts to the smaller response scales of hydro-logical catchment models. This paper tries to bridgethe gap between meteorological and hydrological modelscales by developing a simple multifractal downscalingframework that preserves space-time statistical proper-ties observed in real rainfall.With regards to the problem of space-time analysisand simulation of rainfall, we need to make the time vari-able dimensionally equivalent to space variables. Thisequivalence can be pursued by rescaling the time dimen-sion by a velocity parameter U , so that rainfall can beregarded as a three-dimensional process in a Eulerian co-ordinate system frozen in time, where two coordinatesare for space and the third coordinate is the rescaledtime (Ut). In a multifractal framework one can essen-tially distinguish two kinds of assumptions on the scalingbehavior of rainfall: the �rst one is that space-time rain-fall displays self-similarity, while the second one regardsspace-time rainfall as being a self-a�ne process. Thechoice between a self-similar or self-a�ne multifractalframework has important implications for the behaviorof the rescaling velocity parameter.The self-similarity assumption corresponds to the Tay-lor hypothesis of \frozen turbulence" [Taylor, 1938] thathas been widely applied in turbulence to characterize ve-locity uctuations in space from time series of velocitymeasurements taken at a �xed point; in other words,the Taylor hypothesis reinterprets the temporal varia-tions at a �xed location as being spatial variations. Ina similar way we can introduce the Taylor hypothesisto characterize the space-time statistical properties ofrainfall as being a three-dimensional homogeneous andisotropic process where a measure on a scale � alongthe (rescaled) time axis is the trace of rainfall on a time� = �=U , but at �xed location. If self-similarity holdsfor space-time rainfall the process is forced by a large-scale advection velocity that is constant at any scale �.The second assumption is a generalization of the Tay-lor hypothesis for self-a�ne processes, where a scale-dependent velocity parameter U� � �H is used to rescalethe time variables. This kind of scaling is expected forpassive scalar �elds that are advected by atmosphericturbulence with an exponent H � 1/3. Tessier et al.[1993] have proposed a theoretical framework for space-time transformations of rainfall to interpret the anisotropyrelated to self-a�nity using generalized scale invariance[Lovejoy and Schertzer, 1985; Schertzer and Lovejoy,1985]. Assuming this theoretical framework, Marsanet al. [1996] performed some analyses of U.S. compositerainfall datasets derived from NWS radars, but their re-sults have shown H � - 0.1 and seem only to display aspace-time anisotropy induced by the overall advection.This would imply that the large-scale advection veloc-ity plays a more dominant role in space-time rainfallanisotropy compared to other types of self-a�ne forcingsuch as that induced by turbulent velocity uctuations.This paper is organized as follows: in section 2 the

GATE dataset comprising the radar rainfall scans usedfor the space-time multifractal analysis is illustrated; insection 3 some evidence for and theoretical aspects re-garding the multifractal nature of rainfall in time, inspace, and in the space-time domain are reviewed anddiscussed; in section 4 a self-similar multifractal modelfor the synthetic generation of space-time rainfall is pre-sented; in section 5 the advection velocity of storms andthe scaling anisotropy parameter H are estimated fromrainfall sequences selected from the GATE dataset. Sec-tion 6 is devoted to space-time multifractal analysis ofselected GATE rainfall sequences, while in section 7 theresults of simulations of rainfall in the space-time do-main are discussed; in section 8 the conclusions of thiswork are drawn.2 DataStatistical properties of rainfall �elds are investigatedon some sequences of radar scans acquired during theGATE campaign [Hudlow and Patterson, 1979]. Eachradar scan is available as 15-min rainfall rate over a100�100 regular square lattice with a 4-km resolution,but only a 64�64 grid centered on each image was usedin this work, since data are really provided only withina 200 km radius from the center of each image. TheGATE �elds were collected o� the eastern Atlantic coastof Africa during two di�erent periods in 1974: the setbelonging to the �rst period from 28 June to 15 Julyis named GATE1 (1716 frames), while the set belong-ing to the second period from 28 July to 15 August isreferred to as GATE2 (1512 frames). As described in de-tail in section 5, sequences of consecutive rainfall frameswere extracted from the GATE1 and GATE2 datasets(Table 2) in order to perform a systematic multifractalanalysis in the space-time domain and to calibrate thetwo log-Poisson parameters of the scale covariant space-time rainfall model.3 Some remarks on the multifractal analysis ofrainfallIn order to perform a multifractal analysis it is necessaryto de�ne the structure functions most appropriate tocharacterize the statistical properties we are interestedin. The choice of structure functions depends on the na-ture of the �eld we are analyzing and on the objectiveof the analysis. While in the study of turbulent owsthe structure functions are usually de�ned through themoments of the velocity gradients at di�erent spatial ortemporal scales, in the analysis of rainfall processes it ismore advantageous to de�ne structure functions throughthe moments of integral measures of precipitation. Inthe downscaling process, for example, we are interestedin the links between precipitation amounts over di�er-ent areas and di�erent accumulation times, since me-



Journal: Water Resources ResearchMS No.: ????First author: R. Deidda 3teorological models supply rainfall forecasts over largerspace-time scales than those required by catchment hy-drological models.At the scales involved in the downscaling process, wecan introduce an instantaneous rainfall intensity i(x; y; t)continuous in space and time [Fabry, 1996], and then de-�ne an integral measure P of rainfall over an area �x��yand a cumulative time � as:P�x;�y;� (x; y; t) = Z x+�xx d� Z y+�yy d� Z t+�t d�i(�; �; �)(1)A downscaling problem can now be formulated as fol-lows: given an amount of rainfallPL;L;T over an area L�L and a time scale T corresponding to the resolution ofa meteorological model, we want to determine the prob-ability distribution of precipitation amounts P�0;�0;�0over spatial scales �0 � �0 and accumulation times �0that are small enough for catchment modeling. In thefollowing a downscaling process will be referred to usingthe short formulation PL;L;T :! P�0;�0;�0 .3.1 Time modelingWe can introduce the following structure functions tocharacterize the statistical properties of rainfall in time,over �xed areas of side �:Sq(� ) = 
[P�;�;� (x; y; t)]q�=const� (2)where h� � �i is both an ensemble average or an average ofsamples with di�erent starting times t, and eventuallydi�erent locations x; y.The multifractal analysis in time can be performed byinvestigating the scaling behavior of structure functions(2) for di�erent time scales � , keeping � constant. Inparticular we want to identify one or more ranges oftime scales � where the following scaling law holds:Sq(� ) � � ��(q) (3)Exponents ��(q) are called multifractal exponents ifthey are nonlinear functions of the moments q and donot depend on the time scale � : when these conditionsare veri�ed the signal is said to display anomalous scal-ing laws, i.e. multifractality, in time. Exponents ��(q)can, however, be strongly dependent on the spatial scale� and on the type of rainfall event. The dependenceon the spatial scale � of the statistical properties intime was investigated on the GATE datasets and the re-sults of this analysis are summarized in Figure 1 wherethe multifractal exponents ��(q) obtained for di�erentareal integrations are compared. The integral measures(1) needed for structure functions (2) were computedavoiding missing data, but including zero precipitationrecords. A convex shape in the � � q plane is a charac-teristic feature of multifractal measures, while a straightline identi�es a fractal object. The more the convexity is
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Fig. 1. Multifractal exponents ��(q) characterizing temporal scal-ing law (3) of GATE rainfall over square areas having side � = 4,16, 64 and 256 km.pronounced, the more the measure is intermittent. Fig-ure 1 shows that the more intermittent modes in timeare obtained for smaller �, and thus for smaller areas.This dependence on the spatial scale is highlighted bythe subscript � of exponents �(q) in equation (3). Wemust also expect that the multifractal behavior of timeseries from tipping-bucket rain-gauges corresponds tothe limit case �! 0.Time series of synthetic rainfall over areas of side �can thus be generated with one-dimensional multifractalmodels that are able to preserve, for any moment q,the same scaling (3) as estimated on real signals for thecorresponding spatial domain.3.2 Space modelingIf a spatial �eld of rainfall depths accumulated over a�xed duration � can be considered as homogeneous andisotropic, the following structure functions can be de-�ned to characterize the spatial multifractal behavior:Sq(�) = 
[P�;�;� (x; y; t)]q�=const� (4)where h� � �i is an ensemble average or an average of sam-ples with di�erent starting points x; y, and eventuallydi�erent times t.The multifractal analysis in space consists then in thesearch for one or more ranges of spatial scales � wherethe following scaling law holds for structure functions(4), keeping the accumulation time � constant:Sq(�) � ��� (q) (5)As for the time analysis, exponents �� (q) are calledmultifractal exponents if they are nonlinear functions ofthe moments q and do not depend, in this case, on thespatial scale �: under these conditions the signal is saidto display anomalous scaling laws in space.
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Fig. 2. Multifractal exponents �� (q) characterizingspatial scalinglaw (5) of GATE rainfall accumulated over times � = 15 minutes,1, 4, and 16 hours.The dependence of the spatial scaling law (5) on theaccumulation time � was recently investigated on theGATE datasets and discussed by Deidda et al. [1999]:rainfall �elds are more intermittent in space for shorteraccumulation times (Figure 2). This dependence is high-lighted by the subscript � on the exponents �(q) in (5).Synthetic spatial �elds of rainfall depths over a �xedtime � can be generated with two-dimensionalmultifrac-tal models that are able to reproduce the scaling laws(5).3.3 Space-time modelingWe now want to formulate the problem of rainfall mod-eling in a more general way in order to investigate theexistence of \universal" scaling laws, characterized bymultifractal exponents �(q) that depend neither on thespatial scale � nor on the time scale � . The search forthese \universal" scaling laws is not the only reason toinvestigate the \space-time modeling" of rainfall: the so-lution to the downscaling problem PL;L;T :! P�0;�0;�0suggests this approach as well.Indeed, one can imagine performing a downscalingprocess in two steps (Figure 3.a): in the �rst step rain-fall is downscaled in space PL;L;T :! P�0;�0;T with a2-D model that preserves the scaling laws (5) display-ing multifractal exponents �T (q); in the second stepthe time downscaling to �0 is performed ( P�0;�0;T :!P�0;�0;�0 ) preserving the scaling (3) with multifractalexponents ��0(q). Although similar double-step proce-dures have been already applied to space-time disag-gregation of rainfall using, for example, geostatisticaltechniques [Lebel et al., 1998], the application of thisprocedure in a multifractal framework can cause, afterthe second step, the imposed scaling in space to be lost.In a similar way (see Figure 3.b) one can downscalerainfall �rst in time PL;L;T :! PL;L;�0 (preserving the

scaling (3) with multifractal exponents �L(q)) and thenin space PL;L;�0 :! P�0;�0;�0 (preserving the scaling (5)with multifractal exponents ��0 (q)), but at the expenseof losing the scaling in time.With a direct \space-time modeling" of rainfall (Fig-ure 3.c) using 3-D multifractal models we can try to re-produce the statistical properties of real rainfall for anyintermediate scale � (�0 < � < L) and � (�0 < � < T ).Again, after having eliminated the dependence of mul-tifractal exponents on the spatial extension or on theaccumulation time, we can better investigate how di�er-ent kinds of precipitation event or simply the large-scalerain rate can a�ect the statistical properties.The problem of space-time modeling is addressed herefor both self-similar and self-a�ne rainfall. In bothcases precipitation �elds are assumed to be homoge-neous and isotropic in space. In the �rst case, the tem-poral anisotropy can be eliminated by a rescaling di-mensional parameter, i.e. the advection velocity, thatis kept constant throughout a wide range of scales; inthe second case, a scale-dependent rescaling velocity isused.Space-time rainfall displaying self-similarityWhen the anisotropy between space and time is onlyrelated to the overall advection, a simple way to addressa space-time analysis and simulation of rainfall is to as-sume self-similarity and consequently to rescale the timedomain with the advection velocity U of the precipita-tion patterns, thus making the time and space scalesequivalent. This approach requires veri�cation that theTaylor hypothesis holds for rainfall �elds and that sta-tistical properties along the (rescaled) time dimensionare the same as along any spatial dimension. In otherwords, after having rescaled the time dimension, rainfall�elds must be isotropic in each of the three dimensions:two for space, one for time rescaled with U .If self-similarity holds, we can introduce the followingstructure functions to characterize the statistical prop-erties in time and space:Sq(�) = 
�P�;�;�=�=U (x; y; t)�q� (6)where h� � �i is both an ensemble average or an aver-age operator over samples with di�erent starting pointsx; y; t in the space-time domain.After having estimated the advection velocity U , themultifractal analysis in the space-time domain consistson the search of one or more ranges of spatial scales �(and the corresponding time scales � = �=U ) where thefollowing scaling law holds for structure functions (6):Sq(�) � ��(q) (7)Analogously to the space and time analyses, rainfallcan be considered a three-dimensional self-similar mul-tifractal process if at least one range of scales � is foundwhere the advection velocity U is constant and the scal-ing law (7) holds with exponents �(q) that are nonlinear
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functions of the moment q and depend on neither thespatial scale � nor the time scale � = �=U .Space-time rainfall displaying self-a�nityA multifractal analysis of space-time rainfall display-ing self-a�nity can be performed by introducing a scale-dependent velocity parameter U� � �H . Depending onthe value taken by the scaling anisotropy exponent H,the following scenarios are possible: i) H = 0: the ve-locity parameter is constant at any scale and the Taylorhypothesis holds; this is the trivial case of self-similaritydiscussed above; ii)H > 0: the scale-dependent velocityparameter U� increases with �; this is the case, for in-stance, of a passive scalar advected by turbulence, wherewe must expect H � 1=3; iii) H < 0: velocity increasesat smaller scales.Let us now consider a discrete set of spatial scales�n � Lb�n, where b � 2 is called the (spatial) branch-ing number. The scale-dependent velocity can be writ-ten Un � U�n � U0b�nH . The traveling time neededto advect a quantity along a spatial scale �n is thus�n = �n=Un � (L=U0)b�n(1�H), meaning that the dis-crete set of time scales �n = Tb�nt to be considered inthe space-time multifractal analysis can be obtained byintroducing a new (temporal) branching number bt =b(1�H), which for H > 0 or H < 0 can be respectivelyless or greater than the spatial branching number b.After having estimated both the exponent H and theparameter U0, we can investigate the existence of oneor more scaling regimes (7) for the following structurefunctions:Sq(�) = 
�P�;�;�=�=U�(x; y; t)�q� (8)An estimate of the scaling anisotropy exponent Hcan be obtained by comparing one-dimensional temporalpower spectra E(ft) and one-dimensional spatial spec-tra, E(fx) or E(fy). For a multifractal �eld we mustexpect that these spectra follow power-law functions offrequency ft and wave-numbers fx or fy:E(ft) � f�stt E(fx) � f�sxx E(fy) � f�syy (9)Due to the self-a�nity we must also have the followingequivalences:E(btft)E(ft) � E(bfx)E(fx) � E(bfy)E(fy) (10)Recalling the relation between the spatial and thetemporal branching numbers, equations (9) and (10)yield b�stt = b�st(1�H) � b�sx � b�sy , so that an es-timate of the parameter H can be obtained as Hx =1� sx=st or Hy = 1� sy=st. If isotropy in space holds,we must �nd Hx = Hy = H.



Journal: Water Resources ResearchMS No.: ????First author: R. Deidda 64 A scale covariant model for space-time rain-fall downscalingA Space-Time RAINfall (STRAIN) model is proposedfor hydro-meteorological applications such as rainfall down-scaling from the large scales of meteorological models tothe scale of interest for rainfall-runo� processes. Themodel is based on the following assumptions: i) rain-fall �elds are isotropic and statistically homogeneousin space; ii) self-similarity holds, so that, after havingrescaled the time by the advection velocity U , rainfall isa fully homogeneous and isotropic process in the space-time domain (Taylor hypothesis); iii) statistical proper-ties of rainfall are characterized by an \a priori" knownmultifractal behavior that is determined by the multi-fractal analysis of observed space-time rainfall. The es-timation of the space-time multifractal properties frommeasured rainfall �elds will be addressed later in thispaper. The model presented here is a generalization ofthe multidimensional model by Deidda et al. [1999] forthe case of space-time rainfall generation and includesscale covariance by means of an in�nitely divisible log-Poisson distribution [Dubrulle, 1994; She and Leveque,1994; She and Waymire, 1995].A synthetic space-time rainfall intensity �eld i(x; y; t)with (x; y) 2 [0; L]2 and t 2 [0; T ], where T = L=U ,is obtained as a wavelet expansion with coe�cients ex-tracted by a stochastic cascade:i(x; y; t) = NXj=0 2j�1Xkx=0 2j�1Xky=0 2j�1Xkt=0�j;kx;ky;kt j;kx;ky;kt(x; y; t)(11)where j is the cascade level index, varying from 0 (�rstelement) to N (number of cascade levels); kx, ky andkt are position indexes on the space-time domain wherethe signal is generated;  j;kx;ky;kt(x; y; t) is a wavelet onlevel j with position indexes kx, ky, kt; �j;kx;ky;kt is thecoe�cient extracted from a stochastic cascade.The three-dimensional wavelets  (x; y; t) are de�nedas a product of three one-dimensional basis wavelets	(z), positive de�nite and integrable for z 2 [0; L] andzero elsewhere: j;kx;ky;kt(x; y; t) = 23j	(2jx�kxL)	(2jy�kyL)	(2jUt�ktL)(12)The normalization in the modulus of the basis func-tion 	(z) assures the normalization of each wavelet  (x; y; t),de�ned by the above equation. As basis we can use aGaussian function:	(z) = ( c exp h�12 � z��� �2i z 2 [0; L]0 z 62 [0; L] (13)where � = L=2, � = 0:15L and c �= 1=(�p2�) is anormalization constant.The random cascade is constructed using a multiplica-tive process [Monin and Yaglom, 1971, 1975; Yaglom,

1966]; each son �j;kx;ky;kt at the j-th level is obtainedmultiplying the corresponding father at level j�1 by anindependent and identical distributed random variable�, called the generator:�j;kx;ky;kt = ��j�1;kx=2;ky=2;kt=2 (14)Ensemble averages of q-moments of random variables� can be related to the statistics of the generator:�qj;kx;ky;kt = �qj = �q0�qj (15)Letting PL;L;T = R L0 dx R L0 dy R L=U0 dti(x; y; t) be theintegral of the synthetic signal on the domain of gener-ation, the �rst term of the random process must be:�0 = PL;L;TPNj=0 23j�j (16)Structure functions Sq(�) of synthetic precipitation(11) are de�ned as in equation (6):Sq(�) = *"Z �+�� dx Z �+�� dy Z �+�=U� dt i(x; y; t)#q+ (17)where the space-time average h� � �i is computed over allstarting points (�; �; �).After some computations it can be proved [Deiddaet al., 1999] that these structure functions obey the scal-ing law (7) with expected multifractal exponents �(q)depending only on the ensemble averages of the mo-ments of the generator �:�(q) = q (3 + log2 �) � log2 �q (18)Using the Cauchy-Schwarz inequality it can also beproved that �(q) is a convex and nonlinear function ofthe moments q, so the model is suitable for generationof multifractal �elds. The choice of probability distrib-ution for the random generator � characterizes the mul-tifractal behaviour and the scale covariance of syntheticsignals. In this work an in�nitely divisible distribution,i.e. the log-Poisson distribution, is used:� = eA�y ; P (y = m) = cme�cm! (19)where A and � are constant parameters, while y is aPoisson distributed random variable with parameter c:E[y] = c. The q-order moment of the log-Poisson dis-tribution is thus �q = exp [qA+ c (�q � 1)] and the ex-pected scaling of synthetic �elds can �nally be evalu-ated:�(q) = 3q + c q (� � 1)� (�q � 1)ln 2 (20)where the multifractal exponents �(q) depend only onthe parameters c and �. In order to display a scaling



Journal: Water Resources ResearchMS No.: ????First author: R. Deidda 7regime in synthetic �elds, parameters c and � must bescale-independent.Estimates of the model parameters c and � can beobtained by solving the followingminimization problem:minc;� Xq " �̂(q) � �(q)�(q) #2 (21)where �̂(q) are the sample multifractal exponents, �(q)is the theoretical expectation (20), and �(q) = q � 1is a weight that accounts for the estimation error, i.e.the standard deviation of �(q). Some sets of numericalsimulations were performed with the model presentedhere with the aim to establish how the standard devia-tion of �(q) varies with q. Results, not presented here,have shown that �(q) � (q � 1) holds with a very goodapproximation independently of parameter values and�eld resolution.5 Advection velocity computation and rain se-quences selectionThe �rst part of this section is devoted to the estimationof the overall advection velocity of GATE rainfall �eldsin order to select some sequences for which to performa self-similar multifractal analysis, assuming temporalanisotropy due only to the storm advection. An inves-tigation of temporal anisotropy induced by self-a�nityis also addressed at the end of the section.The advection velocity U is estimated here using thetracking techniques discussed in detail by Johnson andBras [1979]. In particular, the centroid method andthree composite matching functions are applied withslight modi�cations to account for the discrete space-time resolution of the GATE dataset. With the cen-troid technique, storm advection is de�ned by the move-ment of the centroid X(t); Y (t), while the other threeapproaches consist in determining the space shift thatmaximizes the average cross products or minimizes thesquare or absolute di�erences between rainfall �elds atdi�erent times.Centroid (C0):X(t) = 
xP�x;�y;� (x; y; t)�
P�x;�y;� (x; y; t)� Y (t) = 
yP�x;�y ;� (x; y; t)�
P�x;�y;� (x; y; t)� (22)Composite matching functions (C1,C2,C3):C1t(i; j; k) = 
P�x;�y ;� (x; y; t)P�x;�y;� (x+ i�x; y + j�y ; t+ k� )� (23)C2t(i; j; k) = D�P�x;�y;� (x; y; t)� P�x;�y;� (x+ i�x; y + j�y ; t+ k� )�2E (24)C3t(i; j; k) = 
��P�x;�y;� (x; y; t)� P�x;�y;� (x+ i�x; y + j�y; t+ k� )��� (25)where h� � �i denotes a spatial average with respect to thex and y axis, �x = �y = 4 km and � = 15 minutes are

Table 1. Mean advection velocities U in km h�1 estimated fromGATE1 and GATE2 datasets by applyingC0, C1, C2 and C3 pro-cedures to 15-minute frames (delays from 15 minutes to 2 hours)and to 1-hour frames (1 and 2 hour delays).GATE115-minute frames 1-hour framesdelays 15' 30' 45' 1h 1h15' 1h30' 1h45' 2h 1h 2hC0 40.6 31.1 26.8 23.9 21.8 20.2 18.9 17.7 20.5 16.3C1 14.9 20.4 23.4 24.7 24.5 24.5 24.4 24.6 13.2 20.0C2 18.5 24.7 26.1 25.8 24.8 24.6 23.6 23.5 13.4 18.9C3 14.3 18.2 19.3 21.4 21.8 22.2 22.4 22.7 12.1 18.7GATE215-minute frames 1-hour framesdelays 15' 30' 45' 1h 1h15' 1h30' 1h45' 2h 1h 2hC0 35.8 27.4 23.3 21.0 19.2 17.9 16.7 15.7 18.4 14.6C1 14.0 17.5 21.1 24.5 25.6 25.8 26.0 25.6 13.7 22.8C2 15.7 22.1 28.3 29.8 30.0 29.5 28.7 27.2 14.7 23.8C3 12.9 15.5 19.0 23.9 26.7 27.4 27.3 26.2 12.0 23.2the space and time resolution of the GATE �elds, i�x,j�y and k� are thus the spatial shifts and time delaybetween two matching frames, while P�x;�y;� (x; y; t) isthe integral precipitation (1) on the grid-box at position(x; y) and time t.The storm velocity components are obtained by ux(t) =[X(t + k� )�X(t)] =k� and uy(t) = [Y (t+ k� )� Y (t)]=k�for the centroid method C0, and by ux(t) = �̂�x=k� anduy(t) = �̂�y=k� for the other three techniques, where(̂�; �̂) is the couple of spatial shift indexes that maximizesthe composite matching function C1 or that minimizesC2 or C3.The averages of the storm velocities U = hu(t)i, whereu(t) = qu2x(t) + u2y(t), were computed for the GATE�elds applying the described techniques for delays k�from 15 minutes to 2 hours. As shown in Table 1 the es-timates of U vary from 12 to 40 km h�1: while thecentroid technique estimates the higher velocities forsmaller delays, the composite matching functions sup-ply the higher velocities for larger delays. Since theseestimates can be inuenced by the movements of sin-gle cells, while we are interested in the overall advectionvelocity, the same techniques were also applied to one-hour accumulated �elds. In such a way the inuence ofcell movement is smoothed, since the life-time of con-vective cells is about 30-40 minutes. The results of thisnew analysis are presented again in Table 1 for delaysof one and two hours and show that the range of meanadvection velocity is now reduced to 12-24 km h�1.



Journal: Water Resources ResearchMS No.: ????First author: R. Deidda 8Due to the discrete resolution in time (� = 15 min)and space (�x = �y = 4 km), the GATE datasets allowus to use only some discrete velocities U to perform aspace-time multifractal analysis. In the following onlythe advection velocities U = 16 and 32 km h�1 are con-sidered, since these values are both compatible with theGATE discretization and with the range of estimates inTable 1.Let us investigate �rst if an advection velocity U =16 km h�1 can be assumed for a self-similar multifractalanalysis in the space-time domain. The larger spatialscale of GATE �elds is L = 64 � 4 km = 256 km, sinceeach frame is available on a regular grid with 64 � 64cells of 4 km on each side. Consequently, the larger timescale must be T = L=U = 16 h, while the smaller scalesof space and time are the same as the original resolutionof GATE �elds: �0 = 4 km and �0 = �0=U = 15 minutes.Several 16-hour rainfall sequences, each comprising64 consecutive radar scans, were then selected from theoriginal GATE datasets applying the following criteria:i) a moving window in time, collecting 64 consecutiveframes, was used to select the strongest rainfall events;ii) each sequence can contain no more that one missingscan; iii) the mean 16-hour rainfall intensity on 256�256square kilometers I must be larger than 0.25 mm h�1.Some useful information on the 12 and 10 sequences,selected fromGATE1 and GATE2 datasets respectively,are summarized in Table 2.Table 2. The 16-hour sequences selected from GATE1 andGATE2 datasets: F, DAY, and HH are respectively the scan num-ber, the Julian day, and the hour of the �rst scan of each sequence;I (mm h�1) is the mean 16-hour rainfall intensity on 256�256square kilometers. Each sequence counts 64 scans.GATE1 GATE2F DAY HH I F DAY HH I1 832 188 6:15 2.70 1 1156 224 4:13 1.642 342 183 1:47 1.52 2 934 221 20:00 1.203 1411 194 13:31 1.45 3 1 209 0:00 1.024 1485 195 8:01 0.88 4 73 209 18:30 0.745 6 179 1:33 0.88 5 776 220 4:15 0.726 1549 196 0:14 0.68 6 512 217 6:59 0.677 144 180 15:44 0.67 7 1248 225 3:28 0.478 406 183 18:02 0.45 8 283 214 21:14 0.359 72 179 19:45 0.44 9 209 211 5:15 0.3110 768 187 14:16 0.41 10 448 216 14:44 0.2511 224 181 13:45 0.3512 566 185 10:30 0.25For each 16-hour sequence, the followingauto-correlationfunctions along the x-axis, the y-axis, and the \rescaled"
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Fig. 4. Mean autocorrelation functions along the x and y direc-tions of the 16-hour sequences selected from the GATE dataset(Table 2) are compared with that along the time axis rescaledwith an advection velocity U = 16 km h�1.t-axis were compared:�x(�) = hP�0;�0;�0(x; y; t)P�0;�0;�0 (x+ �; y; t)i � �2�2�y(�) = hP�0;�0;�0(x; y; t)P�0;�0;�0 (x; y + �; t)i � �2�2�t(�) = hP�0;�0;�0(x; y; t)P�0;�0;�0(x; y; t+ �=U )i � �2�2 (26)where �0 = 4 km and �0 = �0=U = 15 minutes, h� � �i isan average in space (x; y) and time (t), � and �2 are theaverage rainfall and the corresponding variance in eachsequence.The average autocorrelation functions obtained fromall the selected sequences are plotted in Figure 4. In theFigure, the breakdown of the Taylor hypothesis recog-nized by Zawadzki [1973] is not evident. For a self-similar process, we expect to �nd, after having rescaledthe time variable with the \correct" storm velocity, theequivalence �x � �y � �t for any �. This equivalence isnot exactly veri�ed by the selected sequences since thisanalysis has shown that the inequality �y < �t < �xholds for each sequence and for any value of �, meaningthat, in this case, rainfall is more correlated in spacealong the x-axis than along the y-axis, while the corre-lation along the rescaled time axis is intermediate.Despite the fact that the GATE rainfall �elds are notexactly isotropic in space, since a preferential directionof motion along the x-axis was always found (�y < �x),rainfall �elds are often assumed as being isotropic inspace, especially for the multifractal analysis and simu-lation with two-dimensional random cascades. If we ac-cept the isotropy of rainfall �elds in space, we can alsoaccept that precipitation is isotropic in the (rescaled)
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Fig. 5. Mean autocorrelation functions along the x and y direc-tions of the 8-hour sequences selected from the GATE dataset arecomparedwith that along the time axis rescaled with an advectionvelocity U = 32 km h�1.space-time domain using the Taylor hypothesis with U= 16 km h�1, since the (rescaled) time axis does notadd more anisotropy, as shown by Figure 4.The hypothesis of a mean advection velocity U = 32km h�1 was also investigated on 8-hour sequences, eachcomposed of 32 radar scans: the higher resolutions arenow �0 = 15 min and �0 = U�0= 8 km. In this case21 and 19 sequences were selected from the GATE1 andGATE2 datasets applying the same criteria as abovefor the 16-hour sequences. From Figure 5, where theaverage of all the autocorrelation functions are plotted,it is clear that the inequality �y < �x < �t always holds,meaning that the rescaled �elds are highly correlatedin the time dimension in comparison to the x and ydirections, and that a storm velocity U = 32 km h�1cannot be applied for a self-similar multifractal analysis.Let us now investigate if self-a�nity holds for space-time rainfall. This analysis was carried out compar-ing the one-dimensional temporal power spectra and theone-dimensional spatial power spectra corresponding toeach of the selected sequences of Table 2. The estimatesof the exponents sx, sy , and st in (9) together with theestimates Hx = 1 � sx=st and Hy = 1 � sy=st can befound in Table 3. Results show that there exists a greatvariability in the estimates ofH from each sequence andthat the estimatesHx are often di�erent fromHy, mean-ing that self-similarity is not fully veri�ed even in space.The averages of H are always negative and in one case(estimate of Hy from GATE2 sequences) it is zero. Tobe rigorous, one should consider space-time rainfall asa self-a�ne process not only with regards to temporalanisotropy but also with regards to the anisotropy dueto self-a�nity in the x� y plane (since sx 6= sy). In thesequel of this paper, however, space-time rainfall is sim-ply approximated as a self-similar process (case H = 0)

requiring only the determination of the overall advectionvelocity. This assumption is also suggested by consider-ing that the average of the estimates of H is very small(� - 0.12), and that the advantages of the better theoret-ical accuracy of a self-a�ne approach would be reducedand perhaps nulli�ed by the uncertainties and large vari-ability in the estimates of both the H and U0 parametersneeded to correctly obtain the scale-dependent velocityU�.Table 3. Estimates of the exponents sx, sy, and st in (9) andof the scaling anisotropy parameter H from each of the selectedsequences of Table 2. The last two rows contain the average �and standard deviation � of the estimated parameters.GATE1 GATE2# sx sy st Hx Hy # sx sy st Hx Hy1 1.71 1.68 1.34 -0.28 -0.26 1 1.58 1.53 1.36 -0.16 -0.132 1.59 1.41 1.30 -0.22 -0.08 2 1.37 1.39 1.12 -0.23 -0.243 1.29 1.25 1.07 -0.21 -0.16 3 1.26 1.31 1.10 -0.15 -0.204 1.31 1.38 1.00 -0.31 -0.39 4 1.36 1.05 1.17 -0.17 0.105 1.46 1.63 1.06 -0.37 -0.54 5 1.31 1.15 1.12 -0.17 -0.026 1.26 1.25 1.03 -0.22 -0.21 6 1.39 1.48 1.29 -0.07 -0.157 1.40 1.50 1.19 -0.18 -0.26 7 1.21 0.99 1.05 -0.15 0.068 1.11 1.14 1.15 0.04 0.01 8 1.53 1.15 1.29 -0.19 0.109 1.40 0.89 1.15 -0.22 0.22 9 1.43 1.06 1.37 -0.04 0.2310 1.62 1.29 1.20 -0.35 -0.08 10 1.13 0.86 1.17 0.03 0.2611 1.52 1.08 1.09 -0.39 0.0012 0.97 0.74 0.90 -0.08 0.17� 1.39 1.27 1.12 -0.23 -0.13 � 1.36 1.20 1.20 -0.13 0.00� 0.21 0.28 0.13 0.12 0.22 � 0.14 0.22 0.12 0.08 0.186 Space-timemultifractal analysis of GATE rain-fallThe space-time multifractal analysis described in section3.3 is applied here to the 22 selected 16-hour rainfall se-quences (Table 2). The analysis is performed assumingrainfall in a self-similar multifractal framework, wherethe Taylor hypothesis holds with an advection velocityU= 16 km h�1.Structure functions (6) were computed for each se-lected precipitation sequence for scales � ranging from�0 = 4 km to L = 256 km, and the corresponding timescales ranging from �0 = �0=U = 15 minutes to T = L=U= 16 hours. Scaling laws (7) were found to hold withgood accuracy for each 16-hour sequence, as is shown inFigures 6 and 7 for the second-order structure functionsS2(�).The multifractal exponents �(q) of equation (7) wereestimated by linear regression of the structure function



Journal: Water Resources ResearchMS No.: ????First author: R. Deidda 10Table 4. Results of the multifractal analysis on each sequenceof GATE1 dataset: estimates of multifractal exponents �(q); cand � log-Poisson parameters that are solutions of the minimiza-tion problem (21); new determination of c35 parameters keeping�=0.35 constant; parameters ~c from (27) used for generation ofsynthetic space-time rainfall with the STRAIN model.�(q) log-Poisson parametersq=2 q=3 q=4 q=5 q=6 � c c35 ~c1 5.52 7.92 10.23 12.48 14.69 0.37 0.81 0.77 0.792 5.42 7.64 9.73 11.73 13.67 0.44 1.25 0.99 0.963 5.42 7.70 9.88 12.00 14.07 0.34 0.91 0.93 0.984 5.39 7.61 9.74 11.80 13.82 0.35 0.98 0.99 1.145 5.23 7.26 9.18 11.01 12.78 0.34 1.19 1.23 1.146 5.35 7.51 9.55 11.52 13.45 0.38 1.13 1.06 1.227 5.24 7.25 9.14 10.95 12.71 0.37 1.30 1.24 1.228 5.16 7.01 8.66 10.21 11.72 0.44 1.83 1.44 1.329 5.17 7.09 8.90 10.65 12.37 0.34 1.31 1.34 1.3210 5.06 6.93 8.70 10.43 12.13 0.26 1.17 1.43 1.3411 5.08 6.96 8.73 10.43 12.09 0.29 1.23 1.42 1.3712 4.95 6.68 8.31 9.89 11.42 0.26 1.30 1.60 1.43Sq(�) versus � in the log-log plane. They are presentedin Tables 4 and 5 for each sequence of GATE1 andGATE2. Sample multifractal exponents (from q = 2 to6) were then used to estimate the two log-Poisson pa-rameters c and � of the STRAIN model by solving theminimization problem (21). As an example, in Figure 8the sample multifractal exponents estimated for the se-quence 5 of GATE1 are plotted together the theoreticalexpectation (20) having parameters � = 0.34 and c =1.19 that are solutions of the minimizationproblem (21).The estimated parameters from all the GATE sequencesare presented again in Tables 4 and 5 and are also plot-Table 5. Same as Table 4, but for GATE2 sequences.�(q) log-Poisson parametersq=2 q=3 q=4 q=5 q=6 � c c35 ~c1 5.37 7.57 9.68 11.73 13.74 0.34 0.99 1.01 0.932 5.18 7.16 9.03 10.82 12.56 0.32 1.19 1.29 1.043 5.33 7.46 9.43 11.27 13.04 0.43 1.40 1.13 1.094 5.20 7.20 9.10 10.92 12.70 0.32 1.18 1.26 1.195 5.31 7.49 9.58 11.62 13.62 0.28 0.90 1.06 1.206 5.32 7.47 9.51 11.48 13.41 0.34 1.07 1.08 1.227 5.13 6.99 8.71 10.33 11.92 0.37 1.51 1.43 1.318 5.25 7.33 9.32 11.24 13.10 0.30 1.03 1.17 1.379 5.14 7.06 8.86 10.60 12.29 0.32 1.28 1.36 1.3910 5.12 7.02 8.81 10.54 12.22 0.31 1.25 1.38 1.42
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log2λFig. 6. Log-log plot of the second-order space-time structurefunctionsS2(�) (equation (6)) of GATE1 sequences versus � scalesranging from �0 = 4 km to L = 256 km (the corresponding timeranges from 15 minutes to 16 hours). Structure functions havearbitrary units to allow displaying of all sequences in the samegraph. For each sequence the multifractal exponent �(2), i.e., theslope of the regression line is shown.ted in Figure 9 versus the averages of the 16-hour rainfallintensity I. While the c parameter decreases as large-scale rainfall rate increases, the � parameter seems tovary around its mean value � = 0.35 independently ofthe amount of rainfall.In order to investigate the dependence of the c para-meter on the rainfall intensity, the minimization prob-lem (21) was solved again only for the c parameter, keep-ing the � parameter constant and equal to the meanvalue 0.35. These new estimates of the c parameter,called c35, are presented in Tables 4 and 5 and are alsoplotted in Figure 10, where the dependence of the newestimates c35 on the mean intensity I is now more evi-dent than in Figure 9. The following relation was usedto express this dependence:~c = a exp(�I) + c1 (27)When expressing the mean rainfall intensity I in mmh�1,the following parameters, obtained by a best �t proce-dure applied to the estimates c35, can be used in (27):
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log2λFig. 7. Same as Figure 6, but for GATE2 sequences.a = 0:907,  = 0:764 and the asymptotic value c1 =0:675. These values were used to plot (27) in Figure 10and to determine the c parameters for the simulations ofsynthetic space-time rainfall presented in next section.7 Rainfall generation in the space-time domainThe STRAIN model was systematically applied to thegeneration of space-time rainfall using a constant veloc-ity U = 16 km h�1 to rescale the time domain. A setof 100 synthetic 16-hour sequences were generated foreach of the 22 selected sequences from GATE datasets,providing a total of 2200 realizations. The parameter� was taken constant and equal to 0.35 for all genera-tions, while the values of the c parameter used for eachset of 100 generations are reported in the last column ofTables 4 and 5 and are obtained from (27), where themean rainfall intensity I comes from the correspondingGATE sequence (Table 2). The expansions (11) weretruncated at the seventh fragmentation level (N = 7)and then reaggregated one level up.The space-time structure functions (6) and the mul-tifractal exponents �(q) in (7) were estimated on eachsynthetic �eld. Figure 11 illustrates that the multifrac-tal behaviour of the observed GATE sequences is well
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Fig. 8. Sample multifractal exponents estimated for the sequence5 of GATE1 (circles) are �tted by the theoretical expectation (20)of the STRAIN model (continuous line) having parameters � =0.34 and c = 1.19 that are solutions of the minimization prob-lem (21).reproducted by synthetic sequences.A \control" set of 100 simulations were also gener-ated with parameters � = 0.34 and c = 1.18, obtainedfrom (21) when using the averages of the multifractalexponents of the 22 selected sequences (Tables 4 and5): �(2) = 5.24, �(3) = 7.29, �(4) = 9.22, �(5) = 11.07,�(6) = 12.89. This control set will be used in the fol-lowing to investigate how much the statistical proper-ties of space-time rainfall are forced by the large-scalerain rate. Although generated with parameters � andc corresponding to I = 0.766 mm h�1 in (27), beforeeach comparison the contol set sequences are rescaledto the same amount of rainfall of the comparing GATEsequence. This rescaling does not a�ect the multifrac-tal behaviour of the control set, but allows quantitativecomparisons.Figure 12 shows the comparisons between the coef-�cients of variation, skewness, and kurtosis, computedon each of the 22 GATE sequences at the higher resolu-tion (4 km, 15 minutes) and the averages of the corre-sponding statistics computed on the 22 sets of syntheticrainfall. Figure 12 illustrates that the decreasing trendof the observed statistics as the average rain intensityI increases is reproduced by the sets of synthetic �elds.It is also apparent that taking the same model parame-ters for di�erent large-scale rain rates, as in the controlset (whose statistics are also reported in Figure 12 withdashed lines), we cannot reproduce this feature.The cumulative distribution functions (CDFs) of rain-fall intensity i at the higher resolution (again 4 km,15 minutes) were also computed from each GATE se-quence and compared with the 90% con�dence limitsobtained by the corresponding sets of synthetic rainfall.Figures 13 and 14 show that in most of the cases the ob-



Journal: Water Resources ResearchMS No.: ????First author: R. Deidda 12served CFDs are within the 90% con�dence limits andthat the STRAIN model is able to correctly reproducealso the most rare and intense rain rates. From Fig-ures 13 and 14 it is also apparent that sometimes thehighlighted dependence of the c parameter on the large-scale rainfall rate I, as expressed by (27), is not ableto completely explain the variability of the statistics ofthe observed rainfall, meaning that a better determi-nation of model parameters based also on the type ofprecipitation event could be necessary. For instance, ifwe consider sequences 4 and 5 from GATE1 we can ob-serve that, although in both sequences the large-scalerainfall rate is I = 0.88 mm h�1, so that (27) gives ~c =1.14, in the �rst case the right-hand tail of the CDF isover-estimated by synthetic rainfall, while in the secondcase it is under-estimated. Similar considerations canbe made also for other sequences, for instance number6 and 7 from GATE1 have respectively I = 0.67 andI=0.68, giving ~c = 1.22 from (27); while the CDF of se-quence 6 exceeds of the 90% con�dence limits, the CDFof sequence 7 is well-reproduced by synthetic rainfall.In Figure 15 the CDF of the �rst sequence fromGATE1is compared with the 90% con�dence limits obtained bythe control set of synthetic rainfall. Analyzing the right-hand tail of the CDF in Figure 15 it is apparent that themost intense rain rates in the control set are about threetimes bigger than those in the observed sequence. Thecomparison with Figure 13 points out again the need todownscale rainfall using model parameters that changeat least with the large-scale rain rate, as in (27).The last comparison between observed and syntheticspace-time rainfall addresses the feature of the areal re-duction factors (ARFs). There are several de�nitionsof ARFs; the most widely applied are: i) the ratio be-tween average rainfall depth over an area, for example acatchment, and the maximum rainfall depth measuredin a point within the considered area, for example by arain-gage (�xed-area ARFs); and ii) the ratio of aver-age storm depth over an area, delimited for instance byrainfall isohyets, and the maximum rainfall depth at thestorm center (storm-centered ARFs). The comparisonsdiscussed here regard �xed-area ARFs, but, since pointrainfall is not available for GATE �elds, we consideredinstead the rainfall depth at the higher spatial resolution(4 km � 4 km).Let h�;�;� = P�;�;�=�2 be the average rainfall depthover an area ��� accumulated over a time � . ARFs arecomputed from both observed and synthetic sequencesas �(�) = h�;�;�=ĥ�0;�0;� , where ĥ�0;�0;� is the max-imum rainfall depth in the �xed accumulation time �over an area �0��0 (in our case �0 = 4 km) embeddedin � � �. Figure 16, where the average ARFs of the 22observed GATE sequences are shown to be very closeto those obtained by the 2200 synthetic ones, illustratehow the STRAIN model is also able to reproduce theobserved ARFs for di�erent accumulation times � .

8 Summarizing conclusionsThe development of a space-time rainfall downscalingprocedure is crucial in coupling meteorological to hy-drological models, since we have to �ll the gap betweenthe large scales of space and time over which meteorolog-ical models supply rainfall predictions and the naturalscales of basins' response as required by hydrologicalrainfall-runo� modeling. The STRAIN model is sug-gested here as a useful tool for simulation of space-timerainfall displaying self-similarity, scale covariance andthe same multifractal behavior as the observed precip-itation. The model can be tuned by three parameters:the overall advection velocity U , and the log-Poissonparameters c and �.It was pointed out how the multifractal behaviour ofrainfall depth in space depends on the accumulationtime, and, similarly, how the set of multifractal expo-nents that characterize the anomalous scaling of rainfallin time depends on the spatial extension. A direct space-time rainfall downscaling enables determination of setsof multifractal exponents not dependent on the spatialextension and on the accumulation time.In principle, the downscaling problem can be addressedin a multifractal framework by assuming space-time rain-fall to be a self-similar or a self-a�ne process. Followingthe former approach one only has to determine the over-all advection velocity of the storm, while the self-a�nemultifractal modeling requires estimation of the scalinganisotropy parameterH as well. In GATE datasets, thislast parameter was found to be negative on average, butnot very di�erent from zero, meaning that space-timerainfall can be approximated by a self-similar multifrac-tal process. The simpler self-similar approach, followedin this paper, is also suggested by the great variabilityand uncertainty in estimating both the advection veloc-ity and the parameter H.A space-time multifractal analysis of selected GATEsequences has revealed that a very good scaling of struc-ture functions holds from 4 to 256 km in space, and from15 minutes to 16 hours. A dependence of the multifrac-tal behavior of space-time rainfall on the large-scale rainrate was then highlighted and a very simple equation re-lating the c parameter to the average rainfall intensityI at the larger scales of space and time was proposed.The STRAIN model was systematically applied todownscale the GATE selected sequences, keeping con-stant the advection velocity U = 16 km h�1 and theparameter � = 0.35, and varying the c parameter ac-cording to the average rainfall intensity I observed ineach GATE sequence. The comparisons between ob-served and synthetic rainfall presented in this paper,in terms of multifractal behaviour, of moments of rain-fall at the lower scales, of cumulative distribution func-tions, and areal reduction factors, have shown that theSTRAIN model is able to correctly reproduce many ofthe statistical properties observed in GATE rainfall and
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Fig. 9. Plot of log-Poisson coe�cients c (circles) and � (squares),solutions of the minimization problem (21), versus the 16-hourrainfall intensity I over 256�256 square kilometers for the GATE1(empty symbols) and GATE2 (�lled symbols) sequences. Thedashed line is drawn for the mean value � = 0.35.
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Fig. 14. Same as Figure 13, but for GATE2 sequences.
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Fig. 15. Same as Figure 13, but the CDF observed in the �rstsequence of the GATE1 dataset is now compared with the 90%con�dence limits obtained by the \control" set of synthetic rainfallgenerated with constant parameter � = 0:34 and c = 1:18.
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Fig. 16. Plot of areal reduction factors �(�) over square areaswith sides � from 4 to 256 km. ARFs for rainfall depths accu-mulated over 15 minutes (left) and 16 hours (right) computed forGATE �elds (empty circles) are compared with those obtainedfrom synthetic sequences (�lled circles).


