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Parallel spectral elements for applications to linear
elastodynamics
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Abstract

We present a parallel implementation of a fully unstructured spectral element
method for elastic wave propagation problems. Our target is to merge the high accuracy
of spectral methods with the flexibility of finite elements in dealing with complex
geometries. The spectral algorithm we propose is based on a domain decomposition
approach, implemented into a multiprocessor environment. Parallelism is exploited at
the algebraic level: the global linear system is distributed among processors, and then
solved by iterative techniques.

1 Introduction

In recent years, the spectral element method has been applied to the numerical solution of
elastic wave propagation problems, thus enabling significant reductions of computational
resources respect to more traditional techniques like finite elements or finite differences
(see for instance [13], [4], [5], and [9]). The main advantage of spectral elements is their
high order approach, which equals the accuracy of low order methods using less number
of grid points per wavelength. This is an appealing feature in real case problems, often
unaffordable because of the exceedingly large amount of computational effort required. On
the other hand, spectral elements are not so flexible as finite elements in dealing with
complex geometries. More in details, finite element approach to wave simulation can
benefit from a well established technology consisting in a variety of tools, like efficient mesh
generators and fast algebraic solvers, developed in the course of the last two decades for
the treatment of advanced applications in structural engineering and fluid-dynamics. The
object of this work is to implement an efficient parallel spectral element method for the
elastodynamic equation. The algorithm should enjoy the flexibility of finite element solvers,
producing a framework capable of dealing with CAD-oriented geometries, and interaction
with the best-known engineering tools. On the other hand, we resort to coarse parallelism
adopting a fully unstructured multiprocessor paradigm. This approach is based on the
balanced decomposition of the algebraic problem among subdomains.

This is the natural development of previous work aimed at the theoretical analysis of the
spectral approach for wave propagation problems (see [4], [5]); in [10], [1], [2], and [3] a more
general approach, based on the mortar coupling between finite and spectral elements and
aimed to soil-structure interaction and non-linear problems, has already been investigated
and implemented in sequential form.
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2 Problem formulation

The equation of motion, in variational form, for an elastic bounded medium Q c RY,
(d = 2,3 is the number of space dimensions), subject to an external force distribution f***
reads: Vi > 0, find u(¢) € V such that u(t) = g(¢) on I'p, and for any v € V,

82
/pru-vdﬁ-l-/gg(u).g(v) dQ =

(1) /feXt-de-l- t-vdl + t*-vdl,
Q 'y I'nr

where V' is a suitable space of admissible displacements (see [5]), o and e are the stress
and strain tensors, related through the Hooke’s law. I'p and I'yy are those parts of the
boundary where displacement and tractions are prescribed, respectively, while on I'yg
non-reflecting conditions are set. The latter are designed for simulating propagation in
unbounded domains (see [15]). Initial conditions on u and 1 should also be provided. Since
our approach is based on the solution of the global algebraic problem, it easily allows to
address the static case, for which the first term in the left hand side of (1) vanishes (and
there is no need of non-reflecting conditions).

The equation of motion (1) is then discretized by means of a suitable finite dimensional
space (see [5] and [3]), thus obtaining a set of second order ordinary differential equations:

2) MU +CU+ KU = F* |

where M, C' and K are the mass, damping and stiffness matrix, respectively (the damping
matrix arises from non-reflecting conditions or, eventually, from the presence of viscous
media), U is the vector of unknown displacements, along with its time-derivatives, and
F is the vector of externally applied loads.

3 Space discretization and grid generation

Spectral elements are a generalization of parallelepipedal finite elements, exploiting space
discretization by quadrilaterals (2D) or hexahedra (3D), and based on the use of high order
polynomial spaces (see [14]). The degree of polynomials used for approximating the solution
of (1), which can be fixed at run-time by the user, and the linear size of the geometrical
grid, determine the accuracy of the numerical solution, and should be properly chosen. In
particular, setting polynomial degree to 1, makes our method undistinguished from finite
elements.

Following the standard procedure, a geometry-model is first created and then discretized by
means of a grid of quadrilaterals or hexahedra. While the construction of pure quadrileral
meshes is easily performed by the most common grid generators, the 3D case is more
delicate. Grids of hexahedra can be generated as mapped meshes, or via decomposition of
tetrahedra or direct methods (see [12] for an interesting review on the argument). Once
the physical domain has been discretized by the grid, and the polynomial degree has been
chosen, the spectral nodes are built, using a suitable mapping with a parent geometry (a
square or a cube); this process is carried on element-by-element, as depicted in Figure 1.
The computation of spectral nodes is done by the solver rather than by the mesh generator;
thus, any qudrilateral or hexahedra grid in finite element format can be used as an input,
and the dimensions of the files containing the mesh do not exceed reasonable limits.
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Fig. 1. Mesh generation and definition of spectral nodes

4 Domain decomposition and parallel spectral elements

The discretization of first and second order time-derivatives in (2) by means of backward
finite-difference schemes (see [11]), gives rise to the linear algebraic system

(3) AUk+1 — bk+1 :

where A is a combination of the mass, damping, and stiffness matrices, U**! are the
unknown displacements at time #;1; = (kK + 1)At¢ (At is the time step), and the right
hand side b**! can be evaluated using the previous displacements and the known external
forces. Problem (3) can be solved (at each time step) using parallel iterative procedures.
Our approach stems from the decomposition of the physical domain €2 in a number of
subdomains: this task is not trivial since the produced partition should be well balanced
both in terms of number of degrees of freedom, and in terms of communication to be
performed among subdomains during the parallel solution of (3). The partition operation
is done by Metis (see [8]), an advanced software package allowing the efficient domain
decomposition of large unstructured meshes. Once the domain 2 has been split, each
subdomain is managed by a different processor of a parallel machine, which should be able
to build that portion of the spectral matrix A of (3) corresponding to the nodes belonging
to the subdomain in object. In order to do that, information is exchanged among processors
via an MPI procedure ([6]). At this stage the parallel solution of the distributed algebraic
problem is demanded to Aztec (see [7]), a fast library for the parallel iterative solution of
large linear systems, which also takes care of the communication needed by the algebraic
solver, and provide the global solution. This process is shown in Figure 2.

5 Numerical example

We show a simple example concerning elastic wave propagation through a 2D domain with
circular profile and an irregular internal hole. The circumference has a radius 1000 m long
and is filled with homogeneous material corresponding to a density p = 3200 kg-m 3, and
to pressure and shear velocities given, respectively, by & = 1750 m-s~' and = 1200 m-s~!.
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Fic. 2. Top: Domain decomposition and distribution on different processors. Bottom:

generation of distributed matrices and parallel solution of the algebraic system

A point source corresponding to a vertical body-force has been placed at the position with
coordinates —311.3 m, —246.4 m with respect to the center of the domain; its time-history
is a Richer wavelet with a peak frequency of 17 Hz. Non-reflecting conditions have been set
to the external boundary, while the profile of the internal hole is treated as a free-surface
(t =01in (1)). Figure 3 shows three snapshots of the wave propagation, corresponding to
t=0.5s,t=0.6 sand t = 0.7 s, respectively.
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Fiac. 3. Wave propagation through a 2D irreqular geometry. Left column: horizontal

displacement; right column: vertical displacement
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