
Parallel spe
tral elements for appli
ations to linearelastodynami
sFabio Maggio� Javier SabadellyAbstra
tWe present a parallel implementation of a fully unstru
tured spe
tral elementmethod for elasti
 wave propagation problems. Our target is to merge the high a

ura
yof spe
tral methods with the 
exibility of �nite elements in dealing with 
omplexgeometries. The spe
tral algorithm we propose is based on a domain de
ompositionapproa
h, implemented into a multipro
essor environment. Parallelism is exploited atthe algebrai
 level: the global linear system is distributed among pro
essors, and thensolved by iterative te
hniques.1 Introdu
tionIn re
ent years, the spe
tral element method has been applied to the numeri
al solution ofelasti
 wave propagation problems, thus enabling signi�
ant redu
tions of 
omputationalresour
es respe
t to more traditional te
hniques like �nite elements or �nite di�eren
es(see for instan
e [13℄, [4℄, [5℄, and [9℄). The main advantage of spe
tral elements is theirhigh order approa
h, whi
h equals the a

ura
y of low order methods using less numberof grid points per wavelength. This is an appealing feature in real 
ase problems, oftenuna�ordable be
ause of the ex
eedingly large amount of 
omputational e�ort required. Onthe other hand, spe
tral elements are not so 
exible as �nite elements in dealing with
omplex geometries. More in details, �nite element approa
h to wave simulation 
anbene�t from a well established te
hnology 
onsisting in a variety of tools, like eÆ
ient meshgenerators and fast algebrai
 solvers, developed in the 
ourse of the last two de
ades forthe treatment of advan
ed appli
ations in stru
tural engineering and 
uid-dynami
s. Theobje
t of this work is to implement an eÆ
ient parallel spe
tral element method for theelastodynami
 equation. The algorithm should enjoy the 
exibility of �nite element solvers,produ
ing a framework 
apable of dealing with CAD-oriented geometries, and intera
tionwith the best-known engineering tools. On the other hand, we resort to 
oarse parallelismadopting a fully unstru
tured multipro
essor paradigm. This approa
h is based on thebalan
ed de
omposition of the algebrai
 problem among subdomains.This is the natural development of previous work aimed at the theoreti
al analysis of thespe
tral approa
h for wave propagation problems (see [4℄, [5℄); in [10℄, [1℄, [2℄, and [3℄ a moregeneral approa
h, based on the mortar 
oupling between �nite and spe
tral elements andaimed to soil-stru
ture intera
tion and non-linear problems, has already been investigatedand implemented in sequential form.�Centre for Advan
ed Studies, Resear
h and Development in Sardinia (CRS4), ItalyyCentre for Advan
ed Studies, Resear
h and Development in Sardinia (CRS4), Italy1
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2 Maggio and Sabadell2 Problem formulationThe equation of motion, in variational form, for an elasti
 bounded medium 
 � IRd;(d = 2; 3 is the number of spa
e dimensions), subje
t to an external for
e distribution f extreads: 8t > 0, �nd u(t) 2 V su
h that u(t) = g(t) on �D, and for any v 2 V ,Z
 � �2�t2u � v d
+ Z
 �(u) : �(v) d
 =Z
 f ext � v d
+ Z�N t � v d� + Z�NR t� � v d� ;(1)where V is a suitable spa
e of admissible displa
ements (see [5℄), � and � are the stressand strain tensors, related through the Hooke's law. �D and �N are those parts of theboundary where displa
ement and tra
tions are pres
ribed, respe
tively, while on �NRnon-re
e
ting 
onditions are set. The latter are designed for simulating propagation inunbounded domains (see [15℄). Initial 
onditions on u and _u should also be provided. Sin
eour approa
h is based on the solution of the global algebrai
 problem, it easily allows toaddress the stati
 
ase, for whi
h the �rst term in the left hand side of (1) vanishes (andthere is no need of non-re
e
ting 
onditions).The equation of motion (1) is then dis
retized by means of a suitable �nite dimensionalspa
e (see [5℄ and [3℄), thus obtaining a set of se
ond order ordinary di�erential equations:M �U+ C _U+KU = Fext ;(2)where M , C and K are the mass, damping and sti�ness matrix, respe
tively (the dampingmatrix arises from non-re
e
ting 
onditions or, eventually, from the presen
e of vis
ousmedia), U is the ve
tor of unknown displa
ements, along with its time-derivatives, andFext is the ve
tor of externally applied loads.3 Spa
e dis
retization and grid generationSpe
tral elements are a generalization of parallelepipedal �nite elements, exploiting spa
edis
retization by quadrilaterals (2D) or hexahedra (3D), and based on the use of high orderpolynomial spa
es (see [14℄). The degree of polynomials used for approximating the solutionof (1), whi
h 
an be �xed at run-time by the user, and the linear size of the geometri
algrid, determine the a

ura
y of the numeri
al solution, and should be properly 
hosen. Inparti
ular, setting polynomial degree to 1, makes our method undistinguished from �niteelements.Following the standard pro
edure, a geometry-model is �rst 
reated and then dis
retized bymeans of a grid of quadrilaterals or hexahedra. While the 
onstru
tion of pure quadrileralmeshes is easily performed by the most 
ommon grid generators, the 3D 
ase is moredeli
ate. Grids of hexahedra 
an be generated as mapped meshes, or via de
omposition oftetrahedra or dire
t methods (see [12℄ for an interesting review on the argument). On
ethe physi
al domain has been dis
retized by the grid, and the polynomial degree has been
hosen, the spe
tral nodes are built, using a suitable mapping with a parent geometry (asquare or a 
ube); this pro
ess is 
arried on element-by-element, as depi
ted in Figure 1.The 
omputation of spe
tral nodes is done by the solver rather than by the mesh generator;thus, any qudrilateral or hexahedra grid in �nite element format 
an be used as an input,and the dimensions of the �les 
ontaining the mesh do not ex
eed reasonable limits.
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Fig. 1. Mesh generation and de�nition of spe
tral nodes4 Domain de
omposition and parallel spe
tral elementsThe dis
retization of �rst and se
ond order time-derivatives in (2) by means of ba
kward�nite-di�eren
e s
hemes (see [11℄), gives rise to the linear algebrai
 systemAUk+1 = bk+1 ;(3)where A is a 
ombination of the mass, damping, and sti�ness matri
es, Uk+1 are theunknown displa
ements at time tk+1 = (k + 1)�t (�t is the time step), and the righthand side bk+1 
an be evaluated using the previous displa
ements and the known externalfor
es. Problem (3) 
an be solved (at ea
h time step) using parallel iterative pro
edures.Our approa
h stems from the de
omposition of the physi
al domain 
 in a number ofsubdomains: this task is not trivial sin
e the produ
ed partition should be well balan
edboth in terms of number of degrees of freedom, and in terms of 
ommuni
ation to beperformed among subdomains during the parallel solution of (3). The partition operationis done by Metis (see [8℄), an advan
ed software pa
kage allowing the eÆ
ient domainde
omposition of large unstru
tured meshes. On
e the domain 
 has been split, ea
hsubdomain is managed by a di�erent pro
essor of a parallel ma
hine, whi
h should be ableto build that portion of the spe
tral matrix A of (3) 
orresponding to the nodes belongingto the subdomain in obje
t. In order to do that, information is ex
hanged among pro
essorsvia an MPI pro
edure ([6℄). At this stage the parallel solution of the distributed algebrai
problem is demanded to Azte
 (see [7℄), a fast library for the parallel iterative solution oflarge linear systems, whi
h also takes 
are of the 
ommuni
ation needed by the algebrai
solver, and provide the global solution. This pro
ess is shown in Figure 2.5 Numeri
al exampleWe show a simple example 
on
erning elasti
 wave propagation through a 2D domain with
ir
ular pro�le and an irregular internal hole. The 
ir
umferen
e has a radius 1000 m longand is �lled with homogeneous material 
orresponding to a density � = 3200 kg�m�3, andto pressure and shear velo
ities given, respe
tively, by � = 1750 m�s�1 and � = 1200 m�s�1.
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Fig. 2. Top: Domain de
omposition and distribution on di�erent pro
essors. Bottom:generation of distributed matri
es and parallel solution of the algebrai
 systemA point sour
e 
orresponding to a verti
al body-for
e has been pla
ed at the position with
oordinates �311:3 m, �246:4 m with respe
t to the 
enter of the domain; its time-historyis a Ri
her wavelet with a peak frequen
y of 17 Hz. Non-re
e
ting 
onditions have been setto the external boundary, while the pro�le of the internal hole is treated as a free-surfa
e(t = 0 in (1)). Figure 3 shows three snapshots of the wave propagation, 
orresponding tot = 0:5 s, t = 0:6 s and t = 0:7 s, respe
tively.Referen
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