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Abstract. A space-time multifractal analysis on radar
rainfall sequences selected from the Global Atmospheric
Research Program (GARP) Atlantic Tropical Experi-
ment (GATE) database is presented. Tt is shown that
space-time rainfall can be considered with a good ap-
proximation to be a self-similar multifractal process, so
that a multifractal analysis can be carried out assuming
Taylor’s hypothesis to hold for rainfall over a wide range
of spatial and temporal scales. The advection velocity
needed to rescale the time dimension is estimated us-
ing different tracking techniques. On each selected rain-
fall sequence, a very good scaling 1s observed for spatial
scales ranging from 4 km to 256 km, and for time scales
from 15 minutes to 16 hours. A recently developed scale-
covariant multifractal model is then reformulated for
numerical simulation of space-time rainfall fields. The
two parameters of the log-Poisson distribution used as
cascade generator within the model are systematically
estimated from each selected rainfall sequence and the
dependence of one of these parameters on the large scale
rain rate is highlighted. The model is then applied to
disaggregate large scale rainfall, and some comparisons
between synthetically downscaled and observed rainfall
are discussed.

1 Introduction

Multifractal theory [Falconer, 1990; Feder, 1988], ini-
tially applied to modeling velocity fluctuations in tur-
bulent flows [Benzi et al., 1984], has been progressively
employed, in recent years, also to rainfall modeling. The
main reason for the increasing use of the multifractal
formalism lies in its capability to achieve, over a wide
range of spatial and/or temporal scales, a strong con-
trol on the statistical moments of a given distribution of
measures, such as turbulent velocity gradients or rainfall
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data.

Most of the research dealing with multifractal analysis
and simulation of rainfall addresses mainly two objec-
tives: 1) “time modeling”, i.e., analysis of time series
of precipitation and simulation of synthetic series with
one-dimensional multifractal models preserving scaling
laws observed in real rainfall [Deidda et al., 1999; Geor-
gakakos et al., 1994; Hubert et al., 1993; Ladoy et al.,
1993; Menabde et al., 1997; Rodriguez-Iturbe et al.,
1989; Svensson et al., 1996], and 2) “space modeling”,
i.e., analysis and simulation of rainfall distribution in
space with two-dimensional multifractal models [Dei-

dda, 1999; Gupta and Waymire, 1993; Kumar and Foufoula-

Georgiou, 1993a,b; Lovejoy and Schertzer, 1990; Olson
and Niemczynowicz, 1996; Over and Gupta, 1994; Svens-
son et al., 1996; Tessier et al., 1993]. In the first case,
the statistical behavior of rainfall in time is often inves-
tigated and eventually simulated without explicit con-
sideration of the spatial distribution and extension of
the precipitation field itself. In the second case, the
spatial statistical properties of rainfall, accumulated on
a fixed time duration, are typically analyzed and simu-
lated without explicitly taking into account the evolu-
tion in time of spatial patterns of rainfall. Nevertheless,
both these approaches are affected by some limitations,
namely they are unable to preserve the covariant prop-
erties that characterize real rainfall in both space and
time.

For many hydrological applications, a more suitable
approach to modeling precipitation fields is needed in or-
der to simulate, in both space and time, the statistical
properties observed in real-world precipitation events.
For example, the recent profusion of centers for numer-
ical weather forecasting is making rainfall field predic-
tions available for use as input to rainfall-runoff hydro-
logical models for forecasting flood events. In doing so,
there is a need to fill the gap in space-time scales be-
tween meteorological and hydrological models (“rainfall
downscaling”), i.e., to disaggregate the large scale rain-
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fall forecasts to the smaller response scales of hydro-
logical catchment models. This paper tries to bridge
the gap between meteorological and hydrological model
scales by developing a simple multifractal downscaling
framework that preserves space-time statistical proper-
ties observed in real rainfall.

With regards to the problem of space-time analysis
and simulation of rainfall, we need to make the time vari-
able dimensionally equivalent to space variables. This
equivalence can be pursued by rescaling the time dimen-
sion by a velocity parameter U, so that rainfall can be
regarded as a three-dimensional process in a Eulerian co-
ordinate system frozen in time, where two coordinates
are for space and the third coordinate i1s the rescaled
time (Ut). In a multifractal framework one can essen-
tially distinguish two kinds of assumptions on the scaling
behavior of rainfall: the first one is that space-time rain-
fall displays self-similarity, while the second one regards
space-time rainfall as being a self-affine process. The
choice between a self-similar or self-affine multifractal
framework has important implications for the behavior
of the rescaling velocity parameter.

The self-similarity assumption corresponds to the Tay-
lor hypothesis of “frozen turbulence” [Taylor, 1938] that
has been widely applied in turbulence to characterize ve-
locity fluctuations in space from time series of velocity
measurements taken at a fixed point; in other words,
the Taylor hypothesis reinterprets the temporal varia-
tions at a fixed location as being spatial variations. In
a similar way we can introduce the Taylor hypothesis
to characterize the space-time statistical properties of
rainfall as being a three-dimensional homogeneous and
isotropic process where a measure on a scale A along
the (rescaled) time axis is the trace of rainfall on a time
7 = A/U, but at fixed location. If self-similarity holds
for space-time rainfall the process is forced by a large-
scale advection velocity that is constant at any scale A.

The second assumption is a generalization of the Tay-
lor hypothesis for self-affine processes, where a scale-
dependent velocity parameter Uy ~ A is used to rescale
the time variables. This kind of scaling is expected for
passive scalar fields that are advected by atmospheric
turbulence with an exponent H = 1/3. Tessier et al.
[1993] have proposed a theoretical framework for space-
time transformations of rainfall to interpret the anisotropy
related to self-affinity using generalized scale invariance
[Lovejoy and Schertzer, 1985; Schertzer and Lovejoy,
1985].  Assuming this theoretical framework, Marsan
et al. [1996] performed some analyses of U.S. composite
rainfall datasets derived from NWS radars, but their re-
sults have shown H & - 0.1 and seem only to display a
space-time anisotropy induced by the overall advection.
This would imply that the large-scale advection veloc-
ity plays a more dominant role in space-time rainfall
anisotropy compared to other types of self-affine forcing
such as that induced by turbulent velocity fluctuations.

This paper is organized as follows: in section 2 the

GATE dataset comprising the radar rainfall scans used
for the space-time multifractal analysis is illustrated; in
section 3 some evidence for and theoretical aspects re-
garding the multifractal nature of rainfall in time, in
space, and in the space-time domain are reviewed and
discussed; in section 4 a self-similar multifractal model
for the synthetic generation of space-time rainfall is pre-
sented; in section 5 the advection velocity of storms and
the scaling anisotropy parameter H are estimated from
rainfall sequences selected from the GATE dataset. Sec-
tion 6 is devoted to space-time multifractal analysis of
selected GATE rainfall sequences, while in section 7 the
results of simulations of rainfall in the space-time do-
main are discussed; in section 8 the conclusions of this
work are drawn.

2 Data

Statistical properties of rainfall fields are investigated
on some sequences of radar scans acquired during the
GATE campaign [Hudlow and Patterson, 1979]. Each
radar scan 1s available as 15-min rainfall rate over a
100x 100 regular square lattice with a 4-km resolution,
but only a 64x64 grid centered on each image was used
in this work, since data are really provided only within
a 200 km radius from the center of each image. The
GATE fields were collected off the eastern Atlantic coast
of Africa during two different periods in 1974: the set
belonging to the first period from 28 June to 15 July
is named GATEL (1716 frames), while the set belong-
ing to the second period from 28 July to 15 August is
referred to as GATE2 (1512 frames). As described in de-
tail in section 5, sequences of consecutive rainfall frames
were extracted from the GATE] and GATE2 datasets
(Table 2) in order to perform a systematic multifractal
analysis in the space-time domain and to calibrate the
two log-Poisson parameters of the scale covariant space-
time rainfall model.

3 Some remarks on the multifractal analysis of
rainfall

In order to perform a multifractal analysis it is necessary
to define the structure functions most appropriate to
characterize the statistical properties we are interested
in. The choice of structure functions depends on the na-
ture of the field we are analyzing and on the objective
of the analysis. While in the study of turbulent flows
the structure functions are usually defined through the
moments of the velocity gradients at different spatial or
temporal scales, in the analysis of rainfall processes 1t is
more advantageous to define structure functions through
the moments of integral measures of precipitation. In
the downscaling process, for example, we are interested
in the links between precipitation amounts over differ-
ent areas and different accumulation times, since me-
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teorological models supply rainfall forecasts over larger
space-time scales than those required by catchment hy-
drological models.

At the scales involved in the downscaling process, we
can introduce an instantaneous rainfall intensity ¢(z, v, t)
continuous in space and time [Fabry, 1996], and then de-
fine an integral measure P of rainfall over an area A, x Ay
and a cumulative time 7 as:

z+Ae y+Ay t+7
PAzyAny(xayat) = / df/ da/ dO’Z(f,g,U)(l)
x y 1

A downscaling problem can now be formulated as fol-
lows: given an amount of rainfall Pz . 7 over an area L x
L and a time scale T' corresponding to the resolution of
a meteorological model, we want to determine the prob-
ability distribution of precipitation amounts P, x,,
over spatial scales Ag X Ay and accumulation times rq
that are small enough for catchment modeling. In the
following a downscaling process will be referred to using
the short formulation Pr .7 :—= Pay ag,70-

3.1 Time modeling

We can introduce the following structure functions to
characterize the statistical properties of rainfall in time,
over fixed areas of side A:

SQ(T) = <[P)\7)\77—(l‘, yat)]g\:const> (2)

where (- -} is both an ensemble average or an average of
samples with different starting times ¢, and eventually
different locations z,y.

The multifractal analysis in time can be performed by
investigating the scaling behavior of structure functions
(2) for different time scales 7, keeping A constant. In
particular we want to identify one or more ranges of
time scales 7 where the following scaling law holds:

Sy(r) ~ 700 3)

Exponents (1(q) are called multifractal exponents if
they are nonlinear functions of the moments ¢ and do
not depend on the time scale 7: when these conditions
are verified the signal 1s said to display anomalous scal-
ing laws, i.e. multifractality, in time. Exponents {(q)
can, however, be strongly dependent on the spatial scale
A and on the type of rainfall event. The dependence
on the spatial scale A of the statistical properties in
time was investigated on the GATE datasets and the re-
sults of this analysis are summarized in Figure 1 where
the multifractal exponents (1(¢) obtained for different
areal integrations are compared. The integral measures
(1) needed for structure functions (2) were computed
avoiding missing data, but including zero precipitation
records. A convex shape in the { — ¢ plane is a charac-
teristic feature of multifractal measures, while a straight
line identifies a fractal object. The more the convexity is
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Fig. 1. Multifractal exponents (,(g) characterizing temporal scal-
ing law (3) of GATE rainfall over square areas having side A = 4,
16, 64 and 256 km.

pronounced, the more the measure is intermittent. Fig-
ure 1 shows that the more intermittent modes in time
are obtained for smaller A, and thus for smaller areas.
This dependence on the spatial scale is highlighted by
the subscript A of exponents ((q) in equation (3). We
must also expect that the multifractal behavior of time
series from tipping-bucket rain-gauges corresponds to
the limit case A — 0.

Time series of synthetic rainfall over areas of side A
can thus be generated with one-dimensional multifractal
models that are able to preserve, for any moment gq,
the same scaling (3) as estimated on real signals for the
corresponding spatial domain.

3.2 Space modeling

If a spatial field of rainfall depths accumulated over a
fixed duration 7 can be considered as homogeneous and
isotropic, the following structure functions can be de-
fined to characterize the spatial multifractal behavior:

SeN) = ([Paas(z,y, ), 0e) (4)

where (- -} is an ensemble average or an average of sam-
ples with different starting points z,y, and eventually
different times ¢.

The multifractal analysis in space consists then in the
search for one or more ranges of spatial scales A where
the following scaling law holds for structure functions
(4), keeping the accumulation time 7 constant:

Sy(A) ~ A (@) (5)

As for the time analysis, exponents (;(q) are called
multifractal exponents if they are nonlinear functions of
the moments ¢ and do not depend, in this case, on the
spatial scale A: under these conditions the signal is said
to display anomalous scaling laws in space.
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Fig. 2. Multifractal exponents (7 (g) characterizingspatial scaling
law (5) of GATE rainfall accumulated over times 7 = 15 minutes,
1, 4, and 16 hours.

The dependence of the spatial scaling law (5) on the
accumulation time 7 was recently investigated on the
GATE datasets and discussed by Deidda et al. [1999]:
rainfall fields are more intermittent in space for shorter
accumulation times (Figure 2). This dependence is high-
lighted by the subscript 7 on the exponents ((q) in (5).

Synthetic spatial fields of rainfall depths over a fixed
time 7 can be generated with two-dimensional multifrac-
tal models that are able to reproduce the scaling laws

().
3.3 Space-time modeling

We now want to formulate the problem of rainfall mod-
eling in a more general way in order to investigate the
existence of “universal” scaling laws, characterized by
multifractal exponents ((g) that depend neither on the
spatial scale A nor on the time scale 7. The search for
these “universal” scaling laws is not the only reason to
investigate the “space-time modeling” of rainfall: the so-
lution to the downscaling problem Pr 1 7 (= Pxg,xo,7
suggests this approach as well.

Indeed, one can imagine performing a downscaling
process in two steps (Figure 3.a): in the first step rain-
fall is downscaled in space Pr 1 7 :—= Py, .7 With a
2-D model that preserves the scaling laws (5) display-
ing multifractal exponents (r(¢); in the second step
the time downscaling to 7 is performed ( Py, x,7 :—
Pigro,7) Dreserving the scaling (3) with multifractal
exponents (y,(q). Although similar double-step proce-
dures have been already applied to space-time disag-
gregation of rainfall using, for example, geostatistical
techniques [Lebel et al., 1998], the application of this
procedure in a multifractal framework can cause, after
the second step, the imposed scaling in space to be lost.

In a similar way (see Figure 3.b) one can downscale
rainfall first in time Pr p 7 :— Pr 1 7, (preserving the

scaling (3) with multifractal exponents {z(¢)) and then
in space Pr 1 -, i—> Piy a7 (Preserving the scaling (5)
with multifractal exponents (,(¢)), but at the expense
of losing the scaling in time.

With a direct “space-time modeling” of rainfall (Fig-
ure 3.c) using 3-D multifractal models we can try to re-
produce the statistical properties of real rainfall for any
intermediate scale A (Ag < A< L) and 7 (np < 7 < T).
Again, after having eliminated the dependence of mul-
tifractal exponents on the spatial extension or on the
accumulation time,; we can better investigate how differ-
ent kinds of precipitation event or simply the large-scale
rain rate can affect the statistical properties.

The problem of space-time modeling is addressed here
for both self-similar and self-affine rainfall. In both
cases precipitation fields are assumed to be homoge-
neous and isotropic in space. In the first case, the tem-
poral anisotropy can be eliminated by a rescaling di-
mensional parameter, i.e. the advection velocity, that
is kept constant throughout a wide range of scales; in
the second case, a scale-dependent rescaling velocity is
used.

Space-time rainfall displaying self-similarity

When the anisotropy between space and time is only
related to the overall advection, a simple way to address
a space-time analysis and simulation of rainfall is to as-
sume self-similarity and consequently to rescale the time
domain with the advection velocity U of the precipita-
tion patterns, thus making the time and space scales
equivalent. This approach requires verification that the
Taylor hypothesis holds for rainfall fields and that sta-
tistical properties along the (rescaled) time dimension
are the same as along any spatial dimension. In other
words, after having rescaled the time dimension, rainfall
fields must be isotropic in each of the three dimensions:
two for space, one for time rescaled with U.

If self-similarity holds, we can introduce the following
structure functions to characterize the statistical prop-
erties in time and space:

Se(A) = ([Panr=ajo(z,y,1)]") (6)

where (-} is both an ensemble average or an aver-
age operator over samples with different starting points
x,y,t in the space-time domain.

After having estimated the advection velocity U, the
multifractal analysis in the space-time domain consists
on the search of one or more ranges of spatial scales A
(and the corresponding time scales 7 = A/U) where the
following scaling law holds for structure functions (6):

Sy(A) ~ AC) (7)

Analogously to the space and time analyses, rainfall
can be considered a three-dimensional self-similar mul-
tifractal process if at least one range of scales A is found
where the advection velocity U is constant and the scal-
ing law (7) holds with exponents ((¢) that are nonlinear
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Fig. 3. Different approaches to space-time rainfall downscaling.
a. Rainfall is first downscaled in space from areas of side L to
areas of side Ao (Pr 1,7 :— Pagy,x,,7) and then in time from T
to 70 (Pxg, 20,7 :— Prg,ro,m). b. Rainfall is first downscaled
from time T to 79 (Pr, 1,7 :— Pr,1,7,) and then in space from
scale L to scale Ao (Pr 1,7, :— Pxg,Ag,m) € Direct space-time

downscaling (Pr 1,7 :— Pag,ag,70)-

functions of the moment ¢ and depend on neither the
spatial scale A nor the time scale 7 = \/U.

Space-time rainfall displaying self-affinity

A multifractal analysis of space-time rainfall display-
ing self-affinity can be performed by introducing a scale-
dependent velocity parameter Uy ~ Af. Depending on
the value taken by the scaling anisotropy exponent H,
the following scenarios are possible: i) H = 0: the ve-
locity parameter is constant at any scale and the Taylor
hypothesis holds; this is the trivial case of self-similarity
discussed above;ii) H > 0: the scale-dependent velocity
parameter Uy increases with A; this is the case, for in-
stance, of a passive scalar advected by turbulence, where
we must expect H & 1/3;iii) H < 0: velocity increases
at smaller scales.

Let us now consider a discrete set of spatial scales
Ap = L0, where b > 2 is called the (spatial) branch-
ing number. The scale-dependent velocity can be writ-
ten U, = Uy, = Upgh="H . The traveling time needed
to advect a quantity along a spatial scale A, is thus
Tn = A /Un = (L/Uo)b_”(l_H), meaning that the dis-
crete set of time scales 7, = Tb; ™ to be considered in
the space-time multifractal analysis can be obtained by
introducing a new (temporal) branching number b, =
b(1=H) which for H > 0 or H < 0 can be respectively
less or greater than the spatial branching number &.

After having estimated both the exponent H and the
parameter Uy, we can investigate the existence of one
or more scaling regimes (7) for the following structure
functions:

Sy(A) = ([Parr=ajos (2,0, 1)] ) (8)

An estimate of the scaling anisotropy exponent H
can be obtained by comparing one-dimensional temporal
power spectra F(f;) and one-dimensional spatial spec-
tra, E(fs) or E(f,). For a multifractal field we must
expect that these spectra follow power-law functions of
frequency f; and wave-numbers f, or fy:

E(f)~ 17 B~ 1 E(fy) ~ £7(9)

Due to the self-affinity we must also have the following
equivalences:

E(b fy)
E(ft)

E(bf.)
E(fe)

E®fy)
E(fy)

(10)

Recalling the relation between the spatial and the
temporal branching numbers, equations (9) and (10)
yield byt = p=5t(1=H) = p=%= = p=%v 50 that an es-
timate of the parameter H can be obtained as H, =
1 —sg/s¢ or Hy = 1—s,/s;. If isotropy in space holds,
we must find H, = Hy, = H.



Journal: Water Resources Research
MS No.: 7777
First author: R. Deidda

4 A scale covariant model for space-time rain-
fall downscaling

A Space-Time RAINfall (STRAIN) model is proposed

for hydro-meteorological applications such as rainfall down-

scaling from the large scales of meteorological models to
the scale of interest for rainfall-runoff processes. The
model is based on the following assumptions: i) rain-
fall fields are isotropic and statistically homogeneous
in space; ii) self-similarity holds, so that, after having
rescaled the time by the advection velocity U, rainfall is
a fully homogeneous and isotropic process in the space-
time domain (Taylor hypothesis); iii) statistical proper-
ties of rainfall are characterized by an “a priori” known
multifractal behavior that is determined by the multi-
fractal analysis of observed space-time rainfall. The es-
timation of the space-time multifractal properties from
measured rainfall fields will be addressed later in this
paper. The model presented here is a generalization of
the multidimensional model by Deidda et al. [1999] for
the case of space-time rainfall generation and includes
scale covariance by means of an infinitely divisible log-
Poisson distribution [Dubrulle, 1994; She and Leveque,
1994; She and Waymire, 1995].

A synthetic space-time rainfall intensity field é(z, v, ?)
with (z,y) € [0,L]? and ¢ € [0,7], where T = L/U,
is obtained as a wavelet expansion with coefficients ex-
tracted by a stochastic cascade:

N 27-12/-129-1

$ ya Z Z Z Z aj, ke kyky 1/).7 ko ky

§=0k,=0ky=0%k,=0

where j is the cascade level index, varying from 0 (first
element) to N (number of cascade levels); ks, k, and
k: are position indexes on the space-time domain where
the signal is generated; ¥ . x, . (2, y,1) is a wavelet on
level j with position indexes kg, ky, k¢; @ &, &,k 15 the
coefficient extracted from a stochastic cascade.

The three-dimensional wavelets ¢(xz,y,t) are defined
as a product of three one-dimensional basis wavelets
U(z), positive definite and integrable for z € [0, L] and
zero elsewhere:

V) ko by ko

The normalization in the modulus of the basis func-

(x,y,1) = 2%W(20 o —ky LYU (X y—ky L)W (2 Ut —ky L )( )A meme

1966]; each son o g, 1, k, at the j-th level is obtained
multiplying the corresponding father at level j—1 by an
independent and identical distributed random variable
7, called the generator:

O oy oy ot = TG =1 k) 2,k 2,50/ 2 (14)

Ensemble averages of ¢-moments of random variables
« can be related to the statistics of the generator:

q _ 7 _ 4=
O by by ke = ¥ = X7 (15)

Letting Prr 7 = fo dx fo dy fo dti(z,y,t) be the
integral of the synthetic signal on the domain of gener-
ation, the first term of the random process must be:

Pror
l l 1
> im0 2777 o

Structure functions S,(A) of synthetic precipitation
(11) are defined as in equation (6):

_ < [ /:“ i [ /:“/U a i(e, >] > an

-} is computed over all

(e X =

where the space-time average (- -
starting points (&,6, o).

After some computations it can be proved [Deidda
et al., 1999] that these structure functions obey the scal-
ing law (7) with expected multifractal exponents {(q)

(@, y,1)(11) depending only on the ensemble averages of the mo-

ments of the generator 7:

C(q) = q(3 +1ogy7) —logy n? (18)

Using the Cauchy-Schwarz inequality it can also be
proved that ((q) is a convex and nonlinear function of
the moments ¢, so the model is suitable for generation
of multifractal fields. The choice of probability distrib-
ution for the random generator n characterizes the mul-
tifractal behaviour and the scale covariance of synthetic
signals. In this work an infinitely divisible distribution,
i.e. the log-Poisson distribution, 1s used:

g

Ply=m) = (19)

m!

tion W(z) assures the normalization of each wavelet ¢(z, y, ), where A and [ are constant parameters, while y is a

defined by the above equation. As basis we can use a
Gaussian function:

) cexp —%(%)2 z €0, L]
o {reba] senn

where p = L/2, 0 = 0.15L and ¢ = 1/(c/27) is a
normalization constant.

The random cascade is constructed using a multiplica-
tive process [Monin and Yaglom, 1971, 1975; Yaglom,

Poisson distributed random variable with parameter c:
Ely] = ¢. The g-order moment of the log-Poisson dis-
tribution is thus 7?7 = exp [¢A + ¢ (8% — 1)] and the ex-
pected scaling of synthetic fields can finally be evalu-
ated:

q(B-1)—
In2

(8’ -1

Clg) =3q+c (20)

where the multifractal exponents ((¢) depend only on
the parameters ¢ and 3. In order to display a scaling
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regime in synthetic fields, parameters ¢ and § must be
scale-independent.

Estimates of the model parameters ¢ and § can be
obtained by solving the following minimization problem:

[dq) - <<q>r o)

o(q)

where f(q) are the sample multifractal exponents, ((¢)
is the theoretical expectation (20), and o(q) = ¢ — 1
is a weight that accounts for the estimation error, i.e.
the standard deviation of ((¢). Some sets of numerical
simulations were performed with the model presented
here with the aim to establish how the standard devia-
tion of ((¢) varies with ¢. Results, not presented here,
have shown that o(¢q) ~ (¢ — 1) holds with a very good
approximation independently of parameter values and
field resolution.

5 Advection velocity computation and rain se-
quences selection

The first part of this section is devoted to the estimation
of the overall advection velocity of GATE rainfall fields
in order to select some sequences for which to perform
a self-similar multifractal analysis, assuming temporal
anisotropy due only to the storm advection. An inves-
tigation of temporal anisotropy induced by self-affinity
is also addressed at the end of the section.

The advection velocity U is estimated here using the
tracking techniques discussed in detail by Johnson and
Bras [1979]. In particular, the centroid method and
three composite matching functions are applied with
slight modifications to account for the discrete space-
time resolution of the GATE dataset. With the cen-
troid technique, storm advection is defined by the move-
ment of the centroid X(¢),Y(¢), while the other three
approaches consist in determining the space shift that
maximizes the average cross products or minimizes the
square or absolute differences between rainfall fields at
different times.

Centroid (C0):

<xP>\I7>\ny(x, Y, t)>

(yProryr(2,9,1))

X(t) = Y(t) =

<P>‘Iv>‘yx7'(x’ Y, t)>

Composite matching functions (C1,C2,C3):

<P)\Iy)\y77—(l‘, Y, t)>

Table 1. Mean advection velocities U in km h—! estimated from
GATE1 and GATE2 datasets by applying C0, C1, C2 and C3 pro-
cedures to 15-minute frames (delays from 15 minutes to 2 hours)

and to 1-hour frames (1 and 2 hour delays).

GATE1
15-minute frames
delays 15’ 30’ 45’ 1h 1h15" 1h30° 1h45’ 2h
Co 40.6 31.1 26.8  23.9 21.8 20.2 18.9 17.7
C1 14.9 204 234 24.7 24.5 24.5 24.4 24.6
C2 185 24.7  26.1 25.8 24.8 24.6 23.6 23.5
C3 14.3 18.2 19.3 214 21.8 22.2 22.4 22.7
GATE2
15-minute frames
delays 15’ 30’ 45’ 1h 1h15" 1h30° 1h45’ 2h
Co 35.8 274 233 21.0 19.2 17.9 16.7 15.7
C1 14.0 17.5 21.1 24.5 25.6 25.8 26.0 25.6
C2 15.7 221 28.3  29.8 30.0 29.5 28.7 27.2
C3 12.9 155 19.0 23.9 26.7 27.4 27.3 26.2

the space and time resolution of the GATE fields, ¢,
JAy and kr are thus the spatial shifts and time delay
between two matching frames, while Py  x, -(x,y,1) is
the integral precipitation (1) on the grid-box at position
(z,y) and time ¢.

The storm velocity components are obtained by u,(¢) =
(X4 kr)— X ()] /krand u,(t) = [Y(t+ k7)) =Y ()] /k
for the centroid method CO, and by u,(t) = iA;/k7 and
uy(t) = jAy/kr for the other three techniques, where
(1,J) is the couple of spatial shift indexes that maximizes
the composite matching function C1 or that minimizes

C2 or C3.
The averages of the storm velocities U = (u(t)), where
u(t) = y/ui(t) +ui(t), were computed for the GATE

fields applying the described techniques for delays k7
from 15 minutes to 2 hours. As shown in Table 1 the es-
tgl)cates of U vary from 12 to 40 km h~': while the
entroid technique estimates the higher velocities for
smaller delays, the composite matching functions sup-
ply the higher velocities for larger delays. Since these

estimates can be influenced by the movements of sin-

CLi(i, j, k) = <P>\I,>\y,7(l‘, Y, )P ay, (2 +ide, y + Ayt + kgl%%@f@, while we are interested in the overall advection

CQt(iaja k) = <|:P>\z,>\y,7'($a yat) - P)\z)\y,T(x + ZA@‘; Yy +.7A

velocity, the same techniques were also applied to one-

5
¥ ﬂrdjdﬁagtc‘;rfﬁﬂ}ned fields. In such a way the influence of

cell movement is smoothed, since the life-time of con-

C34(i,5,k) = <|P>\Z7>\y77_(x’ Y, t) — Paga, (@4 idg, v+ j/\y,t\LP%ir\ﬁﬁDC@iE)iS about 30-40 minutes. The results of this

where (- -} denotes a spatial average with respect to the
z and y axis, A\, = Ay = 4 km and 7 = 15 minutes are

new analysis are presented again in Table 1 for delays
of one and two hours and show that the range of mean
advection velocity is now reduced to 12-24 km h~1!.

T
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Due to the discrete resolution in time (7 = 15 min)
and space (A; = Ay = 4 km), the GATE datasets allow
us to use only some discrete velocities U to perform a
space-time multifractal analysis. In the following only
the advection velocities I/ = 16 and 32 km h™! are con-
sidered, since these values are both compatible with the
GATE discretization and with the range of estimates in

Table 1.

Let us investigate first if an advection velocity U =
16 km h™! can be assumed for a self-similar multifractal
analysis in the space-time domain. The larger spatial
scale of GATE fields is . = 64 x 4 km = 256 km, since
each frame is available on a regular grid with 64 x 64
cells of 4 km on each side. Consequently, the larger time
scale must be T'= L/U = 16 h, while the smaller scales
of space and time are the same as the original resolution

of GATE fields: Ag =4 km and 7 = Ao/U = 15 minutes.

Several 16-hour rainfall sequences, each comprising
64 consecutive radar scans, were then selected from the
original GATE datasets applying the following criteria:
i) a moving window in time, collecting 64 consecutive
frames, was used to select the strongest rainfall events;
ii) each sequence can contain no more that one missing
scan; iii) the mean 16-hour rainfall intensity on 256 x 256
square kilometers I must be larger than 0.25 mm h~!.
Some useful information on the 12 and 10 sequences,
selected from GATEL and GATE?2 datasets respectively,
are summarized in Table 2.

Table 2. The 16-hour sequences selected from GATE1l and
GATE2 datasets: F, DAY, and HH are respectively the scan num-
ber, the Julian day, and the hour of the first scan of each sequence;
I (mm h~1) is the mean 16-hour rainfall intensity on 256x 256

square kilometers. Each sequence counts 64 scans.

p©) o R(®
¢ R/(®)
o r®)

J

C

8 §

8 12 16 20 24 28 32 36 40 44 48 52 56 60
S(km)

0 4

Fig. 4. Mean autocorrelation functions along the z and y direc-
tions of the 16-hour sequences selected from the GATE dataset
(Table 2) are compared with that along the time axis rescaled

with an advection velocity U = 16 km h~1.

t-axis were compared:

_ <P>\u,>\u,7'u($’ y’t)PAu,Au,Tu ($ + 9, y’t» — F‘z

Px(é) = 2
<P>\o,>\o,7'o(xa yat)PAu,Au,Tu ($’ y+ 6’t)> - ﬂz
Py (5) = 0,2
_ <P>\u,>\o,7'o(xa yat)PAu,Au,To($’ y,t+ 6/U)> - ﬂz
pf(é) - o2

where Ag = 4 km and 7p = Ag/U = 15 minutes, {- -} is
an average in space (z,y) and time (¢), g and o2 are the
average rainfall and the corresponding variance in each

sequence.
GATE1L GATE2 THe average autocorrelation functions obtained from
‘ F ‘ DAY ‘ HH ‘ 1 ‘ F ‘ DAY ‘ HH all the selected sequences are plotted in Figure 4. In the
L | 832 | 1ss | 615 | 270 || 1 | 1186 | 224 | 413 | LORC the breakd.own of t.he Taylor. hypothesis recog-
wized by Zawadzki [1973] is not evident. For a self-
2 | 342 | 183 | 147 | 152 ) 2 | 934 | 221 | 20:00 | L@@iJar process, we expect to find, after having rescaled
3 | 1411 | 194 | 13:31 | 145 || 3 1 209 | 0:00 | #th2 time variable with the “correct” storm velocity, the
4 (1485 | 195 | 8:01 |o0ss || 4 | 73 | 209 | 18:30 | ¢qmiyalence po = p, = p; for any 4. This equivalence is
5 . 170 | 133 loss | 5 | 776 | 220 | a1s | &9F —chtly verified by the sele.cted sequences since this
atadysis has shown that the inequality p, < py < po
6 | 1549 | 196 | 0:14 | 068 || 6 | 512 | 217 | 6:59 | Gfid for each sequence and for any value of §, meaning
7 | 144 | 180 | 1544 | 0.67 || 7 | 1248 | 225 | 3:28 | GWatl in this case, rainfall is more correlated in space
s | 406 183 | 18:02 | 045 || 8 283 214 | 21:14 | adenlg the z-axis than along the y-axis, while the corre-
5 s 179 | 1945 | 044 1| o | 209 | 211 | 515 | da&jidp along the rescaled time axis is intermediate.

Brispite the fact that the GATE rainfall fields are not

10 768 187 14:16 | 0.41 10 448 216 14:44 | 0.25 . - . . . .
éxacdtly isotropic in space, since a preferential direction
11 ] 224 | 181 | 13:45 | 0.35 of mption along the z-axis was always found (p, < pr),
12 | 566 | 185 | 10:30 | 0.25 rainfall fields are often assumed as being isotropic in

For each 16-hour sequence, the following auto-correlation

functions along the z-axis, the y-axis, and the “rescaled”

space, especially for the multifractal analysis and simu-
lation with two-dimensional random cascades. If we ac-
cept the isotropy of rainfall fields in space, we can also
accept that precipitation is isotropic in the (rescaled)
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Fig. 5. Mean autocorrelation functions along the z and y direc-
tions of the 8-hour sequences selected from the GATE dataset are
compared with that along the time axis rescaled with an advection
velocity U = 32 km h—1,

space-time domain using the Taylor hypothesis with U
= 16 km h~!, since the (rescaled) time axis does not
add more anisotropy, as shown by Figure 4.

The hypothesis of a mean advection velocity U = 32
km h~! was also investigated on 8-hour sequences, each
composed of 32 radar scans: the higher resolutions are
now 79 = 15 min and A\g = Ury= 8 km. In this case
21 and 19 sequences were selected from the GATE1 and
GATE?2 datasets applying the same criteria as above
for the 16-hour sequences. From Figure b, where the
average of all the autocorrelation functions are plotted,
it is clear that the inequality p, < p, < p; always holds,
meaning that the rescaled fields are highly correlated
in the time dimension in comparison to the x and y
directions, and that a storm velocity / = 32 km h~!
cannot be applied for a self-similar multifractal analysis.

Let us now investigate if self-affinity holds for space-
time rainfall. This analysis was carried out compar-
ing the one-dimensional temporal power spectra and the
one-dimensional spatial power spectra corresponding to
each of the selected sequences of Table 2. The estimates
of the exponents s,, s, and s; in (9) together with the
estimates Hy = 1 — s; /sy and Hy = 1 — s,/s; can be
found in Table 3. Results show that there exists a great
variability in the estimates of H from each sequence and
that the estimates H, are often different from H,, mean-
ing that self-similarity is not fully verified even in space.
The averages of H are always negative and in one case
(estimate of Hy from GATE2 sequences) it is zero. To
be rigorous, one should consider space-time rainfall as
a self-affine process not only with regards to temporal
anisotropy but also with regards to the anisotropy due
to self-affinity in the # — y plane (since sy # sy). In the
sequel of this paper, however, space-time rainfall is sim-
ply approximated as a self-similar process (case H = 0)

requiring only the determination of the overall advection
velocity. This assumption is also suggested by consider-
ing that the average of the estimates of H is very small
(- 0.12), and that the advantages of the better theoret-
ical accuracy of a self-affine approach would be reduced
and perhaps nullified by the uncertainties and large vari-
ability in the estimates of both the H and Uy parameters
needed to correctly obtain the scale-dependent velocity

Ux.

Table 3. Estimates of the exponents sz, sy, and s; in (9) and
of the scaling anisotropy parameter H from each of the selected
sequences of Table 2. The last two rows contain the average u

and standard deviation ¢ of the estimated parameters.

GATE1 GATE
# ‘ Sz ‘ Sy ‘ st ‘ H; ‘ Hy # ‘ Sz ‘ Sy ‘ st
1 1.71 1.68 1.34 -0.28 -0.26 1 1.58 1.53 | 1.3
2 1.59 | 1.41 1.30 -0.22 -0.08 2 1.37 | 1.39 | 1.1
3 1.29 | 1.25 1.07 -0.21 -0.16 3 1.26 1.31 1.1
4 1.31 1.38 1.00 -0.31 -0.39 4 1.36 1.05 1.1
5 1.46 | 1.63 1.06 -0.37 -0.54 5 1.31 1.15 1.1
6 1.26 | 1.25 1.03 -0.22 -0.21 6 1.39 1.48 | 1.2
7 1.40 | 1.50 1.19 -0.18 -0.26 7 1.21 099 | 1.0
8 1.11 1.14 1.15 0.04 0.01 8 1.53 1.15 1.2
9 1.40 | 0.89 1.15 -0.22 0.22 9 1.43 1.06 | 1.3
10 1.62 1.29 1.20 -0.35 -0.08 10 1.13 | 0.86 | 1.1
11 1.52 1.08 1.09 -0.39 0.00
12 0.97 | 0.74 | 0.90 -0.08 0.17
p | 139 ] 127 | 112 | -0.23 | -0.13 || » | 136 | 1.20 | 1.2
o 0.21 0.28 | 0.13 0.12 0.22 o 0.14 | 0.22 | 0.1

6 Space-time multifractal analysis of GATE rain-

fall

The space-time multifractal analysis described in section
3.3 1s applied here to the 22 selected 16-hour rainfall se-
quences (Table 2). The analysis is performed assuming
rainfall in a self-similar multifractal framework, where
the Taylor hypothesis holds with an advection velocity
U=16kmh="'.

Structure functions (6) were computed for each se-
lected precipitation sequence for scales A ranging from
Ao = 4 km to L = 256 km, and the corresponding time
scales ranging from 79 = Ag/U = 15 minutesto T'= L/U
= 16 hours. Scaling laws (7) were found to hold with
good accuracy for each 16-hour sequence, as is shown in
Figures 6 and 7 for the second-order structure functions
Sa(A).

The multifractal exponents ((q) of equation (7) were
estimated by linear regression of the structure function
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Table 4. Results of the multifractal analysis on each sequence

of GATE1 dataset: estimates of multifractal exponents ((q); ¢

and G log-Poisson parameters that are solutions of the minimiza- 320
tion problem (21); new determination of c3; parameters keeping dope= 5 4}»_»_4_»——""—4'
#1- -
8=0.35 constant; parameters ¢ from (27) used for generation of _»f‘ﬂfﬁ——‘ * .
o -e-T -
synthetic space-time rainfall with the STRAIN model. 2809~ oot 2- 3006 542 g =
sepence 2799087
-
¢(q) log-Poisson parameters -7 N 0 _e----"""%
encet&3'5‘°p‘=_§'——> *-o
9=2 | =3 | q=4 | ¢=5 | ¢=6 B c ca5 &240 2 i .
e Y S
1 5.52 | 7.92 | 10.23 | 12.48 | 14.69 0.37 | 0.81 0.77 0.79 equence A»dog;i ?%g» -7
e
2 5.42 | 7.64 9.73 11.73 | 13.67 0.44 | 1.25 0.99 096 §_-----%7" _ s _»__.4.——"_>_1’
T S
3 5.42 | 7.70 9.88 12.00 | 14.07 0.34 | 091 0.93 0.98 _»»__-———0”" e
oot - 53 -7
4 5.39 | 7.61 9.74 11.80 | 13.82 0.35 | 0.98 0.99 1.14 equence? © oS-
e
160 T S
5 5.23 | 7.26 9.18 11.01 | 12.78 0.34 | 1.19 1.23 ]:215? -7 o= 524 -
< Seqence*”'d_oﬁ'__»——»‘*
6 || 5.35 | 7.51 | 9.55 | 11.52 | 13.45 || 0.38 | 1.13 || 1.06 | 1g22 IO e
- o= 516 ST S
7 || 524 | 7.25 | 914 | 1095 | 1271 || 037 | 1.30 || 1.24 || 1.220 D G S &
I T L -
8 5.16 | 7.01 8.66 10.21 | 11.72 0.44 | 1.83 1.44 1.32 sgqa'\ce#9‘_5\?&;_:_?'}7—>“""'<'_44’—
9 || 517 | 7.09 | 890 | 10.65 | 12.37 || 034 | 1.31 || 1.34 || 133 | .. -e---""T" Y
oonio-dee= S g oo
10 5.06 | 6.93 8.70 10.43 | 12.13 0.26 | 1.17 1.43 1.34 R AeESt o
- " -
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Sq(A) versus A in the log-log plane. They are presented log A
in Tables 4 and 5 for each sequence of GATEl and
GATE2. Sample multifractal exponents (fI'OHl qg=2to Fig. 6. Log-log plot of the second-order space-time structure

6) were then used to estimate the two log-Poisson pa-
rameters ¢ and G of the STRAIN model by solving the
minimization problem (21). As an example, in Figure 8
the sample multifractal exponents estimated for the se-
quence b of GATE] are plotted together the theoretical
expectation (20) having parameters § = 0.34 and ¢ =
1.19 that are solutions of the minimization problem (21).
The estimated parameters from all the GATE sequences
are presented again in Tables 4 and 5 and are also plot-

Table 5. Same as Table 4, but for GATE2 sequences.

functions Sz () (equation (6)) of GATE1 sequences versus A scales
ranging from Ao = 4 km to L = 256 km (the corresponding time
ranges from 15 minutes to 16 hours). Structure functions have
arbitrary units to allow displaying of all sequences in the same
graph. For each sequence the multifractal exponent ((2), i.e., the

slope of the regression line is shown.

ted in Figure 9 versus the averages of the 16-hour rainfall
intensity /. While the ¢ parameter decreases as large-
scale rainfall rate increases, the 8 parameter seems to
vary around its mean value # = 0.35 independently of
the amount of rainfall.

: Imprder to investigate the dependence of the ¢ para-
¢(q) log-Poisson parameters . . . C .. .
mebet on the rainfall intensity, the minimization prob-
9=2 | 9=3 | 9=1 | 9=5 | 9=6 B ‘ 5 || e ([P1) was solved again only for the ¢ parameter, keep-
1 537 | 7.57 | 9.68 | 11.73 | 13.74 || 0.34 | 0.99 || 1.01 || P the G parameter constant and equal to the mean
2 | 518 | 7.16 | 9.03 | 10.82 | 12.56 || 0.32 | 1.19 || 1.20 || Yalug 0.35. These new estimates of the ¢ parameter,
3 || 533 | 746 | 943 | 1127 | 13.04 || 043 | 140 || 1.1 || F2REf ¢35, are presented in Tables 4 and 5 and are also
totted in Figure 10, where the dependence of the new
4 5.20 | 7.20 | 9.10 | 10.92 | 12.70 0.32 | 1.18 1.26 le]fQ . . . .
sitimjlates cg; on the mean intensity I is now more evi-
5 || 531 | 749 | 9.58 | 11.62 | 13.62 || 0.28 | 0.90 || 1.06 || #&ft |fhan in Figure 9. The following relation was used
6 || 5.32 | 7.47 | 9.51 | 11.48 | 13.41 || 0.34 | 1.07 || 1.08 || t@express this dependence:
7 5.13 | 6.99 | 871 10.33 | 11.92 0.37 | 1.51 1.43 1.31
&= glexp(—yI) + coo (27)
8 5.25 | 7.33 | 9.32 | 11.24 | 13.10 0.30 | 1.03 117 1.37
. . . . . -1
9 || 5.14 | 7.06 | 5.86 | 1060 | 12.29 || 052 | 1.28 || 1.36 || 1.3 jren expressing the mean rainfall intensity [ inmmh™",
the—fpllowing parameters, obtained by a best fit proce-
10 5.12 | 7.02 | 8381 10.54 | 12.22 0.31 1.25 1.38 1.42 . . . .
diifellapplied to the estimates cz5, can be used in (27):
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Fig. 7. Same as Figure 6, but for GATE2 sequences.

a = 0.907, v = 0.764 and the asymptotic value co, =
0.675. These values were used to plot (27) in Figure 10
and to determine the ¢ parameters for the simulations of
synthetic space-time rainfall presented in next section.

7 Rainfall generation in the space-time domain

The STRAIN model was systematically applied to the
generation of space-time rainfall using a constant veloc-
ity U = 16 km h™! to rescale the time domain. A set
of 100 synthetic 16-hour sequences were generated for
each of the 22 selected sequences from GATE datasets,
providing a total of 2200 realizations. The parameter
4 was taken constant and equal to 0.35 for all genera-
tions, while the values of the ¢ parameter used for each
set of 100 generations are reported in the last column of
Tables 4 and 5 and are obtained from (27), where the
mean rainfall intensity I comes from the corresponding
GATE sequence (Table 2). The expansions (11) were
truncated at the seventh fragmentation level (N = 7)
and then reaggregated one level up.

The space-time structure functions (6) and the mul-
tifractal exponents ((¢) in (7) were estimated on each
synthetic field. Figure 11 illustrates that the multifrac-
tal behaviour of the observed GATE sequences is well

11
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Fig. 8. Sample multifractal exponents estimated for the sequence
5 of GATEL1 (circles) are fitted by the theoretical expectation (20)
of the STRAIN model (continuous line) having parameters 5 =
0.34 and ¢ = 1.19 that are solutions of the minimization prob-
lem (21).

reproducted by synthetic sequences.

A “control” set of 100 simulations were also gener-
ated with parameters § = 0.34 and ¢ = 1.18, obtained
from (21) when using the averages of the multifractal
exponents of the 22 selected sequences (Tables 4 and
5): €(2) = 5.24,((3) = 7.29, ¢(4) = 9.22, {(5) = 11.07,
¢(6) = 12.89. This control set will be used in the fol-
lowing to investigate how much the statistical proper-
ties of space-time rainfall are forced by the large-scale
rain rate. Although generated with parameters 5 and
¢ corresponding to I = 0.766 mm h=! in (27), before
each comparison the contol set sequences are rescaled
to the same amount of rainfall of the comparing GATE
sequence. This rescaling does not affect the multifrac-
tal behaviour of the control set, but allows quantitative
comparisons.

Figure 12 shows the comparisons between the coef-
ficients of variation, skewness, and kurtosis, computed
on each of the 22 GATE sequences at the higher resolu-
tion (4 km, 15 minutes) and the averages of the corre-
sponding statistics computed on the 22 sets of synthetic
rainfall. Figure 12 illustrates that the decreasing trend
of the observed statistics as the average rain intensity
I increases is reproduced by the sets of synthetic fields.
It is also apparent that taking the same model parame-
ters for different large-scale rain rates, as in the control
set (whose statistics are also reported in Figure 12 with
dashed lines), we cannot reproduce this feature.

The cumulative distribution functions (CDFs) of rain-
fall intensity ¢ at the higher resolution (again 4 km,
15 minutes) were also computed from each GATE se-
quence and compared with the 90% confidence limits
obtained by the corresponding sets of synthetic rainfall.
Figures 13 and 14 show that in most of the cases the ob-
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served CFDs are within the 90% confidence limits and
that the STRAIN model is able to correctly reproduce
also the most rare and intense rain rates. From Fig-
ures 13 and 14 it is also apparent that sometimes the
highlighted dependence of the ¢ parameter on the large-
scale rainfall rate I, as expressed by (27), is not able
to completely explain the variability of the statistics of
the observed rainfall, meaning that a better determi-
nation of model parameters based also on the type of
precipitation event could be necessary. For instance, if
we consider sequences 4 and 5 from GATEL we can ob-
serve that, although in both sequences the large-scale
rainfall rate is I = 0.88 mm h=!, so that (27) gives ¢ =
1.14, in the first case the right-hand tail of the CDF is
over-estimated by synthetic rainfall, while in the second
case 1t 1s under-estimated. Similar considerations can
be made also for other sequences, for instance number
6 and 7 from GATE] have respectively I = 0.67 and
I1=0.68, giving ¢ = 1.22 from (27); while the CDF of se-
quence 6 exceeds of the 90% confidence limits, the CDF
of sequence 7 is well-reproduced by synthetic rainfall.

In Figure 15 the CDF of the first sequence from GATE1
is compared with the 90% confidence limits obtained by
the control set of synthetic rainfall. Analyzing the right-
hand tail of the CDF in Figure 15 it is apparent that the
most intense rain rates in the control set are about three
times bigger than those in the observed sequence. The
comparison with Figure 13 points out again the need to
downscale rainfall using model parameters that change
at least with the large-scale rain rate, as in (27).

The last comparison between observed and synthetic
space-time rainfall addresses the feature of the areal re-
duction factors (ARFs). There are several definitions
of ARFs; the most widely applied are: i) the ratio be-
tween average rainfall depth over an area, for example a
catchment, and the maximum rainfall depth measured
in a point within the considered area, for example by a
rain-gage (fixed-area ARFs); and ii) the ratio of aver-
age storm depth over an area, delimited for instance by
rainfall isohyets, and the maximum rainfall depth at the
storm center (storm-centered ARFs). The comparisons
discussed here regard fixed-area ARFs, but, since point
rainfall is not available for GATE fields, we considered
instead the rainfall depth at the higher spatial resolution
(4 km x 4 km).

Let hyxr = P;MA’T//\2 be the average rainfall depth
over an area A X A accumulated over a time 7. ARFs are
computed from both observed and synthetic sequences
as a(A) = hA,A,r/ilAD,AD,T, where /Aw\m)\DVT is the max-
imum rainfall depth in the fixed accumulation time 7
over an area Ag X Ag (in our case A\g = 4 km) embedded
in A x A. Figure 16, where the average ARFs of the 22
observed GATE sequences are shown to be very close
to those obtained by the 2200 synthetic ones, illustrate
how the STRAIN model is also able to reproduce the
observed ARFs for different accumulation times 7.
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8 Summarizing conclusions

The development of a space-time rainfall downscaling
procedure is crucial in coupling meteorological to hy-
drological models, since we have to fill the gap between
the large scales of space and time over which meteorolog-
ical models supply rainfall predictions and the natural
scales of basins’ response as required by hydrological
rainfall-runoff modeling. The STRAIN model is sug-
gested here as a useful tool for simulation of space-time
rainfall displaying self-similarity, scale covariance and
the same multifractal behavior as the observed precip-
itation. The model can be tuned by three parameters:
the overall advection velocity U, and the log-Poisson
parameters ¢ and S.

It was pointed out how the multifractal behaviour of
rainfall depth in space depends on the accumulation
time, and, similarly, how the set of multifractal expo-
nents that characterize the anomalous scaling of rainfall
in time depends on the spatial extension. A direct space-
time rainfall downscaling enables determination of sets
of multifractal exponents not dependent on the spatial
extension and on the accumulation time.

In principle, the downscaling problem can be addressed
in a multifractal framework by assumingspace-time rain-
fall to be a self-similar or a self-affine process. Following
the former approach one only has to determine the over-
all advection velocity of the storm, while the self-affine
multifractal modeling requires estimation of the scaling
anisotropy parameter H as well. In GATE datasets, this
last parameter was found to be negative on average, but
not very different from zero, meaning that space-time
rainfall can be approximated by a self-similar multifrac-
tal process. The simpler self-similar approach, followed
in this paper, 1s also suggested by the great variability
and uncertainty in estimating both the advection veloc-
ity and the parameter H.

A space-time multifractal analysis of selected GATE
sequences has revealed that a very good scaling of struc-
ture functions holds from 4 to 256 km in space, and from
15 minutes to 16 hours. A dependence of the multifrac-
tal behavior of space-time rainfall on the large-scale rain
rate was then highlighted and a very simple equation re-
lating the ¢ parameter to the average rainfall intensity
I at the larger scales of space and time was proposed.

The STRAIN model was systematically applied to
downscale the GATE selected sequences, keeping con-
stant the advection velocity U = 16 km h™' and the
parameter 3 = 0.35, and varying the ¢ parameter ac-
cording to the average rainfall intensity I observed in
each GATE sequence. The comparisons between ob-
served and synthetic rainfall presented in this paper,
in terms of multifractal behaviour, of moments of rain-
fall at the lower scales, of cumulative distribution func-
tions, and areal reduction factors, have shown that the
STRAIN model is able to correctly reproduce many of
the statistical properties observed in GATE rainfall and
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their dependence on the large-scale rain rate. It was also
pointed out that space-time rainfall sequences character-
ized by different average rainfall intensities cannot be
downscaled using the same model parameters, and that
a better explanation of the variability in the observed
statistics could be pursued by refining the dependence
of the model’s parameters not only on the large-scale
rain rate, but also on the type of precipitation event.
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Fig. 9. Plot of log-Poisson coeflicients ¢ (circles) and § (squares),
solutions of the minimization problem (21), versus the 16-hour
rainfall intensity I over 256 X 256 square kilometers for the GATE1
(empty symbols) and GATE2 (filled symbols) sequences. The

dashed line is drawn for the mean value 8 = 0.35.
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Fig. 10. Plot of log-Poisson coefficients c35, solution of the min-
imization (21) keeping $=0.35 constant, versus the 16-hour rain-
fall intensity I over 256X256 square kilometers for the GATE1
(empty circles) and GATE2 (filled circles) sequences. Continuous
line represents a best fit regression and is plotted using equation

(27).
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Fig. 13. Cumulative distribution functions F'(¢) of rainfall rate
i (mm h~1) at higher resolution (4 km X 4 km, 15 minutes) ob-
tained from each GATE1 sequence are compared with the 90%
confidence limits estimated from synthetic fields, generated with
parameter 8 = 0.35 and c from equation (27). Points of CDF's are

averages over 100 sorted rain rates.
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