-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by P-arch

HPF to OpenMP on the Origin2000:
A Case Study

Leesa Brieger
Geophysics, CRS54
C.P. 94, 1 - 09010 Uta, Italy
(leesa@crsf.it)

This is a preprint of an article accepted for publication in
Concurrency: Practice and Fxperience,

Copyright(©2000 John Wiley & Sons, Ltd.

Abstract

The geophysics group at CRS4 has long developed echo reconstruc-
tion codes in HPF on distributed-memory machines. Now, however,
with the arrival of shared-memory machines and their native OpenMP
compilers, the transfer to OpenMP would seem to present the logical
next step in our code development strategy. Recent experience with
porting one of our important HPF codes to OpenMP does not bear
this out - at least not on the Origin2000. The OpenMP code suf-
fers from the immaturity of the standard, and the operating system’s
handling of UNIX threads seems to severely penalize OpenMP perfor-
mance. On the other hand, the HPF code on the Origin2000 is fast,
scalable and not disproportionately sensitive to load on the machine.

Keywords: shared-memory programming, OpenMP, HPF, Origin2000

https://core.ac.uk/display/51249269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The geophysics group at CRS4 has traditionally developed its
seismic codes in High Performance Fortran (HPF) for distributed-
memory machines, using the PGHPF compiler from The Portland
Group [1]. HPF is made for distributed data computations [2] and
is a natural choice for applications such as the current one, with
an intrinsic data parallelism; in fact HPF offered us very good
scalability for our application — until the HPF code was moved
from the SGI Power Challenge to the Origin2000 and experienced
a significant loss of performance. This and the fact that our codes
are run increasingly on SGI shared-memory machines (specifi-
cally, on the Origin2000) convinced us to investigate OpenMP as
part of our future code development strategy. OpenMP, a library
of compiler directives used with Fortran or C for thread-level par-
allelism on shared-memory machines [3], is native on the Origin,
leading one to imagine that it might be more efficient than Port-

land Group’s HPF could be on that machine.

While HPF is centered around data distribution, the philosophy
behind OpenMP is work distribution. For the seismic applica-
tion in question, however, work distribution and data distribu-

tion are practically synonymous, since the concurrent operations

which make up the algorithm correspond to different data (fre-
quencies). It is as natural and should be as efficient to distribute
data-related threads among the processors of a shared-memory
machine as it is to distribute the data among the processors of a

distributed-memory machine.

In the following sections are described the relevant characteristics
of the parallel application under study and of the parallel envi-
ronment in which it has evolved. This includes some description
of problems encountered with OpenMP in general as well as on
the Origin2000 in particular [4]; these problems cause OpenMP
to be much less efficient than HPF for the current application
on that machine. The last sections include performance compar-
isons between HPF and OpenMP for this application and our
resulting conclusions. The HPF code had initially appeared to
be drastically penalized by the Origin’s architecture since it ran
much faster on the Power Challenge than on the Origin. Now,
compilers and operating system upgrades have brought impres-

sive performance gains on the Origin2000, and we are back to a

fast, scalable HPF code.

2 The Parallel Application

By describing the background of our application, we hope to
give the reader a grasp of the problem, which requires high-
performance parallelism in order to be competitive. This should
also serve to expose the intrinsically data parallel nature of the
problem; only a very small fraction of the computations require
any “parallel programming” because most are carried out con-
currently. As a consequence, this is an application which should
not pose difficult problems of parallelism and should result in ef-

ficient, scalable code — in any parallel language.

Echo-reconstruction techniques for non-intrusive imaging have
wide application, from subsurface and underwater imaging to
medical and industrial diagnostics. The techniques are based
on experiments in which a collection of short acoustic or elec-
tromagnetic impulses, emitted by a source at the surface, illumi-
nate a certain volume and are backscattered by inhomogeneities
of the medium. The inhomogeneities act as reflecting surfaces
which cause signal echoing; the echoes are recorded by receivers
at the surface and processed using a propagation model to yield
a 3D image of the hidden geometry. The most demanding pro-

cessing techniques for non-invasive imaging involve simple acous-

tic signals for seismic exploration, for which the huge data sets
and stringent performance requirements make high performance
computing essential. The application under study in this report,
depth migration, is based on the scalar wave equation and repre-

sents a standard approach for seismic imaging.

In the migration process, the pressure waves (seismic traces)
recorded at the surface are used as initial conditions for a wave
field governed by the scalar wave equation in an inhomogeneous

medium:
1 0*P B 0*P N 0*P N 0*P (1)
vz, y,z) 2 02t Oy 022

In the exploding reflector model [5], signals are compressed into
zero-offset traces simulating coincident source-receiver experiments.
In such a model, the downward raypath and traveltime from the
source to a point of reflection (reflector) is identical to the up-
ward raypath and traveltime from the reflector to the receiver. By
propagating the zero-offset seismic traces P(x,y,0,t) down and
in reverse time according to Eq.(1) with halved velocity, it is pos-
sible to calculate the field of signal intensity R(x,y, z) necessary
to reproduce the ensemble of seismic traces, but now imagining
the reflectors as the sources of the acoustic signal. In fact, R

is given by the imaging condition R(x,y,z) = P(x,y,z,t = 0).

This signal intensity can be interpreted as a map of the local re-
flectivity because large values of the field R correspond to sharp
contrasts in the velocity field. Thus the exploding reflector model
allows the interpretation of the migrated section P(x,y,z,t = 0)

as an acoustic image of the volume.

As long as velocity v is constant, the wave equation can be
solved, and thus the acoustic image produced, using depth z as
the advancing variable for the propagation of the seismic section
P(x,y,0,t). This is known as depth extrapolation and is possible

because the wave equation rewritten as

A

d*P(ky, ky, z,w)
dz?

= —k2P(ky by, 2,0) (2)

in the wavenumber-frequency domain (&, k,,w), has a character-

istic solution of the form:

fj(kl”ky’z + Az,w) = p(kxakyvsz)eikZAZ (3)

where k. = %w (2" (k2 4 R2)

This convenient form is used as the basis for depth migration, in-
cluding the construction of approximate methods for non-constant
velocity fields [6, 7, 8]. Since the signals which are transformed

and then depth-propagated are real, the solution in the space-

frequency domain can be used to calculate the imaging condition

as follows: R(z,y,2) =2Y 50 Re[]s(x,y,z,w)].

Using this formulation, the 3D imaging technique used for the
case study of this presentation is intrinsically data parallel. At
each depth z, the processors divide among themselves the con-
current calculations (independent for each w) for evaluating the
solution p(:z;,y,z,w). This requires numerous FFT calculations
and determines the contribution /' = Re[p] of each frequency w
to the image plane at that depth. Then the sum of these contri-
butions — the only operation of the algorithm which is not entirely
concurrent — yields the 2D image for that depth. This is an array
reduction step of the form I'mage(x,y) = 3 ,v0 F(2,y,w), which
must be carried out once at each depth z. Since this is the only
step of the algorithm requiring communication or remote mem-

ory access, the parallelism should be very efficient and scalability

very good for this application.

3 Problems with OpenMP

As mentioned above, HPF was the language of reference for this
study because it is so well-suited to the application on distributed-

memory machines. To achieve the necessary distribution over fre-

quency of the solution array]5(:1;, y,w) at a given depth, there are
simple directives of the form 'hpf$ distribute P(*,*,block).
Interprocessor communications are either transparent or via in-

trinsic procedures, and Fortran 90 array syntax is parallelized.

Unfortunately, OpenMP is still under construction and problems
of language immaturity are easy to find. The language proposes
— for scalars only — a reduction operator which carries out an
efficient evaluation of the sort of reduction sum required by our
application. Unfortunately, our application requires reduction on
three-dimensional arrays, for which OpenMP’s reduction is not
yet ready; the actual operation must be programmed using barri-
ers or critical regions to avoid conflicts between processors. The
extension of the reduction operation to arrays will apparently be
incorporated into the next version (2.0) of OpenMP, but is as yet
not present. (On the other hand, HPF requires only the Fortran
90 intrinsic "sum” to define the reduction sum across the proces-

sors.)

Dramatically lacking in the current OpenMP standard is support
for Fortran 90. OpenMP directives can be used with Fortran 77
or C, but not, in theory, with Fortran 90. Most computer makers

have implemented support for some Fortran 90 characteristics on

their machines, but this remains inconsistent. Some of the best
features of Fortran 90 cannot be counted on with OpenMP; dy-
namic allocation with OpenMP on the Origin was not operational
before the latest compiler upgrades, and support for Fortran 90
modules is vendor-dependent. This state of things will appar-
ently also be corrected with version 2.0 of the OpenMP Fortran
specification, which should include support for Fortran 90, but
for now this harsh restriction on the use of OpenMP remains.
Needless to say, this means that Fortran 90 array syntax is not

currently parallelized by OpenMP.

OpenMP, intended as it is for the shared-memory environment,
was not originally meant to handle data placement and con-
tains no data distribution directives. While a shared-memory
machine guarantees that all data is logically equally accessible
to all processors, the cost of that access is not guaranteed to
be uniform. Requirements of scalability are pushing most ven-
dors away from symmetric multi-processor (SMP) structure and
toward some form of non-uniform memory access (NUMA) or
even outright clustering of SMP nodes. One consequence of this
is that for code optimization, data position and ”communica-
tion” (remote memory access) costs cannot in general be ignored,

even on shared-memory platforms. In particular, the Origin2000

is a highly scalable distributed shared-memory (DSM) machine.
Its ccNUMA nature gives the cache coherency which assures the
shared-memory model, and yet the scalable architecture imposes
variable memory access costs: less expensive for local access, more
expensive for remote access. While OpenMP has no data place-
ment philosophy nor instructions built into it, such directives are
nonetheless furnished by some vendors for their shared-memory
machines; for example, on the Origin2000, the SGI directives form
an extension of the OpenMP library [9]. While such machine-
specific extensions are necessary for optimizing code, their use
inhibits the portability that the OpenMP standard was meant
to provide. OpenMP must in the future be equipped to manage
data placement or otherwise to make thread-data associations in
an implementation-independent way if it is to take its place as a
standard in parallel programming. This is especially true if the

current trend toward the clustering of SMP nodes continues.

3.1 Problems with OpenMP on the Origin2000

Because the original HPF code was already structured for effi-
ciency on distributed-memory machines and because the Origin’s
is a ccNUMA architecture, it seemed advisable to preserve the
same data structure, to the extent possible, even for the OpenMP

version of the code. This structure on the DSM architecture of

10

the Origin2000 should guarantee that local memory accesses are
favored over the costlier remote accesses and that scalability is
thus enhanced. In the absence of data placement directives in
OpenMP, the SGI directives should have provided the means for
controlling data placement and imposing the desired structure on

the data.

A 7page” (typically 16K bytes) is the minimal granularity of
memory space on the Origin, and !'$page_place, which is sup-
posed to give the user control over placement of pages in memory,
was the SGI directive of choice. The page granularity does not
allow the fine control over data placement which one generally ex-
pects; for example, an array distributed among several processors
is distributed by page, not by element. One can thus be surprised
by finding some elements (those which happen to overlap on the
page allotted to another processor) residing where the user did
not intend them to be. This can be avoided by padding the array
so as to separate data blocks by at least a page of memory space,
thus avoiding the page overlapping between them. This level of
hand tuning to separate subarray blocks is unnecessary in HPF
even on shared-memory machines. However, even with this hand
tuning, page_place was not operative on the Origin at the time

of the conversion of our code from HPF.

11

Other SGI data distribution directives which should circumvent
the page granularity restriction on data distribution, such as
'$distribute reshape, are incompatible with dynamic alloca-
tion of the distributed arrays. Such directives were not consid-
ered an option for use with our application, in which dynamic

array allocation was judged of priority importance.

So first-touch default placement was utilized. This is the SGI
default page-allocation policy which means that "each page is al-
located from the local memory of the processor that incurs a page-
fault on that page” [9]. Simply initializing the array via a parallel
do-loop whose iterations are distributed conveniently among the
processors will achieve a desired distribution — to within the usual
constraints imposed by the page granularity. (Again, page over-
lapping can be avoided between subarray blocks by accordingly
padding the array.) Unfortunately, even the first-touch conven-
tion is not guaranteed to give the desired data placement if the
machine is under heavy use. If the operating system (OS) swaps
threads among processors while the first-touch initialization is
taking place, a subarray block can wind up scattered, page by
page, among several memories. On the SGI Origin2000, this can

happen even when threads are "locked” onto their processors, be-

12

cause the OS can and does, depending on machine use, override
the user-specified directives and environment variables. Thus any
control the user thinks she has over data distribution in the ma-

chine may well be illusory.

A further problem with OpenMP on the Origin2000 comes from
the thread swapping that the OS carries out. FEven with data
laid out exactly according to a user’s plan, if threads are contin-
ually hopping around among processors, data locality may never
be respected — because the thread jumps away from the data
that was supposed to be associated with it. The end result is to
enforce that the memory accesses can essentially never be local
and cheaper. This is a major problem with the implementation of
OpenMP on the Origin and points to a major hole in the OpenMP
specification; the standard itself provides no specification for asso-
ciating particular threads with particular data, even though data
parallelism and thread parallelism for many applications may be

virtually synonymous.

4 Performance

Our migration codes were tested on a 16-CPU Origin2000; our

jobs shared the machine with other memory-intensive applica-

13

tions in a production environment. Share Il was used to manage
resource sharing among applications, with priority use of 4 CPUs

given to our programs.

OpenMP performance for the application in this environment is
significantly inferior to HPF performance. Because of thread
swapping during the first-touch placement phase, the OpenMP
version is only rarely able to achieve data placement according to
the desired stucture. HPF on the shared-memory machine does
not suffer from similar problems of data distribution; it utilizes
local /private variables for placing sub-blocks of distributed arrays
and so is not affected by memory granularity nor OS interference
for data placement. (HPF data distribution is also not adversely

affected by dynamically allocated arrays.)

Further, performance of the OpenMP program is disproportion-
ately penalized by seemingly uncontrolled OS swapping of threads
among processors. This is the case even when sufficient availabil-
ity of CPUs should make thread swapping unnecessary, but it
becomes much more pronounced when the number of free CPUs
is inferior to the number requested by our job. Then, OS thread
management causes elapsed time for the OpenMP application to

increase by unpredictable (and sometimes very large) amounts.

14

The fact that these same situations do not have a disproportion-
ate effect on HPF elapsed times seems to imply that the HPF
code does not suffer from OS interference the way the OpenMP
code does. Apparently the Origin’s operating system treats HPF
processes differently from OpenMP threads — much to the disad-

vantage of the OpenMP threads!

Timings: OpenMP vs HPF

250

— DpenMP elapsed time
A—OpenMP CPUtime

200 # OpenMP elapsed time flucruations
+ ®—® HPF elapsed time

A—4& HPF CPL time

150 -

Time [s]

50

Figure 1: Timings of the OpenMP and HPF codes. Fluctuations in elapsed time
for OpenMP show effect of OS interference when resources are shared. No such

fluctuations are observed for HPF running in the same environment.

Figure 1 shows elapsed and CPU times for the HPF and OpenMP
codes, running on 1 to 16 processors; both codes ran in exactly

the same production environment. The extreme effect of OS in-

15

terference in the OpenMP program is visible in the fluctuations in
elapsed time for some of the OpenMP runs. The worst examples
of the OS effect were not included in this figure. For example,
some 16-CPU runs took 900 seconds to complete and others had
accomplished only a very small fraction of the calculations after
840 seconds! Under the same conditions, the HPF code never ex-
perienced comparable fluctuations; HPF performance remained

essentially predictable as a function of CPU availability.

Speedup: OpenMP vs HPF

&—8 OpenMP)

E—H HPF
12+ ---- ldeal

of CPUs

Figure 2: Speedup of the OpenMP and HPF codeson the Origin2000. The HPF

code scales well; the OpenMP code does not.

Figure 2 reports speedup measured on the Origin2000 for the runs

of Figure 1 without taking into account OpenMP fluctuations in

16

performance, using the most favorable runs only. Scalability of
the HPF code is far superior to that of the OpenMP code, pre-
sumably because data remain irrevocably local for the duration

of an HPF run.

5 Conclusion

Results with OpenMP have been disappointing. With an applica-
tion that is so naturally parallel and already coded for efficiency
in HPF, we did not expect the problems with OpenMP that we
did encounter on the Origin2000 and that are outlined in this

article.

Some of the problems we have seen are due to the immaturity of
OpenMP as a standard of parallel programming and are sched-
uled to be corrected with version 2.0 of OpenMP: reduction op-
erations are supposed to be extended to arrays, and support for
Fortran 90 should become part of the standard. However, the
biggest problems, i.e. those having to do with data placement
and data locality, do not seem to have any prospect for early res-
olution. OpenMP itself does not propose a method for controlling
placement of data, nor does it propose to define thread-data asso-

clations to favor data locality. In the absence of such possibilities

17

in the standard, each vendor’s version of an OpenMP compiler

will handle these issues in an implementation-dependent manner.

Other problems encountered in porting to OpenMP on the SGI
Origin2000 are more associated with SGI’s implementation of
OpenMP on that machine: threads which continually jump away
from the processors on which they have been running cause un-
necessary interruptions in the calculations and also result in data
non-locality. This is a significant problem which worsens when
the machine is not in single-user mode, when OS interference can

heavily influence run times, increasing them exaggeratedly.

As long as these problems remain, we conclude that OpenMP on
the Origin2000 is not ready for production-level use in an envi-
ronment which demands high-performance code. On the other
hand, HPF has come of age by now and on the shared-memory
Origin2000 yields the scalibility and performance demanded of
our codes. For these reasons, OpenMP does not yet represent a

viable alternative for our code development strategy.

18

References

1]

2]

High Performance Fortran Compilers Survey home page.

See http://www.ac.upc.es/HPFSurvey /Welcome.html.

HPF 2.0 Language Definition, Jan. 1997. See The High Per-
formance Fortran Home Page,

http://www.crpe.rice.edu/HPFF /home.html.

OpenMP Fortran API specification, November 1999. See

http://www.openmp.org.

E. Bonomi, L. Brieger, E. Pieroni, M.T. Arienti, L. Caz-
zola, and P. Marchetti, PSPI: Streamlining 3D FEcho-
Reconstructive Imaging, in the Proceedings of the Fifth Eu-
ropean SGI/Cray MPP Workshop, Bologna, Italy, Septem-
ber 1999.

R. H. Stolt, “Migration by Fourier Transform”, Geophysics
43, 23-48 (1978).

E. Bonomi, L. Brieger, C. Nardone, E. Pieroni, ”Phase Shift
Plus Interpolation: A Scheme for High Performance Fcho-

Reconstructive Imaging”, Computers in Physics, 12, 126—
132 (1998).

C. Bagaini, E. Bonomi, E. Pieroni, Split Convolutional Ap-
proach to 3D Depth Extrapolation, 65th Ann.Internat. Mtg.,

Soc. Expl. Geophys, Expanded Abstracts, Houston 1995.

19

3]

F. Collino and P. Joly, “Splitting of Operators, Alternate
Directions, and Paraxial Approximations for the Three-
dimensional Wave Equation”, STAM J. Sci. Comput., 16,

1019 (1995).

MIPSpro 7 Fortran 90 Commands and Directives Ref-
erence Manual, ”Parallel Processing on Origin Se-
ries Systems”, SGI Technical Publications Library. See

http://techpubs.sgi.com.

20

