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abstractKaralis is a parallel MPI, Finite-Volume, multiblock CFD code which solves thefully compressible Euler and Navier-Stokes equations where all couplings betweendynamics and thermodynamics are allowed. This is the most general mathematicalmodel for all uid ows.The code solves the coupled system of continuity, momentum and full energyequation for the velocity components, pressure and temperature. Once u, v , w , p andT are updated, arbitrary thermodynamics is supplied. The second order Roe's upwindTVD scheme is used to compute convective uxes through the Finite-Volume cellinterfaces. A V-cycle Coarse Grid Correction Multi-Grid algorithm is used, togetherwith a 5-stage Runge-Kutta explicit time-marching method, to accelerate conver-gence to a steady state. This formulation, typical of aerodynamic ows, shows aneccellent e�ciency even for incompressible ows as well as for ows of incompress-ible uids (typically buoyancy ows), once equipped with a preconditioner. Merkle'spreconditioner has been chosen because it can be easily formulated for arbitraryequations of state given as a functional relation of two independent thermodynamicvariables (typically the pressure p and the temperature T ), or even in tabular form,read in as an input �le and used with bilinear interpolations.Karalis implements two among the most popular turbulence models, namely theone-equation model by Spalart and Allmaras and the two-equation model by Wilcox,the ��! model, which allow a good compromise between accuracy, robustness andstability of turbulent calculations.Code validation is presented for some typical benchmark test cases of incom-pressible uid dynamics. Comparison with solutions obtained with a few popularcommercial CFD codes is also presented.
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2 Fluid Dynamics and Combustion Area1 Mathematical model1.1 The Navier-Stokes equationsThe code Karalis solves the so-called fully compressible Navier-Stokes system ofequations. @�@t + @@xj (�uj) = 0@�ui@t + @@xj (�uiuj + �i jp � �i j ) = �gi@�E@t + @@xj (�Huj � ui�i j + qj) = � _QThe three equations of continuity, momentum and energy represent the basicprinciples of mechanics and thermodynamics, namely the conservation of mass, New-ton's second law of dynamics and the conservation of the total energy. The equationsare written in terms of the so-called conservative variables (density �, total energyper unit volume �E, and the three components of momentum �ui) as the depen-dent variables.1 Total enthalpy per unit volume is represented by �H � �E + p.Constitutive relations are given by Newton's and Fourier's laws of viscosity and heatconductivity, which represent a general model for the majority of uids of engineeringinterest:�i j = � @ui@xj + @uj@xi !� 23��i j @uk@xkqj = ��@T@xjThe above equations relate the viscous stress tensor �i j and the conductive heatux qj to the velocity gradient tensor and to the temperature gradient respectively.They represent the two physical di�usion terms, namely the molecular transport ofmomentum and energy, and allow a quantitative correct evaluation of the thermody-namic irreversible processes that occur in real ows, satisfying the second principleof thermodynamics.1The Einstein tensor notation is used whenever possible, with subscipts i ; j and k which can assumethe values 1, 2 and 3. Whenever a term contains twice the same index, this implies summation overthat index. Alternatively, the cartesian notation will be used (u1 � u, u2 � v and u3 � w)



CRS4 3The total energy per unit mass E includes the internal and the kinetic energy aswell as the gravitational potential � = gz . The system is fully coupled by a generalequation of state of the forma = a(p; T )where a represents any thermodynamic variable, such as density, enthalpy or speedof sound for instance, expressed in terms of pressure p and temperature T .1.2 Fluid and ow compressibilityThe above system of equations is the most general for it allows the reversible ex-change between kinetic energy and internal energy, which can occur at the expenseof density variations, thus including the uid compressibility. This mechanism, hiddenin the formulation of the equations, can however be clearly identi�ed by generatinga transport equation for the kinetic energy V 2=2 (making the dot product of thevelocity vector and the momentum equation) and subtracting it from the total en-ergy equation to get an equation for the internal energy e. The exchange term isresponsible for the coupling between momentum and total energy equation.Another way to identify the actual ow-uid compressibility is by di�erentiatingthe equation of state:D�Dt =  @�@p!T DpDt +  @�@T !p DTDtwhich allows to relate the density changes associated to a uid particle moving withthe ow, to pressure and temperature changes, rather than to a particular term in thepartial di�erential equations. The two partial derivatives of the density represent theuid compressibility coe�cients at constant temperature and at constant pressurerespectively (often represented by �� and ���).Incompressible uids have � = � = 0, which implies that the density is constantthroughout. This in turn inhibits the possibility of exchange between kinetic andinternal energy, and the energy equation can be dropped out of the system. On theother hand, in typical compressible ows of gas dynamics, density changes occur inassociation with pressure changes, through the compressibility coe�cient at constanttemperature: @�@p!T = � � � 1c2 =) D�� � M2where c is the speed of sound andM the Mach number. Therefore, density changes inows of compressible uids generally occur if the uid speed is high enough comparedto the local speed of sound.



4 Fluid Dynamics and Combustion AreaA third class of uid ows is represented by buoyancy ows of incompressibleuids. Typical buoyancy ows occurs at very low speeds, compared to the localspeed of sound. Due to a volumetric heat addition density changes are entirelydue to the temperature changes via the compressibility coe�cient �, and not tothe high uid speed. It is for this reason that buoyancy ows are mistakenly called"incompressible", with the true meaning of very low Mach number ows. As a resulthowever, the exchange mechanism between internal and kinetic energy, switched onby the gravitational source term of the momentum equation, is the only responsibleof uid motion and the whole system is back fully coupled. A typical equation ofstate for buoyancy ows can be approximated as � = �(T ), neglecting the very smalle�ect of pressure changes. The most general model for buoyant ows is to add thebody gravitational force as a source term in the momentum equation, as �gi , where giis the gravity vector component in the i- direction. The hydrostatic pressure gradientcan be separated from the the total pressure gradient and expressed as ��0gi , where�0 is evaluated at a reference state; thus the source term simply becomes (� ��0)gi . Keeping the compressibility coe�cient � constant in a narrow range, a generalequation of state can be derived in the form � = �(T ) = �0 exp[�� (T � T0)].Expanding in Taylor series for small values of the argument � (T � T0), the so-called Boussinesq approximation can be derived, the source term being (� � �0)gi� ��0gi�(T � T0). With this modi�ed form of the source term the density canbe kept constant throughout the domain. These alternative formulations are allimplemented in Karalis.1.3 Low speed ows and preconditioningThough the system of the Navier-Stokes equations is parabolic from a mathematicalpoint of view, at high Reynolds number regimes the viscous di�usion terms, associ-ated with the irreversible transport phenomena due to viscosity and heat conductivity,play the minor role of re-distributing energy and momentum among the streamlines.These phenomena are essentially con�ned within the boundary layers, while the coreow retain the hyperbolic character of the advection dominated ows typical, assaid, of high Reynolds number regimes. The Euler system of equation, the ideal andreversible portion of the whole system of the Navier-Stokes equations, represents thepure wave propagation nature of uid ows. The eigenvalues of the Euler matrix ofthe equations identify the di�erent wave speeds which govern conservation of mass,momentum and energy, which are represented by the particle speed (uid velocity)and by the two acoustic speeds.In supersonic ows all the eigenvalues of the Euler matrix are of the order ofthe local velocity, and the system is well-conditioned. In transonic ows one of theacoustic speed approaches zero, while the other eigenvalues are all of the order of



CRS4 5the local speed of sound; the matrix of the system becomes ill-conditioned. Asthe Mach number approaches zero the acoustic perturbation speed is much biggerthan the propagation velocity of the perturbations moving with uid particles. Inmathematical words, as the uid speed becomes lower and lower the eigenvalues ofthe system of equations become very much spread giving rise to an ill conditionedEuler matrix at very low speeds: the ratio of acoustic speed to particle speed growsunbounded. In order to apply the numerical fully compressible formulation also toincompressible ows (or to ows of incompressible uids) and to transonic ows,a preconditioning techniques must then be used. Multiplication of the matrix ofthe system of the Navier-Stokes equations by a preconditioning matrix arti�ciallychanges the characteristic speeds (matrix eigenvalues) at which signals propagatein uids: the use of the preconditioning technique alters the acoustic perturbationspeed, making it of the same order of magnitude of the uid velocity. In other words,the real incompressible world is transferred into a highly compressible one, in whichthe compressible formulation of the numerical algorithm does recover its originale�ciency.The preconditioned system of the Navier-Stokes equations, in compact vectorform, is given by:@Q@t +P  @Fx@x + @Fy@y + @Fz@z !+P (v iscous f luxes) = 0where Fx , Fy and Fz represent the three components of the inviscid ux vector ~F :Fx = 0BBBBBB@ �u�u2 + p�uv�uw�uH 1CCCCCCA Fy = 0BBBBBB@ �v�vu�v 2 + p�vw�vH 1CCCCCCA Fz = 0BBBBBB@ �w�wu�wv�w 2 + p�wH 1CCCCCCAMerkle's preconditioning technique [1] was chosen because it can easily formu-lated for abitrary equations of state. Merkle's preconditioning matrix P is givenby: P =MM�1mwhere M represents the Jacobian matrix of the vector of conservative variables Qwith respect to the vector of the so-called viscous-primitive variables Qv :M =  @Q@Qv ! Q = 0B@ ��~V�E 1CA Qv = 0B@ p~VT 1CA



6 Fluid Dynamics and Combustion Areaand where Mm represents a modi�ed version of M. Note that no modi�cation (i.e.M =Mm and P = I) brings back to the original not preconditioned system.M = 0BBBBBB@ �p 0 0 0 �Tu�p � 0 0 u�Tv�p 0 � 0 v�Tw�p 0 0 � w�TH�p � (1 � �hp) �u �v �w H�T + �hT 1CCCCCCAThe matrixM contains arbitrary thermodynamics in terms of derivatives of densityand enthalpy with respect to pressure and temperature (�p �T hp hT ), while the matrixMm contains "modi�ed" thermodynamics in terms of �mp and �mT . Rescaling of thecharacteristic speeds is obtained with proper choice for "modi�ed" values of the uidcompressibility coe�cients. To keep the condition number of O(1), it can be shown[2] that a proper choice of the modi�ed compressibility coe�cients is: �mT = �T ;�mp = 1=V 2r , where Vr is an appropriate reference velocity. If Vr is made varyingthrough the domain, the preconditiong matrix Mm changes point by point, and alocal preconditioning technique is applied.A good choice of Vr is crucial for convergence. Vr should be as low as possible, butnot smaller than any local transport velocity for stability considerations. ThereforeVr is chosen as the maximum between the following velocities:[1 ] the local convective velocity v[2 ] the local momentum di�usion velocity �=�x[3 ] the local heat di�usion velocity (�=�x ) � (1=P r)The �rst criterium is actually dominant in turbulent ows, at high Reynoldsnumbers. Nevertheless, in the boundary layers or in laminar low Reynolds numberows, the di�usion criteria may play a role. For liquid metals, the Prandtl number(Pr = �=�, ratio of kinematic viscosity to thermal di�usivity) is much lower thanone (e.g. for liquid sodium Pr � 10�3), and the criterium based on the heat di�usionvelocity may become important.Moreover, Vr should be not smaller than other characteristic speeds such as:[4 ] the local q�p=�[5 ] the global so-called Brunt-V�ais�al�a velocity (�=D)pGr



CRS4 7where the �rst one represents the characteristic speed of propagation of pressurechanges, and the second one, typical of buoyant ows, represents the maximumvelocity of gravity waves in a turbulent ow. Criterium [4] was introduced in [12]and it is found in [13] as well. E�ectiveness of the �fth criterium is currently underinvestigation.If the resulting value of Vr (from the above criteria [1] to [5]) is higher than thespeed of sound, then c is chosen as reference velocity and the modi�ed constanttemperature compressibility coe�cient is rede�ned as:�mp = 1Vr � �T�hTThis is the case of supersonic ows, where no preconditioning is needed and themodi�ed matrix Mm recovers its physical meaning (�mp = =c2 = �p =)Mm = M),so that the preconditioning is locally and automatically switched o�.The advantadges of local preconditioning have been evidenced by many authors;for example Lee [3] in his Ph-D thesis gives a wide historical excursus of the researchin this �eld, and stresses that the matrix of the Merkle's family are developed by theanalysis and optimization of the eigenvalues of the system. More e�cient precondi-tiong matrix can be obtained by focussing the attention on the orthogonality of theeigenvectors; this may be important expecially in the stagnation points of the ow,and alternative preconditioning techniques will be probably implemented in Karalis inthe future.At steady-state (i.e. @Q=@t = 0) the preconditioned system shares the samesolution of the original non preconditioned system.Updating is done in terms of the viscous primitive variables Qv , namely pressure,temperature and the velocity components. This is done multiplying the precondi-tioned system by M�1 to the left:@Qv@t +M�1m  @Fx@x + @Fy@y + @Fz@z !+M�1m (v iscous f luxes) = 01.4 Arbitrary equation of stateIn the above described mathematical framework, the choice of the working uid istotally arbitrary. Any thermodynamics can be supplied through the matrix M. Moreprecisely, the derivatives of density � and enthalpy h, with respect to pressure p andtemperature T , have to be provided. After de�ning:- the compressibility coe�cient at constant temperature �:� = �p� � 1�  @�@p!T



8 Fluid Dynamics and Combustion Area- the compressibility coe�cient at constant pressure �:� = � �T� � � 1�  @�@T !p- and the speci�c heat at constant pressure cp:cp = hT �  @h@T !pthen, for any pure substance, the required derivatives are given by:� �p = � �� �T = � � �� hT = cp� hp = 1 � � T�Karalis implements three options:[1 ] ideal gasde�ned in terms of the gas constant R and the speci�c heat at constantpressure,� = �(p; T ) = pR T� = 1T� = 1p � 1� R Thp � 0 =) h = h(T ) = cp(T ) T[2 ] liquid (or incompressible uid)de�ned in terms of a reference state (h0; T0; p0) and constant uid proper-ties:d� = �p dp + �T dT=) � = �(p; T ) = �0 exp[�� (T � T0) + � (p � p0)]dh = hp dp + hT dT=) h = h(p; T ) = h0 + cp (T � T0) + 1� � T� (p � p0)



CRS4 9where � and � can be assigned any value, including zero. If � = � = 0then the density is strictly constant and cp = cv � c, where cv = cp � Rrepresents the speci�c heat at constant volume.[3 ] tabular equation of statean input �le is supplied with density, enthalpy and their derivatives withrespect to p and T tabulated for an arbitrary chosen set of values of pressureand temperature. Bilinear interpolation are carried out to extract the desiredthermodynamic variables for the actual p and T values. This option is usefulfor treating, for instance, reactive uids in thermochemical equilibrium wherethe tabular equation of state can be obtained from typical chemical equilibriumcodes.



10 Fluid Dynamics and Combustion Area2 Numerical model2.1 Algorithms' structureThe following picture represents skematically Karalis structure.
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CRS4 112.2 Numerical methodsA V-cycle Coarse Grid Correction Multi-Grid algorithm is used, together with a 5-stage Runge-Kutta explicit time-marching method, to accelerate convergence to asteady state. This formulation is typical of aerodynamic ows, and shows an excellente�ciency even for incompressible ows, once equipped with Merkle's preconditioner.Convective uxes are computed either by TVD schemes (also called matrix dissipationschemes), or by typical scalar dissipation schemes, such as quick scheme for instance([4], [5], [6]). The former are based on the decomposition of the Euler equationsinto waves (decomposition into characteristic variables) so that proper upwindingcan be applied to each wave depending on the sign of the corresponding wave speed.This implies an eigenvector decomposition of the (now preconditioned) Euler matrix,done at a cell interface identi�ed by its cosines nx , ny and nz:Dp = PD � P (Anx +B ny + Cnz)where:A =  @Fx@Q ! B =  @Fy@Q ! C =  @Fz@Q !so that the numerical evaluation of the ux vector ~F :F � ~F � ~n = Fx nx + Fy ny + Fz nzis given by:F �i+1=2 = Fi + Fi+12 � 12 P�1 Rp j�pj Lp (Qi+1 �Qi )where Rp and Lp represent the matrices of right and left eigenvectors of Dp, and�p represents the diagonal matrix whose elements are Dp eigenvalues. All matricescontain arbitrary thermodynamics through the preconditioning matrix P. Again, ifMm =M, then P = I and the non-preconditioned system is recovered.2.3 Turbulence modelsKaralis implements two turbulence models: the one-equation model by Spalart &Allmaras [7], and the two-equation � � ! model by Wilcox [8]. The �rst one isvery much robust and easy to implement. It represents a simpler alternative, andmore accurate also, to the widely used �� � model with wall functions. The secondone is a low-Reynolds model, which integrates both turbulent quantities down tothe solid boundary, and shows good advantages with respect to typical low-Reynolds



12 Fluid Dynamics and Combustion Areamodels: essentially robustness and ease of implementation. Both models are verymuch popular and well known, and are here summarized:�� ! model:�t = C�f���!�D�Dt = @@xi "��+ �t��� @�@xi #+ P� �D��D!Dt = @@xi "��+ �t�!� @!@xi #+ P! �D!P� D� P! D!C1��t
2 C2��!� C1! !�P� C2!�!2C� f� C1� C2� C1! C2! �� �!1.0 1.0 1.0 9100 59 340 0.5 0.5where 
 represents the absolute value of vorticity.Spalart & Allmaras model�t = � ~� fv1D~�Dt = Cb1 ~
 ~� + 1� @@xi "(� + ~�) @~�@xi # + Cb2� @~�@xk @~�@xk � Cw1 fw " ~�d #2fv1 = �3�3 + c3v1� = ~��~
 = 
+ ~��2 d2 fv2fv2 = 1� �1 + � fv1fw = g  1 + c6w3g6 + c6w3!1=6



CRS4 13g = r + cw2(r 6 � r)r = ~�~
 �2 d2cw1 = Cb1� + 1 + Cb2�Cb1 Cb2 � � Cw3 Cw2 Cv10.135 0.622 2/3 0.41 2 0.3 7.1where 
 represents again the absolute value of vorticity, and d the distance from theclosest solid boundary.



14 Fluid Dynamics and Combustion Area3 Code structure3.1 Data structureA one-dimensional work array is used to store dynamically all of the global realdata: the �rst part is reserved for the data which need to be stored permanently;the space left at the bottom of the work array is instead used dynamically to storedtemporary data.
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block 2 grid-level 2Figure 1: The work array structureAs skematically shown in �g. 1, each block/grid-level is assigned a portion of thestorage area within the work array, which is organized to only store the data whichdo need permanent storage (shown in the left part of the picture). All data can beaccessed by means of arrays of pointers, stored in a COMMON block.Two layers of ghost cells are used to store the �eld information from adjacentblocks. The block/grid-level dimensions (NI � NJ � NK) are also stored in theCOMMON block as block/grid-level arrays.The free part of the work is used dynamically for temporary �elds arrays. Tempo-rary access to this part of the memory is allowed by means of temporary pointers, alsostored in the COMMON block. This area is called the stack because memory locationscan be pushed and poped, allowing allocation and de-allocation of memory space.Such a dynamic management of the stack is always used for a single block/grid-level at a time. Coupled with the multi-block environment, this approach allows tominimize the total memory requirement for a given numerical simulation: further



CRS4 15sub-division of the computational domain in a higher number of blocks, results infact in a smaller requirement of temporary storage.3.2 Code structureThe tree-like code structure of Karalis is skematically shown in �g. 2. The upper partof the tree controls the three main sections of initialization, core solver and output.The three sections are made of so-called high-level routines. The bottom part of thestructure consists instead of a collection of modules called low-level routines.
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low-level Figure 2: Tree-like structure of KaralisThe high-level routines are characterized by the fact that they have direct accessto all data contained in the work array by means of the arrays of pointers stored inthe COMMON block.Inside a high-level routine total freedom is left to the user for looping throughthe grid levels and/or the blocks. The idea behind this structure is to construct thecode with maximum degree of modularity and exibility. In case, in fact, that newmodules containing new functionalities, are needed, they can be easily introduced inthe upper part of the structure without modifying other existing modules.Low-level routines represent the code elementary building blocks: they performvery speci�c jobs on a given block/grid-level in the three-dimensional "world" (i.e.all arrays are seen as 3D arrays with the usual nested loops over the 3 indeces i , j



16 Fluid Dynamics and Combustion Areaand k), in contrast to the one-dimensional "world" of high-level routines where onlythe whole 1D work array is visible.3.3 Code parallelizationKaralis code allows the most general multi-block layout, each block having an inde-pendent (i ; j; k) orientation with block faces which can be subdivided into segments.Block connectivities are allowed between any couple of face segments, regardless oftheir orientations. In the design of a multi-block code for use on distributed memorymachines, care must be taken concerning how and where inter-block communicationshave to be implemented. The parallelization issues are in fact concerned with thetype of domain decomposition that has to be used, and with the data dependenciesamong di�erent sub-domain.The �rst issue is handled assigning each block (or group of blocks) to a di�erentprocessor. There are three types of data dependencies: explicit (information fromblock B at the previous time step are needed by block A and viceversa, at blockboundaries, see �g. 3). These represent by far the majority of data dependencies inan explicit code, and they are handled using the two layers of ghost cells. Implicitdependencies occur for instance within the implicit smoothing algorithm used in theprolongation side of the multi-grid. Finally, global dependencies are required todetermine the convergence of the solution, and in case of time accurate calculations,the time step should be uniform throughout the sub-domains.The exchange of explicit dependencies among blocks is very localized and donefor all blocks at the beginning of each Runge-Kutta stage. The idea is to allow allblocks to have all information needed before starting the numerical ux evaluation.The data exchange is done in two steps which are skematically shown in �g. 3 fora 2-block con�guration which involves only one connectivity between a full face ofblock 1 and a face segment of block 2. During the �rst step the memory locationscorresponding to two layers of ghost cells are �lled with values of the correspondinginner �eld dependent variables. These represent all information needed to computethe inviscid uxes through connected boundaries.The second step, only needed for viscous calculations, is concerned with thecomputation of gradients of the dependent variables, evaluated by means of Gaussintegration over a control volume centered at the center of the cell interface. At blockboundaries however, only half control volume is available, the missing half being infact part the adjacent block. To this purpose, 6 permanent boundary arrays (PBAs)are provided (one per block face) within the work storage; the half contributionto the boundary gradients is calculated and stored in 6 temporary boundary arrays(TBAs). All faces of all blocks are done. The above information are then transferredfrom TBAs to the corresponding connected face segment of the PBAs , and the 6



CRS4 17
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Figure 3: Data exchange: dependent variables and boundary gradientsTBAs can be de-allocated. Finally, during viscous ux evaluation, the missing halfcontribution of the boundary gradients is found in the PBAs and added. The solidarrows shown in �g. 3 represent the communication process. It has to be noted that,by using the described approach no geometrical information concerning ghost cellsis needed. This allows to avoid all problems related to the construction of volumeand surface normals for the ghost cells, especially when face segmentation is used.3.4 Programming philosophyThough the code is written in FORTRAN-77, its programming philosophy is fullyObject-Oriented with heavy use of dynamic allocation and pointers.The main object is represented by the Domain, or simply the Finite-Volume block,no matter to which grid-level it belongs. All grid-levels used in the multi-grid structureshare in fact the same hierarchical rank. Each Domain owns its own data (throughpointers) and functions (represented by the low-level routines previously described).Proper data are collected with the use of pointers stored in the COMMON block.The high-level portion of the code can be seen as a collection of derived classeswhich handle the chosen algorithms, such as for instance the Runge-Kutta timeadvancing method or the association of extra equations for turbulence modelling. Allpointers, and consequently, all data are always available at this level.Easy implementation of new features, new functionalities as well as new transportequations has demonstrated, over the past years, the code maintenability and under-standability, which represent the key features of Object-Oriented-Programming.



18 Fluid Dynamics and Combustion Area4 Code validation4.1 The lid driven cavityWith reference to �g. 4, the two-dimensional motion in a squared cavity is drivenby the top wall moving at constant speed along the x-axis. This is a very populartest case for incompressible uid dynamics and Karalis results are compared withthe results obtained by Ghia [7] using a Finite-Element incompressible Navier-Stokescode.
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Figure 4: Geometrical de�nition of test caseCalculations have been performed for two values of the Reynolds number basedon the top wall speed, Re = 100 and Re = 1000. The meshes are cartesian anduniform, made of 64x64 and 128x128 cells respectively for the two Reynolds numberinvestigated. The table below shows the assigned values of density, dynamic viscosityand wall speed. uid Reynolds n. density � wall speedwater 100 1000.0 10�3 0.00011000 1000.0 10�3 0.001Comparison to Ghia's data is done plotting the pro�les of the two components



CRS4 19of the �eld velocity, u e v , along the y and x mid sections of the cavity: u(y ) e v (x)respectively.Figures 5 and 6 show the normalized velocity pro�les for Re = 100 and Re = 1000respectively.
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Figure 5: velocity pro�les for Re = 100
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Figure 6: velocity pro�les for Re = 1000



CRS4 214.2 The backward facing step
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SFigure 7: Problem de�nitionThe backward-facing-step test case is one of the most widely used for the validationof CFD codes in general and for the assessment of turbulence models in particular.The reference solution chosen is represented by the DNS solution of Moin [8] fora Reynolds number Re = 5; 100 based on the centerline velocity and on the stepheight [9].The test case is described by �gure 7: the step determines the ow separationand the ricirculating zone, before the boundary layer re-attachment. The DNS datafound the re-attachment point at a distance of x=h = 6:28 from the step.The computational domain, shown in the same �g. 7, starts at x=h = 10 up-stream of the step location, and ends at x=h = 20 downstream. A two-block meshhas been used with 48�40 and 64�80 cells in the two blocks (the �rst one upstream,and the second one downstream of the step). A severe mesh stretching is providedclose to the solid boundaries with a value of the non-dimensional grid spacing y+ ofthe order unity.
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22 Fluid Dynamics and Combustion AreaTable 1 shows the boundary conditions of the test case.I InletO Pressure OutletW Adiabatic Solid WallS Symmetry PlaneTable 1: Boundary conditionsAt the inlet boundary the velocity and turbulent kinetic energy pro�les comingfrom the DNS simulation have been assigned (�g. 8).Numerical simulations have been carried out with four codes: the commercialcodes CFX and StarCD, and the CRS4 in-house developed codes Karalis and Tanit.All codes but Karalis employ typical incompressible fractional-step numerical algo-rithms.Table 2 shows the calculated re-attachment points:Code model re-attachment point [x/h] error %Moin DNS 6.28 -CFX �� � 5.52 12.10StarCD RNG �� � 5.97 4.93Karalis �� ! 6.19 1.43Tanit �� � 5.14 18.15Table 2: Calculated re-attachment pointsSolutions are presented in terms of velocity and Reynolds Stress pro�les at fourdi�erent locations downstream of the step (�g. 9): the large di�erences are mostlydue to error in the re-attachment evaluations. Fig. 10 shows the same pro�les withthe x-coordinates shifted in order to match the re-attachment points.It has to be noted that all codes but Karalis make use of wall functions atsolid boundaries: their comparison against the ��! model might then seem unfair.However, as already mentioned, the standard � � ! model 3 can be compared tothe � � � with wall functions as far as ease of implementation and robustness areconcerned. Karalis and Star-CD give quite satisfactory solutions in the frameworkof RANS modelling (as opposed to the DNS). They use superior turbulence mod-elling compared to the standard � � � with wall functions udes by CFX and Tanit.3the standard �� ! model does not implement any of the typical low-Reynolds modi�cations oftwo-equation models.



CRS4 23However, Tanit ow �eld and Reynolds Stresses appear satisfactory when plottedrelatively to the calculated re-attachment point. CFX Reynolds Stress pro�les areboth quantitavely and qualitatively wrong, particularly close to the solid boundary.This behaviour is due to the inability to reach convergence for this particular testcase.
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q T=300

T=300

Figure 11: Reference geometryWith reference to �g. 11, the two-dimensional motion in the anular loop is buoyancy-driven, with the walls kept at a constant temperature, and a volumetric heat gener-ation supplied in a sector of the domain at a rate � _Q. The enclosure is �lled with aliquid metal (the eutettic Li17-Pb83) whose Prandtl number is Pr = 0:0321. Thephysical properties of the uid are summarized in the table below.Property symbol value(SI units)molecular viscosity � 2:2 � 10�3density � 9000speci�c heat cp 190thermal conductivity � 13thermal expansion coe�cient � 1:68 � 10�4Prandtl number Pr 3:21 � 10�2Table 3: Physical properties of the Li17-Pb83 uid at a reference temperature T =573KWith this test case, the capability of Karalis to treat laminar or turbulent buoyancy-driven ows of low-Prandtl number uids with internal heat generation is shown. Theuid is practically incompressible, but the ow is solved by the general compressible



CRS4 27algorithm, letting the density vary as a function of temperature and pressure by thegeneral equation of state � = �(p; T ) = �0 exp[�� (T�T0)+� (p�p0)], though thepressure dependence is certainly negligible. The source term in the momentum equa-tion is expressed as (� � �0)g (y direction), with the reference hydrostatic pressuregradient separated from the total pressure gradient and included in the source term(see section 1.2). A comparison is shown with results from two popular commercialcodes: CFX and Fluent, the �rst one having the classical incompressible formulationwith a SIMPLE family algorithm for the pressure-velocity coupling, while the latterone having a compressible formulation very similar to that of Karalis [13].The internal radius is 10�2, while the external radius 2 � 10�2. The grid used forthe calculations is shown in �g. 12, with 120 points in the poloidal direction and 40points in the radial direction.
q

Figure 12: Grid used for the calculationsThe test cases simulated are summarized in table 4. The Grashof number Gr isbased on the maximum purely conductive temperature drop �Tc = �qD2=8�, and isde�ned as : Gr = g��TcD3=�2, where D is the distance beteween active walls (inthe present case D = 10�2) . The square root of the Grashof number represents theratio of buoyant to viscous forces. The Brunt-V�ais�al�a velocity vref = �=D � pGr isa typical reference scale for buoyant ows.In �gs. 13 and 14 the temperature distribution and the velocity vector plot areshown for the case A.In the temperature plot (�g. 13), the temperature drop between consecutivelevels is 1/30 of the conductive temperature drop. Actually, temperature behaves as



28 Fluid Dynamics and Combustion Areacase _Q[W/kg] �Tc Gr code regime model vref = �=D � pGrA 83.5 0.722 2 � 104 Karalis laminar - 3:45 � 10�3B 8350 72.2 2 � 106 Karalis turbulent Spalart-Almaras 3:45 � 10�2C 8350 72.2 2 � 106 Fluent turbulent Spalart-Almaras 3:45 � 10�2D 8350 72.2 2 � 106 CFX turbulent rng k � � 3:45 � 10�2Table 4: Test cases
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Figure 13: Temperature distribution for the case Aa passive scalar (with internal energy per unit mass generated at a rate _Q in the sectoron the left) and is convected around in the domain. The maximum temperature isrepresented by the isoline 24, with a resulting relative drop of �Tc=�Tmax � 1:36;this ratio can be considered also as the overall Nusselt number, and represents ameasure of the reduction of the maximum temperature caused by the convection.While the temperature �eld develops, the corresponding density variations willgenerate buoyancy forces, and the uid will move clockwise. In the vector velocity�eld shown in �g. 14, a reference vector = 5vref is drawn to �x a scale.The temperature distributions in the cases B (karalis), C (Fluent) and D (CFX),are shown in �gs. 15, 16 and 17 respectively.The �elds relative to cases B (Karalis) and C (Fluent) are almost coincident.In fact they are obtained with the same turbulence model and a similar compressibleformulation. The isoline of maximum temperature is the number 9, leading to anoverall Nusselt number �Tc=�Tmax � 3:3. This great enhancement of the heat
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5 Vref

Figure 14: Velocity vectors for the case Atransfer is obiouvlsly due to the turbulent convective transport phenomena. Theresult of CFX (�g. 17) is obtained by a di�erent turbulence model, and thus theisotherms di�er slightly.Finally, the vector plot and the turbulent viscosity distribution obtained by Karalisare shown in �gs. 18 and 19 respectively.It should be noticed that the Brunt-V�ais�al�a velocity introduced is a good scalefor the motion at any Grashof number. It is however, for this test case, of the sameorder of the heat conduction velocity scale and it is not yet clear whether it can beimportant in di�erent test cases. The turbulence viscosity �eld has a maximum valueof 0.025 (isoline 13) in the centre; this value is almost 10 times the molecular value,as it is reasonable at this higher Grashof number.
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Figure 15: Temperature distribution for the case B (Karalis)
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Figure 16: Temperature distribution for the case C (Fluent)
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CRS4 334.4 The buoyancy driven cavityThe aim of this test case is to show the capability of Karalis to treat laminar buoyantows with three di�erent approaches: fully compressible, hydrostatic pressure gradi-ent separated, and the so-called Boussinesq approximation. The �rst formulation isthe most general: the gravity source term �~g is added to the momentum equation;the second formulation is obtained by separating a reference "hydrostatic" pressurep0 from the pressure gradient term:�rp + �~g � �r(p � p0) + (�� �0)~g � �rp0+ (�� �0)~gThis formulation is equivalent to the general one, but it allows to avoid thecomplication of the pressure boundary condition when treating external ows (thehydrostatic pressure gradient need not be taken into account as far as the bound-ary condition is concerned). The Boussinesq formulation takes into account thedensity variations which originate the buoyant ow only through the approximatedmomentum source term given by:�rp + �~g � �r(p � p0) + (�� �0)~g � �rp0+ �0�(T � T0)~gleaving the � = const = �0 approximation throughout the whole governing systemof equations.
q

T=300Figure 20: Velocity �eldWith reference to �g. 20, the two-dimensional motion in the square cavity (sideD = 2 � 10�3) is buoyancy-driven, with the left and right walls kept at a constant



34 Fluid Dynamics and Combustion Areatemperature and the top and bottom walls adiabatic. A volumetric heat generationis supplied in the domain at a rate � _Q. The cavity is �lled with a liquid metal (theeutettic Li17-Pb83) whose Prandtl number is Pr = 0:0321 . The physical propertiesof the uid are summarized in the table 3 in section 4.3 . The Grashof number is�xed to 2 � 105, well inside the laminar stationary range. An upward rising ow isestablished in the cavity center and goes down along the walls where an outgoingheat ux occurs. The exiting heat ux must be in equilibrium with the volumetricheat addtion in order to reach the sought steady state situation.The test cases simulated are summarized in table 5.case _Q[W/kg] �Tc Gr Sm (momentum source) vref = �=D � pGrA 2:6 � 106 902.5 2 � 105 �g 10�2B 2:6 � 106 902.5 2 � 105 (� � �0)g 10�2C 2:6 � 106 902.5 2 � 105 ��0g�(T � T0) 10�2Table 5: Test casesThe three cases show a similar convergence history, and a comparison of thetemperature �elds is shown in �gs. 21, 22 and 23.
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Figure 21: Temperature distribution for the case A (Sm = �g)The temperature drop between consecutive levels is 1/15 of the conductive tem-perature drop. The convective transport modify the horizontal strati�cation induced
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Figure 22: Temperature distribution for the case B (Sm = (�� �0)g)by di�usion. At this low Grashof number the convection is not su�cient to de-crease the maximum conductive drop; on the contrary, hot uid is accumulated inthe central-top, leading to an overall Nusselt number lower than 1 (see also Di Pi-azza [11]). The temperature �elds in the cases A(Sm = �g) and B(Sm = (�� �0)g)correctly show identical results. The temperature �eld in the case C(Boussinesq)di�ers a little from the cases A and B, because the Boussinsq approximation is validfor �(T � T0) << 1; in this case �(T � T0) � 0:15, and the condition is not fullysatis�ed. Moreover the coupling between density and velocity (continuity equation)is missing (� = const = �0 and r � ~V = 0).A comparison of the pressure �elds in the case A(�g. 24) and B(�g. 25), showsthat the hydrostatic pressure gradient naturally appears in the formulation A as aresult of the calculation.
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Figure 23: Temperature distribution for the case C (Sm = ��0g�(T � T0), Boussi-nesq)
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CRS4 39A Preconditioning matrixIn section 1.3 Merkle's preconditioning matrix P was introduced:P =MM�1mM = 0BBBBBB@ �p 0 0 0 �Tu�p � 0 0 u�Tv�p 0 � 0 v�Tw�p 0 0 � w�TH�p � (1 � �hp) �u �v �w H�T + �hT 1CCCCCCAM�1 = 0BBBBBBBBBBBBBBB@ �hT + �T (H � V 2)d �Td u �Td v �Td w ��Td�u� 1� 0 0 0�v� 0 1� 0 0�w� 0 0 1� 0��p(H � V 2) + 1� �hpd ��pd u ��pd v ��pd w �pd
1CCCCCCCCCCCCCCCAwhere d is given by:d = ��phT + �T (1 � �hp)The modi�ed versions Mm and M�1m are obtained from the previous ones substi-tuting �T and �p with �mT and �mp , so that d becomes dm accordingly.



40 Fluid Dynamics and Combustion AreaB Eigenvectors and eigenvaluesIn section 2.2 the numerical inviscid ux evaluation scheme was introduced:F �i+1=2 = Fi + Fi+12 � 12 P�1 Rp j�pj Lp (Qi+1 �Qi ) (1)where Rp and Lp represent the right and left eigenvector matrices in conservativevariables of the preconditioned Euler matrix Dp:Dp = PD � P (Anx +B ny + Cnz)and �p is a diagonal matrix whose elements are the eigenvalues of Dp:�1 = �2 = �3 = Vn � unx + vny +wnz�4;5 = Vn  d + dm2 dm !�vuutV 2n  d � dm2 dm !2 + �hTdmNon-preconditioned eigenvalues are recovered when d = dm noticing that thespeed of sound is given by c = q�hT=d . Eigenvectors in the chosen primitivevariables can be much simpler than the corresponding eigenvectors in conservativevariables. Considering that:LpDpRp � Lp (MDvpM�1) Rp � (LpM) Dvp (M�1Rp) � LvpDvpRvp = �pthan: P�1 Rp �MmM�1Rp �MmRvpLp (Qi+1 �Qi) � LvpM�1 (Qi+1 �Qi) � Lvp (Qvi+1 �Qvi ) = Wi+1 �Wiwhere Qv and W represent the primitive variables already introduced in section 1.3and the characteristic variables respectively, and the superscript v refers to the eigen-vector matrices in primitive variables. The numerical ux evaluation scheme becomes:F �i+1=2 = Fi + Fi+12 � 12 Mm Rvp j�pj Lvp (Qvi+1 �Qvi ) (2)Equations 1 and 2 are equivalent: they both provide the uxes (and so theresiduals) for the conserved quantities (mass, momentum and total energy per unitvolume). The former is expressed using the eigenvectors in conservative variables,the latter makes use of eigenvectors in primitive variables, which allows easier algebraand less intensive computational load.



CRS4 41The matrix of left eigenvectors in primitive variables is given by:Lvp = 0BBBBBBBBBBBBBBBBBBB@ � �Tdm nx 0 A�m nz � A�m ny �AT nx� �Tdm ny � A�m nz 0 A�m nx �AT ny� �Tdm nz A�m ny � A�m nx 0 �AT nz12 +B�C hp 12 A�m nx 12 A�m ny 12 A�m nz 12C �hT12 �B+C hp �12 A�m nx �12 A�m ny �12 A�m nz �12C �hT
1CCCCCCCCCCCCCCCCCCCAwhere:hp = (1� � hp)�m = vuutV 2n  d � dm2 dm !2 + �hTdmA = �2 hTdmB = 14 Vn�m d � dmdmC = Vn�m �T � �mTdmIn case of no preconditioning:dm = d =) �m = � = c A = � c2 and B = C = 0It has to be noticed that, when deriving the eigenvector matrices, the elements(1,5), (2,5) and (3,5) of Lvp take the following form:� �T hTdm (1 � � hp)which would generate a 0/0 term when using incompressible uids with � = � = 0.However, for any pure substance, the above term is equivalent to (see section 1.4):�2 hTdm T



42 Fluid Dynamics and Combustion AreaIn the matrix Lvp, the �rst three rows represent linear combinations of the entropyand the two shear waves, all of them propagating with characteristic speed givenby �1;2;3 = Vn. The last two rows represent the two acoustic waves with carac-teristic speeds given by �4 and �5. When the ideal gas law is considered (with nopreconditioning), the well known left eigenvector matrix Lv in primitive variables isrecovered:Lv = 0BBBBBBBBBBBBBBBBBBB@ ( � 1) nx 0 � c nz �� c ny �� c2T nx( � 1) ny �� c nz 0 � c nx �� c2T ny( � 1) nz � c ny �� c nx 0 �� c2T nz12 12� c nx 12� c ny 12� c nz 012 �12� c nx �12� c ny �12� c nz 0
1CCCCCCCCCCCCCCCCCCCAThe matrix of Mm Rvp is given in the following page split into two pieces: the�rst piece reduces to R, the Euler right eigenvector matrix in conservative variables,when the ideal gas law is applied and without preconditioning:R = 1c2 0BBBBBBBBBBBBBBBBBBB@

nx ny nz 1 1unx uny � cnz unz + cny u + cnx u � cnxvnx + cnz vny vnz � cnx v + cny v � cnywnx � cny wny + cnx wnz w + cnz w � cnzV 22 nx+ V 22 ny+ V 22 nz+ H + cVn H � cVnc(vnz � wny ) c(wnx � unz) c(uny � vnx)
1CCCCCCCCCCCCCCCCCCCAThe second part of the matrix contains the extra terms due to the preconditioning,which all vanish as soon as the preconditioning is switched o�, and where:4D = T� Vn(�T � �mT ) E = Vn(1 � �hp)�T � �mTdm F = 12Vn d � dmdm4All preconditioned matrices were derived with twomodi�ed parameters �mp and �mT . All calculationspresented are however obtained with one modi�cation only (with �mT = �T and C = D = E = 0), forno e�ect of �mT has been observed.



CRS4
43

MmRvp = dm�hT
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
�T�mT� nx �T�mT� ny �T�mT� nz 1 1�T�mT� unx �T�mT� uny � �msz �T�mT� unz +�msy u +�mnx u � �mnx�T�mT� vnx +�msz �T�mT� vny �T�mT� vnz � �msx v +�mny v � �mny�T�mT� wnx � �msy �T�mT� wny +�msx �T�mT� wnz w +�mnz w � �mnz�T  H�mT� + hT! nx �T  H�mT� + hT! ny �T  H�mT� + hT! nz H +�mVn H � �mVn+�m(vnz � wny) +�m(wnx � unz) +�m(uny � vnx)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA +

+ dm�hT 0BBBBBBBBBBBBBBBB@ 0 0 0 0 0Dn2x Dnxny Dnxnz (E � F)nx (E � F)nxDnxny Dn2y Dnynz (E� F)ny (E � F)nyDnxnz Dnynz Dn2z (E� F)nz (E� F)nzDVnnx DVnny DVnnz (E� F)Vn (E� F)Vn
1CCCCCCCCCCCCCCCCA


