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INTRODUCTION

Soil moisture monitoring and the characterization of the spatial andaszhpariability of this hydrologic parameter
at scales from small catchments to large river basins continues to receive memtioaitreflecting its critical role
in subsurface — land surface — atmosphere interactions and its importadogught analysis, crop yield forecasting,
irrigation planning, flood protection, and forest fire preventior2[13, 4].

We will describe the objectives and methodologies of an Envisat projaciili aim to produce maps of seasonal soil
moisture patterns at the regional scale based on ASAR imagery. The vilbbdewarried out for two river basins that
have significantly different climatic, geologic, and land use characteristie=lumendosa basin in Sardinia (ltaly) and
the larger Meuse basin that drains a good part of Belgium and the Netredamgell as portions of France, Germany,
and Luxembourg. High resolution ASAR data will be acquired over selectetimant scale test sites within each of
these study regions, whereas medium resolution images will be acquieethe entire river basin (or extended region in
the case of the smaller basin). A statistical analysis of the informé&tion the processed images at these two different
scales will be used to develop an aggregation methodology to generatsdatgesoil moisture maps. Data assimilation
techniques will also be developed for dynamically integrating the héglolution satellite data into catchment scale
hydrological simulation models. The work being planned will be plaodtié context of recent efforts at validating and
applying SAR soil moisture data, which we will briefly review.
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PREVIOUS WORK

Remote sensing offers the potential for frequent observation of swfitare at basin and regional scales. A variety of
infrared and microwave (both active and passive) sensors operatingdbamatory, aircraft, and satellite platforms have
been tested for soil moisture retrieval, and the potentials and lioniaf each of these remote sensing techniques are
well documented [5, 6, 7].

Whereas recent studies have successfully demonstrated the use of infeaside pnicrowave, and non-SAR sensors to
obtain soil moisture information [8, 9, 10], the potential of agtimicrowave remote sensing based on synthetic aperture
radar instruments remains largely unrealized. The main advantage of radat istovides observations at a high
spatial resolution of tens of meters compared to tens of kilometers favepasdellite instruments such as radiometers or
non-SAR active instruments such as scatterometers. The main diffictitySAR imagery is that soil moisture, surface
roughness, and vegetation cover all have an important and nearly equal effactanribackscatter. These interactions
make retrieval of soil moisture possible only under particular aanth such as bare soil or surfaces with low vegetation
density [11, 12, 13, 14, 15, 16].

Soil Moisture Mapping

It should be possible to separate the vegetation, topography, dmdasture effects on radar response using multifre-
quency and/or multipolarization measurements [17], but currently dpeeahtsatellites are not equipped with sensors
that provide such data. A related concept that can be applied to existingisatedigery is multitemporal analysis. Al-
though on its own it will not produce direct or absolute measurememnitkitemporal analysis could be useful for deriving
wetness indices and for monitoring temporal changes or elucidating spaitiafrys in soil moisture. In addition, such
detection techniques may provide estimates or maps of other hydrologicefeatr parameters that are sensitive to or
affect the spatial distribution of soil moisture, such as the extefibofiplains and recharge/discharge areas, soil texture
and hydraulic characteristics [18, 19], the time to onset of soil éich{stage-two) evaporation [20], and the dynamics of
variable source areas.

SAR mapping of the saturated surfaces of a watershed from variable sourcamdeather mechanisms relies on the
fact that when ponding occurs the radar signal drops due to specular refl#intiogiving rise to a threshold behavior in
backscattering response. However, applying a threshold on the backagattefficient is not successful in delineating
saturated areas since the choice of an absolute threshold cannot take accbentasious surface characteristics that
influence the backscatter. In cases where vegetation and topographic effeets gm@minent than soil moisture effects,
simple statistical techniques, such as calculating the standard deviatieadh pixel over a period of time, are able to
reveal soil moisture or saturation patterns [21, 22]. Since such casesypreal and cannot normally be identified a
priori, a more robust technique is sought.

A multitemporal analysis based on the principal components transfanmiagis shown that the soil moisture information
in SAR images can be separated from other physical factors that influence theesmtanse [23]. The principal com-
ponent analysis (PCA) was applied to a winter-time sequence of eight ERSpean Remote Sensing) satellite images
acquired over the Zwalm catchment in Belgium. In the images constructed ffrefirst three principal components,
effects due to local incidence angle (topography), land cover (forests had areas), and soil moisture are isolated.
The latter image displays spatial patterns that are consistent with e@ture behavior expected from the runoff and
drainage response of the basin to rainfall events.

The Zwalm catchment study site is situated about 20 km south of Gentgiugel It is a 5th Strahler-order basin with a
total drainage area of 114 Knand a drainage density of 1.55 km/knRolling hills and mild slopes, with a maximum
elevation difference of 150 m, characterize the topography. Land use isynaa@ble crop farming and permanent
pasture, while the south of the catchment is partly forested. The de§rgbanization is about 10%, and is mainly
clustered in three small towns. The soil type in the catchment is predmthy sandy loam with minor isolated patches
of sand and clay. The climatic regime is humid temperate with a mean annnfallraf 775 mm distributed almost
uniformly over the year and a mean annual pan evapotranspiration of 450 mm.

A sequence of 4 pairs of tandem ERS-1/2 SAR images (C-band, 5.3 GHz, \é@¥ization, spatial resolutias0 x 30 m)
was acquired over the Zwalm catchment during the winter period of 1996-M¥énter-time images were selected for
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Figure 1: Daily rainfall for the 1995-1996 winter period. Also icated by the dashed line and right-hand scale is the
average radar backscattel for the catchment calculated for each tandem pair of ERS-1/2 images.

the study in order to minimize soil roughness and vegetation chaniged. $hows the daily rainfall for the study period
together and the average backscattering coefficient over the whole catchment edléngat the eight SAR images.
From this figure it is apparent that the scene information is stroaifdyeted by the rainfall episodes.

Pre-processing of the SAR images involved georeferencing using 15dycomtrol points and an existing SPOT image
of the same region, calibration based on a procedure described in [243pankile reduction using the gamma MAP
filter [25].

The principal components transformation is a standard tool in imagenerment, image compression, and classifica-
tion [26, 27, 28] that linearly transforms multispectral or multiénsional data into a new coordinate system in which
the data can be represented without correlation. The new coordinate axethagonal to each other and point in the
direction of decreasing order of the variances, so that the first principad@eant contains the largest percentage of the
total variance (hence the maximum or dominant information), the secangartent the second largest percentage, and
so on. Images transformed by PCA may make evident features that are natalideén the original data — local details

in multispectral images, changes and trends in multitemporal data — thealtyshow up in the intermediate principal
components.

Applying PCA to the eight SAR images leads to the separation of thenafiion contained in the images into several
components that can be attributed to different factors influencing the batekscht our analysis the first principal
component accounts for 76.6% of the total variance, the second compon&d%or the third for 5.9%, and each of
the remaining PCs for less than 4%. Comparing the first component imigdige mapping of local incidence angles
computed from the digital elevation model of the catchment, it is appdrantdpographic effects are responsible for the
largest contribution to the total variance in the sequence of SAR imagetoanidate the backscattering signal.

The second principal component image displays a strong spatial organjaatih the highest values grouped along the
drainage network of the catchment, and corresponds closely with a soihgeamap for the catchment (Fig. 2). Poorly-

drained soils tend to occur in the valley regions of the catchment and pongsvell with the areas with high second PC

values. This suggests a radar response, brought out in the seconggiramchponent, to the soil moisture patterns that
result from the drainage characteristics of the basin. These patterng at&ibatable to any single event, but reflect the
overall response of the soil to the rainfall and interstorm periodarspd by the images.

The third principal component showed the influence of land cover and landnadching closely the forested and urban-
ized areas seen from a Landsat image. The fourth and subsequent principal entameounted for a smaller fraction
of the total variance in the sequence of SAR images, and they did not seewetd significant geophysical features.
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Figure 2: Second principal component image (left) and the drainage mépefoatchment (right).

These PCs are characterized mostly by noise (including speckle).

This application of PCA to SAR images of the Zwalm images suggests thae anicrowave remote sensing is able
detect or map changes in surface soil moisture at basin scales. To test angtithprsnethodology, application to other
basins and non-winter sets of images is needed.

WORK PLANNED

The objective of the work being planned is to produce maps of seasohailasiure patterns at the regional scale based
on medium resolution ASAR imagery. The PCA-based mapping already dé&matexsfor a small catchment will be
extended to larger basins using statistical aggregation of high resolotages to medium resolution. High resolution
data will be acquired over a selected basin scale test site within each of theriflosa and Meuse basins, whereas
medium resolution images will be acquired over the whole basin. A stafisnalysis of the information from the
processed images at these two different scales will be used to develop aratiggregethodology to generate large scale
soil moisture maps. The results expected from the project are:

¢ Validation of the multitemporal analysis technique previously agojid a single series of high resolution (ERS-1/2)
images;
e Extention of this soil moisture mapping methodology to regi@tales and medium resolution imagery;

e Demonstration of the potential to produce seasonal soil moisture atagatchment and regional scales under
different physiographic conditions;

e Implementation and testing of data assimilation techniques for dynagningdigrating soil moisture observation
data into catchment scale hydrological simulation models.

The work will involve the following phases over a 4-5 year period:



1. Preparation

e Set-up of GIS database for the two regions;
e Acquisition of auxiliary satellite data (Landsat and/or SPOT));
e Acquisition and processing of ERS-2 SAR PRI for sites with no pfBiAR data.

2. Data acquisition

e Meuse: two winter series of ASAR high and medium resolution images;
e Flumendosa: one year series of ASAR high and medium resolution images.

3. Analysis

e Image processing (including georeferencing and speckle filtering);
e Mosaicing;

Multitemporal analysis of both high and medium resolution data;
Development and validation of aggregation methodology.

4. Assimilation

¢ Implementation and testing of simple sub-optimal data assimilatiethaods in a detailed physically-based
hydrologic model,

e Assessment of more sophisticated optimal data assimilation techniques;
o Application to estimation of soil moisture profiles from surfaceevhation data.

5. Reporting

e Preliminary reporting at end of each phase;
e Reporting at ESA and other symposia and workshops;
e Final reporting.

Description of the Test Sites

Meuse. The Meuse river basin, one of the major watersheds in western Europe,tbid length of 870 km from
its source to the Hollands Diep and a drainage area of about 33 080 R8% of the catchment area is situated in
France, 41% in Belgium, 12% in Germany, 19% in The Netherlands, and agontdin in Luxembourg. The climate
is influenced by proximity to the Atlantic Ocean and is characterized by rathfalighout the year rather than distinct
wet and dry seasons. The streamflow is very variable; for instance at Borgtavemstream of Maastricht, the average
streamflow is 230 rfi1s but it may be as low as 25%s and as high as 3120%s (Dec 1993). Hydrographically the
Meuse basin can be subdivided into three main parts, the Meuse LorragnseMrdennaise, and lower reaches.

The Meuse Lorraine is a rural area with low population density, and deegpthe upper reaches in France, from the
source at Pouilly-en-Bassigny, to the confluence with the river Chieas Sedan. This part of the catchment is lengthy
and narrow, the slopes are gentle, and the main streambed is wide. Dwindi$tharge events the riverbed floods, and
water velocity is low.

The Meuse Ardennaise comprises the central reaches, from Sedan to the Beltghfborder between Vise and Eijsden.

The main tributaries are the Viroin, the Semois, the Lesse, the Saanior&he Ourthe. Due to the orography, precipitation
in this area, at- 1000 mm/yr, is higher than in the rest of the basin. The slopes are rockyteeg,snd the streambed is

narrow. The poor permeability of most of the catchment area and the stpepofldne Meuse and most of its tributaries

contribute to a fast flow response to rainfall. The contributiorhefarea to flood waves is great, while its contribution to
low flows is small. Almost the entire stretch of the river is navigalind water levels are maintained by many weirs.

The lower reaches of the Meuse correspond to the Dutch section of the riveaarbe further split into the stretches
from Eijsden to Maasbracht and from Maasbracht to the confluence with #reRhine in the Hollands Diep. In the



upper part, called Grensmaas or Gemeenschappelijke Maas along the Belgian®derhthe slope is relatively steep
and the river has no dikes and for the most part no weirs. Shippinghsseatallel Juliana Channel. The part of the river
downstream of Maasbracht is provided with weirs for navigation. Tha tnbutaries are the Roer (Ruhr) and the Niers.
The Roer contains reservoirs and so discharge is minimal. From Boxnee@rehis a typical lowland stream, with dikes
and flood plains. Downstream of Lith the river is not canalized and is sulgj¢idal influences (Getijdemaas). Flooding
problems arise in particular in the section without dikes. Durindltading of 1993, 13 000 people were evacuated, and
200 000 in the 1995 floods.

Geomorphological, hydrological, and meteorological data availabl&&keuse basin includes: 1 km and 75 m resolu-
tion DEMs; 100 m resolution CORINE land cover (44 classes); Europe#s [Satabase (1:1.000.000 scale) containing
soil texture, depth to impermeable layer, rooting depth, and parent alatdifPRES soil physical database (transfer
functions); GISCO database with European rivers; Rijkswaterstaat mtpe afver and tributaries; daily and hourly
precipitation; minimum and maximum daily temperature; actual vapour peessunshine duration, cloud cover, and
windspeed; daily discharges at many gauging stations.

Flumendosa. The Flumendosa river basin has a drainage area of 186@&hhis located in the central-eastern part of
the island of Sardinia in Italy. It is bounded in the north and rea#t by the Gennargentu and Ogliastra mountains and in
the west by Miocene formations of gentler relief. The basin outletsgtedla on the southeastern coastal plain around the
towns of Muravera, San Vito, and Villaputzu. The northern more mainotis part of the basin occupies about 1186 km

Mean annual rainfall for the entire basin is about 860 mm, which is hidizer the mean annual rainfall of 775 mm over
all of Sardinia. The rainiest months are November and December, and the rdasbath is July. Precipitation patterns

over the basin are non-uniform and highly correlated to topograplly,680 mm average rainfall below 200 m.a.s.l. and
1285 mm above 1000 m. The highest peak in the basin (and in Sardinie)rislBSpina at 1829 m. The climate of the
basin can be classified as humid Mediterranean above 500 m elevation and asnédibAkditerranean below 500 m.

The dominant geological formations within the Flumendosa basirfiraum northeast to southwest and are characterized
as carbonate-schist, metavolcanic, and metacalcareous complexes. During gra&yateriod intense erosional pro-
cesses occured, resulting in alluvial deposits which can be found throutitebasin. Geomorphologically, the basin
varies from canyon formations and meandering channels in the mountaiodiggo gentle hills and wide valleys in
the more southern parts.

The soils in the basin are generally of modest thickness and the miefdrelquently rocky. Soil humidity, as with
rainfall, is highly spatially and temporally variably, and in the driesinths the soil wetness in large parts of the basin
reaches residual values. The vegetation throughout the basin has beeg altabtl by human activities, with many
areas converted to pasture. The most intense agricultural activities aeesouthcentral and southeastern parts of the
basin, with cultivation of grains, vines, and citrus orchards makinghegmost common agricultural land uses. Many
areas have been reforested, and in the northern parts of the basin natatatisagover is still present and is a mixture
of bare soil, grassland, shrubs, and forests.

Geomorphological, hydrological, and meteorological data availablé&Flumendosa basin includes: 8 meteorological
stations for rainfall and other climatic variables; 10 automatic hydrometiations for streamflow measurements; regular
(weekly or fortnightly) water quality sampling; data regarding frffineediment transport, and erosion processes on
selected small subcatchments; topographic maps at 1:25.000 and 1:56a0) aerial photographs at 1:33.000 scale;
digital thematic maps at 1:25.000 scale of lithology, morphologdgbogy, soil classification for irrigability, land use and
land cover, land units, erosion classes, and population; digital elavatidel at 1:25.000 scale in UTM and Gauss-Boaga
coordinates at 40 m resolution; Landsat TM and IRS-1C satellite images.

ASAR data. ASAR Wide Swath Medium Resolution imagery will be collected over theemdrritory of the Meuse
and Flumendosa basins. Within each of these two regions, ASAR Imade Rtecision Image data will be acquired over
selected basin scale test sites. For the Meuse basin and sub-basingnmolt#l analysis of the radar images will be
used to study seasonal soil moisture fluctuations in an attempt to fyuhettemporal variability of surface soil moisture
content with the aim of mapping variable source areas. The variable soaecearcept, now widely accepted to explain
storm runoff production in humid regions, describes how the iriglghroportion of a watershed expands and shrinks



depending on rainfall amount and antecedent wetness of the soil [29]. A feajare of variable source areas is that the
area over which return flow and direct precipitation are generated varies seasmaathroughout a storm.

For the Flumendosa basin, the soil moisture patterns expected tarbeted from the SAR signal will not necessarily
coincide with the drainage network, as in the case for the more humigéeasin, but will probably show less corre-
lation in space and will be determined more by local soil and geological chassicteof the basin. Also, the influence
of vegetation growth on the total SAR signal is expected to be lessrdmtjisince vegetation is mainly shrubland and
bushes which are permanently present. These hydrological, geomorighblmgd ecological characteristics constitute
an important complement to the corresponding features of the Meuse &adiwill provide an opportunity to demon-
strate the SAR analysis methodology under different physiographidittans. For this area ASAR data for a complete
hydrological year will be collected, to be analyzed both as a single annuarsegjof images and as separate summer
and winter sequences, allowing comparison of inter-seasonal soil nesthavior.

M ethodology

Basic image processing. Basic image processing to be performed involves calibration with regpaatémmon cali-
bration factor (in the case of images generated by different PAFs), georefegemuisaicing, and speckle filtering. Soil
moisture patterns can be extracted from these pre-processed data by meatgeyhporal analysis.

Multitemporal analysis. The principal components transformation will be used. This wilblae calculating the
eigenvalues and eigenvectors of the cross-covariance matrix of a series of.i@mgeshe eigenvalues are the diagonal
elements of the covariance matrix in the transformed coordinate systeynetpress the variance attributable to each
principal component. The principal components are the projection coeté@arthe principal axes of the new coordinate
system.

Aggregation. The final step in the processing and analysis of the SAR imagery is theappt of an appropriate
aggregation methodology to conserve spatial patterns, detected by theeb@ution data, in the medium resolution
data products. Aggregating soil moisture information from higbolution SAR imagery to medium resolution will
involve the determination of the statistical characteristics (variances aadiaaces) of delineated hydrological units
(such as contributing areas in the humid catchments), and to correct thegimgaesults based on medium resolution
imagery accordingly. The statistical correction will be based on averag@hgigues that take into account the correlation
structure of the spatial data.

Data Assimilation

Continued progress in our scientific understanding of hydrologitatgsses at the catchment scale relies on making
the best possible use of advanced simulation models and the large ambenvironmental data that are increasingly
being made available. A wide variety of distributed hydrological motiels been developed over the past decades,
with the common feature of being able to incorporate the spatialldisiton of various inputs and boundary conditions
(topography, vegetation, land use, soil characteristics, rainfall, eatipo) and to produce spatially detailed outputs
such as soil moisture fields, water table positions, groundwater flaxelssurface saturation patterns. A major factor
contributing to the popularity of the distributed modeling agmtois the availability of digital terrain data, and GIS-based
algorithms for extraction of hydrologically relevant informatiawrh this data. One of the major problems plaguing
distributed modeling is parameter identifiability, owing to a mismdtetween model complexity and the level of data
which is available to parameterize, initialize, and calibrate models, and totaimtgrand error in both models and
observation data.

New data sources, both in situ and remote, for observation of hydcalqorocesses can alleviate some of the problems
facing the validation and operational use of hydrological models. inasitl remote measurement techniques are com-
plementary, the one offering high temporal detail and the other fineaspagiolution. The final phases of the work being
planned will investigate the combined use of of models and remotely send@doisture data, in particular for inferring



soil moisture information for the deeper layers of the soil profieydnd the 5-20 centimeters directly detectable by
remote sensors [30, 31, 32, 33].

In general terms, geophysical data assimilation is a quantitative, olgj@etithod to infer the state of the earth-atmosphere-
ocean system from heterogeneous, irregularly distributed, and tenypo@hsistent observational data with differing
accuracies [34, 35, 36]. It represents a formal methodology to intedrase data with simulation models to provide
physically consistent estimates of spatially distributed environmeat&bles, providing at the same time more reliable
information about prediction uncertainty in model forecasts. In operaltigystems where observation data is available
on a routine basis at regular intervals, data assimilation is an iangaibol in assessing data quality, identifying for
instance any biases or systematic errors in satellite-based sensors. Datlatass is by now routinely used in research
and operational meteorology, although many scientific challenges remamgooving and extending existing method-
ologies. More recently, data assimilation is being introduced in the ogeaphical and hydrological sciences, owing to
the trend towards better and more regular observation of a wide ramgeasfieters of interest to the Earth sciences.

The physically-based catchment hydrologic model to be used, CATHY3RB39], is a coupled overland and subsurface
flow model. The model simulates the dynamics of catchment flow processesrimigteat manner based on conservation
principles, and so is a good candidate for data assimilation. The nmestfily produces detailed primary (pressure head)
and derived (moisture content, integrated measures of soil water, suatacat®ns, water table positions, groundwater
velocities, surface water fluxes) output fields at selected times that can be usednfmarison against and integration
with observation data in an assimilation context, in addition to dgdaph output (typically at the catchment outlet node)
that gives the spatially integrated response of the basin to potentialcimal atmospheric forcings and is the time series
traditionally used for calibration of hydrologic models.

Some fairly simple data assimilation algorithms will be implemerasdirst trials for the CATHY model, in particular
Newtonian relaxation or nudging [40]. More advanced methods that atloarporation of model and data uncertainty
in an optimal sense, such as variational data assimilation and extended Kdierargfiwill be explored in future work.
The main concern at this stage is for a data assimilation formulatiorcéimasystematically combine information from
different observation sources, both satellite and ground-based.

Nudging is a 4-dimensional data assimilation procedure in which madlbles are driven towards observations. For
the model equation
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an additional “forcing term” is introduced which is proportional to tlierence between simulation and observation:
0s ,
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wheres! are the observations interpolated to the model gridetermines the relative strength of the nudging term with
respect to the physical forcing ter¥,(r, t) is the weighting function, ane < 1 is a factor reflecting the accuracy of the
observation data (1 for perfect data). The weighting function shoulglctefie spatial and temporal correlation structure
of the state variable being assimilated. Expressing the weightirgiumasiV (r, t) = W (z, y)W ()W (t), a commonly

used functional form is:
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whereR, R., andr are the radii of influence ang, andt, are the vertical and temporal coordinates of the observation
point.

Some important aspects of data assimilation, and of nudging in paritoilbe investigated include:

e How does the nudging term impact mass conservation?;
e How does the nudging term (in particular the size of@heoefficient) impact numerical stability and convergence?;
e CPU aspects (especially with a view to implementation of more sophestic&ioptimal data assimilation schemes);

¢ Differences in assimilation of remote sensing vs ground data.
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