
Parallel spetral elements for appliations to linearelastodynamisFabio Maggio� Javier SabadellyAbstratWe present a parallel implementation of a fully unstrutured spetral elementmethod for elasti wave propagation problems. Our target is to merge the high aurayof spetral methods with the exibility of �nite elements in dealing with omplexgeometries. The spetral algorithm we propose is based on a domain deompositionapproah, implemented into a multiproessor environment. Parallelism is exploited atthe algebrai level: the global linear system is distributed among proessors, and thensolved by iterative tehniques.1 IntrodutionIn reent years, the spetral element method has been applied to the numerial solution ofelasti wave propagation problems, thus enabling signi�ant redutions of omputationalresoures respet to more traditional tehniques like �nite elements or �nite di�erenes(see for instane [13℄, [4℄, [5℄, and [9℄). The main advantage of spetral elements is theirhigh order approah, whih equals the auray of low order methods using less numberof grid points per wavelength. This is an appealing feature in real ase problems, oftenuna�ordable beause of the exeedingly large amount of omputational e�ort required. Onthe other hand, spetral elements are not so exible as �nite elements in dealing withomplex geometries. More in details, �nite element approah to wave simulation anbene�t from a well established tehnology onsisting in a variety of tools, like eÆient meshgenerators and fast algebrai solvers, developed in the ourse of the last two deades forthe treatment of advaned appliations in strutural engineering and uid-dynamis. Theobjet of this work is to implement an eÆient parallel spetral element method for theelastodynami equation. The algorithm should enjoy the exibility of �nite element solvers,produing a framework apable of dealing with CAD-oriented geometries, and interationwith the best-known engineering tools. On the other hand, we resort to oarse parallelismadopting a fully unstrutured multiproessor paradigm. This approah is based on thebalaned deomposition of the algebrai problem among subdomains.This is the natural development of previous work aimed at the theoretial analysis of thespetral approah for wave propagation problems (see [4℄, [5℄); in [10℄, [1℄, [2℄, and [3℄ a moregeneral approah, based on the mortar oupling between �nite and spetral elements andaimed to soil-struture interation and non-linear problems, has already been investigatedand implemented in sequential form.�Centre for Advaned Studies, Researh and Development in Sardinia (CRS4), ItalyyCentre for Advaned Studies, Researh and Development in Sardinia (CRS4), Italy1
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2 Maggio and Sabadell2 Problem formulationThe equation of motion, in variational form, for an elasti bounded medium 
 � IRd;(d = 2; 3 is the number of spae dimensions), subjet to an external fore distribution f extreads: 8t > 0, �nd u(t) 2 V suh that u(t) = g(t) on �D, and for any v 2 V ,Z
 � �2�t2u � v d
+ Z
 �(u) : �(v) d
 =Z
 f ext � v d
+ Z�N t � v d� + Z�NR t� � v d� ;(1)where V is a suitable spae of admissible displaements (see [5℄), � and � are the stressand strain tensors, related through the Hooke's law. �D and �N are those parts of theboundary where displaement and trations are presribed, respetively, while on �NRnon-reeting onditions are set. The latter are designed for simulating propagation inunbounded domains (see [15℄). Initial onditions on u and _u should also be provided. Sineour approah is based on the solution of the global algebrai problem, it easily allows toaddress the stati ase, for whih the �rst term in the left hand side of (1) vanishes (andthere is no need of non-reeting onditions).The equation of motion (1) is then disretized by means of a suitable �nite dimensionalspae (see [5℄ and [3℄), thus obtaining a set of seond order ordinary di�erential equations:M �U+ C _U+KU = Fext ;(2)where M , C and K are the mass, damping and sti�ness matrix, respetively (the dampingmatrix arises from non-reeting onditions or, eventually, from the presene of visousmedia), U is the vetor of unknown displaements, along with its time-derivatives, andFext is the vetor of externally applied loads.3 Spae disretization and grid generationSpetral elements are a generalization of parallelepipedal �nite elements, exploiting spaedisretization by quadrilaterals (2D) or hexahedra (3D), and based on the use of high orderpolynomial spaes (see [14℄). The degree of polynomials used for approximating the solutionof (1), whih an be �xed at run-time by the user, and the linear size of the geometrialgrid, determine the auray of the numerial solution, and should be properly hosen. Inpartiular, setting polynomial degree to 1, makes our method undistinguished from �niteelements.Following the standard proedure, a geometry-model is �rst reated and then disretized bymeans of a grid of quadrilaterals or hexahedra. While the onstrution of pure quadrileralmeshes is easily performed by the most ommon grid generators, the 3D ase is moredeliate. Grids of hexahedra an be generated as mapped meshes, or via deomposition oftetrahedra or diret methods (see [12℄ for an interesting review on the argument). Onethe physial domain has been disretized by the grid, and the polynomial degree has beenhosen, the spetral nodes are built, using a suitable mapping with a parent geometry (asquare or a ube); this proess is arried on element-by-element, as depited in Figure 1.The omputation of spetral nodes is done by the solver rather than by the mesh generator;thus, any qudrilateral or hexahedra grid in �nite element format an be used as an input,and the dimensions of the �les ontaining the mesh do not exeed reasonable limits.
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Fig. 1. Mesh generation and de�nition of spetral nodes4 Domain deomposition and parallel spetral elementsThe disretization of �rst and seond order time-derivatives in (2) by means of bakward�nite-di�erene shemes (see [11℄), gives rise to the linear algebrai systemAUk+1 = bk+1 ;(3)where A is a ombination of the mass, damping, and sti�ness matries, Uk+1 are theunknown displaements at time tk+1 = (k + 1)�t (�t is the time step), and the righthand side bk+1 an be evaluated using the previous displaements and the known externalfores. Problem (3) an be solved (at eah time step) using parallel iterative proedures.Our approah stems from the deomposition of the physial domain 
 in a number ofsubdomains: this task is not trivial sine the produed partition should be well balanedboth in terms of number of degrees of freedom, and in terms of ommuniation to beperformed among subdomains during the parallel solution of (3). The partition operationis done by Metis (see [8℄), an advaned software pakage allowing the eÆient domaindeomposition of large unstrutured meshes. One the domain 
 has been split, eahsubdomain is managed by a di�erent proessor of a parallel mahine, whih should be ableto build that portion of the spetral matrix A of (3) orresponding to the nodes belongingto the subdomain in objet. In order to do that, information is exhanged among proessorsvia an MPI proedure ([6℄). At this stage the parallel solution of the distributed algebraiproblem is demanded to Azte (see [7℄), a fast library for the parallel iterative solution oflarge linear systems, whih also takes are of the ommuniation needed by the algebraisolver, and provide the global solution. This proess is shown in Figure 2.5 Numerial exampleWe show a simple example onerning elasti wave propagation through a 2D domain withirular pro�le and an irregular internal hole. The irumferene has a radius 1000 m longand is �lled with homogeneous material orresponding to a density � = 3200 kg�m�3, andto pressure and shear veloities given, respetively, by � = 1750 m�s�1 and � = 1200 m�s�1.
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Fig. 2. Top: Domain deomposition and distribution on di�erent proessors. Bottom:generation of distributed matries and parallel solution of the algebrai systemA point soure orresponding to a vertial body-fore has been plaed at the position withoordinates �311:3 m, �246:4 m with respet to the enter of the domain; its time-historyis a Riher wavelet with a peak frequeny of 17 Hz. Non-reeting onditions have been setto the external boundary, while the pro�le of the internal hole is treated as a free-surfae(t = 0 in (1)). Figure 3 shows three snapshots of the wave propagation, orresponding tot = 0:5 s, t = 0:6 s and t = 0:7 s, respetively.Referenes[1℄ Casadei, F., and E. Gabellini, Implementation of a Coupled Spetral Element/Finite ElementSolver for Wave Propagation and Soil-Struture Interation Simulations. Part I - Models, EUR17730 EN, 1997[2℄ Casadei, F., and E. Gabellini, Implementation of a Coupled Spetral Element/Finite ElementSolver for Wave Propagation and Soil-Struture Interation Simulations. Part II - NumerialExamples, EUR 18051 EN, 1998[3℄ Casadei, F., E. Gabellini, G. Fotia, F. Maggio, and A. Quarteroni, A hybrid spetral-element/�nite-element method for wave propagation and soil-struture interation (in prepa-ration)[4℄ Faioli, E., F. Maggio, A. Quarteroni, and A. Tagliani, Spetral-domain deomposition methodsfor the solution of aousti and elasti wave equations, Geophysis, 61 (4), pp. 1160-1174, 1996[5℄ Faioli, E., F. Maggio, R. Paolui, and A. Quarteroni, 2D and elasti wave propagation by apseudo-spetral domain deomposition method, Journal of Seismology, 1, 237{251, 1997[6℄ Gropp, W., E. Lusk and A. Skjellum, Using MPI, The MIT Press, 1994[7℄ Huthinson, S.A., L.V. Prevost, J,N. Shadid, C. Tong, and R.S. Tuminaro, Azte User's Guide- Version 2.0 (http://www.s.sandia.gov/CRF/azte1.html), 1998[8℄ Karypis, G., and V. Kumar, METIS - A Software Pakage for Partitioning UnstruturedGraphs, Partitioning Meshes, and Computing Fill-Reduing Orderings of Sparse Matries,(User's manual, http://www-users.s.umn.edu/ karypis/metis/), 1998
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Fig. 3. Wave propagation through a 2D irregular geometry. Left olumn: horizontaldisplaement; right olumn: vertial displaement[9℄ Komatitsh, D., and J.P. Vilotte, The spetral element method: an eÆient tool to simulatethe seismi response of 2D and 3D geologial strutures, Bulletin of the Seismologial Soietyof Ameria, 88, pp. 368-392, 1998[10℄ Lahaye, D.J.P., F. Maggio, and A. Quarteroni, Hybrid �nite element-spetral element approx-imation of wave propagation problems, East-West Journal of Numerial Mathematis, Vol.5,No.4, 1997[11℄ Maggio, F., and A. Quarteroni, Aousti wave simulation by spetral methods, East-WestJournal of Numerial Mathematis, 2 (2), pp. 129-150, 1994[12℄ Owen, S.J., A Survey on Unstrutured Mesh Generation Tehnology, Proeedings 7th Interna-tional Meshing Roundtable, Dearborn, MI (http://www.andrew.mu.edu/user/sowen/)[13℄ Priolo, E., and G. Seriani, A numerial investigation of Chebyhev spetral element method foraousti waves propagation, in Vihnevetsky, R., ed. Pro. 13th IMACS World Congress onComputational and Applied Mathematis, Criterion Press, pp. 551-556, 1991[14℄ Quarteroni, A., and A. Valli, Numerial approximation of partial di�erential equations,Springer Verlag, Berlin, 1994[15℄ Staey, R., Improved Transparent Boundary Formulations for the Elasti-Wave Equation, ShortNote, Bulletin of the Seismologial Soiety of Ameria, 78 (6), pp. 2089-2097, 1988


