
HPF to OpenMP on the Origin2000:A Case StudyLeesa BriegerGeophysics, CRS4C.P. 94, I - 09010 Uta, Italy(leesa@crs4.it)This is a preprint of an article accepted for publication inConcurrency: Practice and Experience,Copyright c2000 John Wiley & Sons, Ltd.AbstractThe geophysics group at CRS4 has long developed echo reconstruc-tion codes in HPF on distributed-memory machines. Now, however,with the arrival of shared-memory machines and their native OpenMPcompilers, the transfer to OpenMP would seem to present the logicalnext step in our code development strategy. Recent experience withporting one of our important HPF codes to OpenMP does not bearthis out - at least not on the Origin2000. The OpenMP code suf-fers from the immaturity of the standard, and the operating system'shandling of UNIX threads seems to severely penalize OpenMP perfor-mance. On the other hand, the HPF code on the Origin2000 is fast,scalable and not disproportionately sensitive to load on the machine.Keywords: shared-memory programming, OpenMP, HPF, Origin20001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by P-arch

https://core.ac.uk/display/51249269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 IntroductionThe geophysics group at CRS4 has traditionally developed itsseismic codes in High Performance Fortran (HPF) for distributed-memorymachines, using the PGHPF compiler from The PortlandGroup [1]. HPF is made for distributed data computations [2] andis a natural choice for applications such as the current one, withan intrinsic data parallelism; in fact HPF o�ered us very goodscalability for our application { until the HPF code was movedfrom the SGI Power Challenge to the Origin2000 and experienceda signi�cant loss of performance. This and the fact that our codesare run increasingly on SGI shared-memory machines (speci�-cally, on the Origin2000) convinced us to investigate OpenMP aspart of our future code development strategy. OpenMP, a libraryof compiler directives used with Fortran or C for thread-level par-allelism on shared-memory machines [3], is native on the Origin,leading one to imagine that it might be more e�cient than Port-land Group's HPF could be on that machine.While HPF is centered around data distribution, the philosophybehind OpenMP is work distribution. For the seismic applica-tion in question, however, work distribution and data distribu-tion are practically synonymous, since the concurrent operations2

which make up the algorithm correspond to di�erent data (fre-quencies). It is as natural and should be as e�cient to distributedata-related threads among the processors of a shared-memorymachine as it is to distribute the data among the processors of adistributed-memory machine.In the following sections are described the relevant characteristicsof the parallel application under study and of the parallel envi-ronment in which it has evolved. This includes some descriptionof problems encountered with OpenMP in general as well as onthe Origin2000 in particular [4]; these problems cause OpenMPto be much less e�cient than HPF for the current applicationon that machine. The last sections include performance compar-isons between HPF and OpenMP for this application and ourresulting conclusions. The HPF code had initially appeared tobe drastically penalized by the Origin's architecture since it ranmuch faster on the Power Challenge than on the Origin. Now,compilers and operating system upgrades have brought impres-sive performance gains on the Origin2000, and we are back to afast, scalable HPF code. 3

2 The Parallel ApplicationBy describing the background of our application, we hope togive the reader a grasp of the problem, which requires high-performance parallelism in order to be competitive. This shouldalso serve to expose the intrinsically data parallel nature of theproblem; only a very small fraction of the computations requireany "parallel programming" because most are carried out con-currently. As a consequence, this is an application which shouldnot pose di�cult problems of parallelism and should result in ef-�cient, scalable code { in any parallel language.Echo-reconstruction techniques for non-intrusive imaging havewide application, from subsurface and underwater imaging tomedical and industrial diagnostics. The techniques are basedon experiments in which a collection of short acoustic or elec-tromagnetic impulses, emitted by a source at the surface, illumi-nate a certain volume and are backscattered by inhomogeneitiesof the medium. The inhomogeneities act as reecting surfaceswhich cause signal echoing; the echoes are recorded by receiversat the surface and processed using a propagation model to yielda 3D image of the hidden geometry. The most demanding pro-cessing techniques for non-invasive imaging involve simple acous-4

tic signals for seismic exploration, for which the huge data setsand stringent performance requirements make high performancecomputing essential. The application under study in this report,depth migration, is based on the scalar wave equation and repre-sents a standard approach for seismic imaging.In the migration process, the pressure waves (seismic traces)recorded at the surface are used as initial conditions for a wave�eld governed by the scalar wave equation in an inhomogeneousmedium: 1v2(x; y; z) @2P@t2 = @2P@x2 + @2P@y2 + @2P@z2 : (1)In the exploding reector model [5], signals are compressed intozero-o�set traces simulating coincident source-receiver experiments.In such a model, the downward raypath and traveltime from thesource to a point of reection (reector) is identical to the up-ward raypath and traveltime from the reector to the receiver. Bypropagating the zero-o�set seismic traces P (x; y; 0; t) down andin reverse time according to Eq.(1) with halved velocity, it is pos-sible to calculate the �eld of signal intensity R(x; y; z) necessaryto reproduce the ensemble of seismic traces, but now imaginingthe reectors as the sources of the acoustic signal. In fact, Ris given by the imaging condition R(x; y; z) = P (x; y; z; t = 0).5

This signal intensity can be interpreted as a map of the local re-ectivity because large values of the �eld R correspond to sharpcontrasts in the velocity �eld. Thus the exploding reector modelallows the interpretation of the migrated section P (x; y; z; t = 0)as an acoustic image of the volume.As long as velocity v is constant, the wave equation can besolved, and thus the acoustic image produced, using depth z asthe advancing variable for the propagation of the seismic sectionP (x; y; 0; t). This is known as depth extrapolation and is possiblebecause the wave equation rewritten asd2P̂ (kx; ky; z; !)dz2 = �k2z P̂ (kx; ky; z; !) (2)in the wavenumber-frequency domain (kx; ky; !), has a character-istic solution of the form:P̂ (kx; ky; z +�z; !) = P̂ (kx; ky; z; !)eikz�z (3)where kz = !vr1 � � v!�2 �k2x + k2y� .This convenient form is used as the basis for depth migration, in-cluding the construction of approximatemethods for non-constantvelocity �elds [6, 7, 8]. Since the signals which are transformedand then depth-propagated are real, the solution in the space-6

frequency domain can be used to calculate the imaging conditionas follows: R(x; y; z) = 2P!>0Re[P̂ (x; y; z; !)].Using this formulation, the 3D imaging technique used for thecase study of this presentation is intrinsically data parallel. Ateach depth z, the processors divide among themselves the con-current calculations (independent for each !) for evaluating thesolution P̂ (x; y; z; !). This requires numerous FFT calculationsand determines the contribution F = Re[P̂] of each frequency !to the image plane at that depth. Then the sum of these contri-butions { the only operation of the algorithm which is not entirelyconcurrent { yields the 2D image for that depth. This is an arrayreduction step of the form Image(x; y) = P!>0 F (x; y; !), whichmust be carried out once at each depth z. Since this is the onlystep of the algorithm requiring communication or remote mem-ory access, the parallelism should be very e�cient and scalabilityvery good for this application.3 Problems with OpenMPAs mentioned above, HPF was the language of reference for thisstudy because it is so well-suited to the application on distributed-memorymachines. To achieve the necessary distribution over fre-7

quency of the solution array P̂ (x; y; !) at a given depth, there aresimple directives of the form !hpf$ distribute P(*,*,block).Interprocessor communications are either transparent or via in-trinsic procedures, and Fortran 90 array syntax is parallelized.Unfortunately, OpenMP is still under construction and problemsof language immaturity are easy to �nd. The language proposes{ for scalars only { a reduction operator which carries out ane�cient evaluation of the sort of reduction sum required by ourapplication. Unfortunately, our application requires reduction onthree-dimensional arrays, for which OpenMP's reduction is notyet ready; the actual operation must be programmed using barri-ers or critical regions to avoid conicts between processors. Theextension of the reduction operation to arrays will apparently beincorporated into the next version (2.0) of OpenMP, but is as yetnot present. (On the other hand, HPF requires only the Fortran90 intrinsic "sum" to de�ne the reduction sum across the proces-sors.)Dramatically lacking in the current OpenMP standard is supportfor Fortran 90. OpenMP directives can be used with Fortran 77or C, but not, in theory, with Fortran 90. Most computer makershave implemented support for some Fortran 90 characteristics on8

their machines, but this remains inconsistent. Some of the bestfeatures of Fortran 90 cannot be counted on with OpenMP; dy-namic allocation with OpenMP on the Origin was not operationalbefore the latest compiler upgrades, and support for Fortran 90modules is vendor-dependent. This state of things will appar-ently also be corrected with version 2.0 of the OpenMP Fortranspeci�cation, which should include support for Fortran 90, butfor now this harsh restriction on the use of OpenMP remains.Needless to say, this means that Fortran 90 array syntax is notcurrently parallelized by OpenMP.OpenMP, intended as it is for the shared-memory environment,was not originally meant to handle data placement and con-tains no data distribution directives. While a shared-memorymachine guarantees that all data is logically equally accessibleto all processors, the cost of that access is not guaranteed tobe uniform. Requirements of scalability are pushing most ven-dors away from symmetric multi-processor (SMP) structure andtoward some form of non-uniform memory access (NUMA) oreven outright clustering of SMP nodes. One consequence of thisis that for code optimization, data position and "communica-tion" (remote memory access) costs cannot in general be ignored,even on shared-memory platforms. In particular, the Origin20009

is a highly scalable distributed shared-memory (DSM) machine.Its ccNUMA nature gives the cache coherency which assures theshared-memory model, and yet the scalable architecture imposesvariable memory access costs: less expensive for local access, moreexpensive for remote access. While OpenMP has no data place-ment philosophy nor instructions built into it, such directives arenonetheless furnished by some vendors for their shared-memorymachines; for example, on the Origin2000, the SGI directives forman extension of the OpenMP library [9]. While such machine-speci�c extensions are necessary for optimizing code, their useinhibits the portability that the OpenMP standard was meantto provide. OpenMP must in the future be equipped to managedata placement or otherwise to make thread-data associations inan implementation-independent way if it is to take its place as astandard in parallel programming. This is especially true if thecurrent trend toward the clustering of SMP nodes continues.3.1 Problems with OpenMP on the Origin2000Because the original HPF code was already structured for e�-ciency on distributed-memory machines and because the Origin'sis a ccNUMA architecture, it seemed advisable to preserve thesame data structure, to the extent possible, even for the OpenMPversion of the code. This structure on the DSM architecture of10

the Origin2000 should guarantee that local memory accesses arefavored over the costlier remote accesses and that scalability isthus enhanced. In the absence of data placement directives inOpenMP, the SGI directives should have provided the means forcontrolling data placement and imposing the desired structure onthe data.A "page" (typically 16K bytes) is the minimal granularity ofmemory space on the Origin, and !$page place, which is sup-posed to give the user control over placement of pages in memory,was the SGI directive of choice. The page granularity does notallow the �ne control over data placement which one generally ex-pects; for example, an array distributed among several processorsis distributed by page, not by element. One can thus be surprisedby �nding some elements (those which happen to overlap on thepage allotted to another processor) residing where the user didnot intend them to be. This can be avoided by padding the arrayso as to separate data blocks by at least a page of memory space,thus avoiding the page overlapping between them. This level ofhand tuning to separate subarray blocks is unnecessary in HPFeven on shared-memory machines. However, even with this handtuning, page place was not operative on the Origin at the timeof the conversion of our code from HPF.11

Other SGI data distribution directives which should circumventthe page granularity restriction on data distribution, such as!$distribute reshape, are incompatible with dynamic alloca-tion of the distributed arrays. Such directives were not consid-ered an option for use with our application, in which dynamicarray allocation was judged of priority importance.So �rst-touch default placement was utilized. This is the SGIdefault page-allocation policy which means that "each page is al-located from the local memory of the processor that incurs a page-fault on that page" [9]. Simply initializing the array via a paralleldo-loop whose iterations are distributed conveniently among theprocessors will achieve a desired distribution { to within the usualconstraints imposed by the page granularity. (Again, page over-lapping can be avoided between subarray blocks by accordinglypadding the array.) Unfortunately, even the �rst-touch conven-tion is not guaranteed to give the desired data placement if themachine is under heavy use. If the operating system (OS) swapsthreads among processors while the �rst-touch initialization istaking place, a subarray block can wind up scattered, page bypage, among several memories. On the SGI Origin2000, this canhappen even when threads are "locked" onto their processors, be-12

cause the OS can and does, depending on machine use, overridethe user-speci�ed directives and environment variables. Thus anycontrol the user thinks she has over data distribution in the ma-chine may well be illusory.A further problem with OpenMP on the Origin2000 comes fromthe thread swapping that the OS carries out. Even with datalaid out exactly according to a user's plan, if threads are contin-ually hopping around among processors, data locality may neverbe respected { because the thread jumps away from the datathat was supposed to be associated with it. The end result is toenforce that the memory accesses can essentially never be localand cheaper. This is a major problem with the implementation ofOpenMP on the Origin and points to a major hole in the OpenMPspeci�cation; the standard itself provides no speci�cation for asso-ciating particular threads with particular data, even though dataparallelism and thread parallelism for many applications may bevirtually synonymous.4 PerformanceOur migration codes were tested on a 16-CPU Origin2000; ourjobs shared the machine with other memory-intensive applica-13

tions in a production environment. Share II was used to manageresource sharing among applications, with priority use of 4 CPUsgiven to our programs.OpenMP performance for the application in this environment issigni�cantly inferior to HPF performance. Because of threadswapping during the �rst-touch placement phase, the OpenMPversion is only rarely able to achieve data placement according tothe desired stucture. HPF on the shared-memory machine doesnot su�er from similar problems of data distribution; it utilizeslocal/private variables for placing sub-blocks of distributed arraysand so is not a�ected by memory granularity nor OS interferencefor data placement. (HPF data distribution is also not adverselya�ected by dynamically allocated arrays.)Further, performance of the OpenMP program is disproportion-ately penalized by seemingly uncontrolled OS swapping of threadsamong processors. This is the case even when su�cient availabil-ity of CPUs should make thread swapping unnecessary, but itbecomes much more pronounced when the number of free CPUsis inferior to the number requested by our job. Then, OS threadmanagement causes elapsed time for the OpenMP application toincrease by unpredictable (and sometimes very large) amounts.14

The fact that these same situations do not have a disproportion-ate e�ect on HPF elapsed times seems to imply that the HPFcode does not su�er from OS interference the way the OpenMPcode does. Apparently the Origin's operating system treats HPFprocesses di�erently from OpenMP threads { much to the disad-vantage of the OpenMP threads!
 ��

Figure 1: Timings of the OpenMP and HPF codes. Fluctuations in elapsed timefor OpenMP show e�ect of OS interference when resources are shared. No suchuctuations are observed for HPF running in the same environment.Figure 1 shows elapsed and CPU times for the HPF and OpenMPcodes, running on 1 to 16 processors; both codes ran in exactlythe same production environment. The extreme e�ect of OS in-15

terference in the OpenMP program is visible in the uctuations inelapsed time for some of the OpenMP runs. The worst examplesof the OS e�ect were not included in this �gure. For example,some 16-CPU runs took 900 seconds to complete and others hadaccomplished only a very small fraction of the calculations after840 seconds! Under the same conditions, the HPF code never ex-perienced comparable uctuations; HPF performance remainedessentially predictable as a function of CPU availability.
 ��

Figure 2: Speedup of the OpenMP and HPF codeson the Origin2000. The HPFcode scales well; the OpenMP code does not.Figure 2 reports speedup measured on the Origin2000 for the runsof Figure 1 without taking into account OpenMP uctuations in16

performance, using the most favorable runs only. Scalability ofthe HPF code is far superior to that of the OpenMP code, pre-sumably because data remain irrevocably local for the durationof an HPF run.5 ConclusionResults with OpenMP have been disappointing. With an applica-tion that is so naturally parallel and already coded for e�ciencyin HPF, we did not expect the problems with OpenMP that wedid encounter on the Origin2000 and that are outlined in thisarticle.Some of the problems we have seen are due to the immaturity ofOpenMP as a standard of parallel programming and are sched-uled to be corrected with version 2.0 of OpenMP: reduction op-erations are supposed to be extended to arrays, and support forFortran 90 should become part of the standard. However, thebiggest problems, i.e. those having to do with data placementand data locality, do not seem to have any prospect for early res-olution. OpenMP itself does not propose a method for controllingplacement of data, nor does it propose to de�ne thread-data asso-ciations to favor data locality. In the absence of such possibilities17

in the standard, each vendor's version of an OpenMP compilerwill handle these issues in an implementation-dependent manner.Other problems encountered in porting to OpenMP on the SGIOrigin2000 are more associated with SGI's implementation ofOpenMP on that machine: threads which continually jump awayfrom the processors on which they have been running cause un-necessary interruptions in the calculations and also result in datanon-locality. This is a signi�cant problem which worsens whenthe machine is not in single-user mode, when OS interference canheavily inuence run times, increasing them exaggeratedly.As long as these problems remain, we conclude that OpenMP onthe Origin2000 is not ready for production-level use in an envi-ronment which demands high-performance code. On the otherhand, HPF has come of age by now and on the shared-memoryOrigin2000 yields the scalibility and performance demanded ofour codes. For these reasons, OpenMP does not yet represent aviable alternative for our code development strategy.
18

References[1] High Performance Fortran Compilers Survey home page.See http://www.ac.upc.es/HPFSurvey/Welcome.html.[2] HPF 2.0 Language De�nition, Jan. 1997. See The High Per-formance Fortran Home Page,http://www.crpc.rice.edu/HPFF/home.html.[3] OpenMP Fortran API speci�cation, November 1999. Seehttp://www.openmp.org.[4] E. Bonomi, L. Brieger, E. Pieroni, M.T. Arienti, L. Caz-zola, and P. Marchetti, PSPI: Streamlining 3D Echo-Reconstructive Imaging, in the Proceedings of the Fifth Eu-ropean SGI/Cray MPP Workshop, Bologna, Italy, Septem-ber 1999.[5] R. H. Stolt, \Migration by Fourier Transform", Geophysics43, 23{48 (1978).[6] E. Bonomi, L. Brieger, C. Nardone, E. Pieroni, "Phase ShiftPlus Interpolation: A Scheme for High Performance Echo-Reconstructive Imaging", Computers in Physics, 12, 126{132 (1998).[7] C. Bagaini, E. Bonomi, E. Pieroni, Split Convolutional Ap-proach to 3D Depth Extrapolation, 65th Ann.Internat. Mtg.,Soc. Expl. Geophys, Expanded Abstracts, Houston 1995.19

[8] F. Collino and P. Joly, \Splitting of Operators, AlternateDirections, and Paraxial Approximations for the Three-dimensional Wave Equation", SIAM J. Sci. Comput., 16,1019 (1995).[9] MIPSpro 7 Fortran 90 Commands and Directives Ref-erence Manual, "Parallel Processing on Origin Se-ries Systems", SGI Technical Publications Library. Seehttp://techpubs.sgi.com.

20

