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Abstract

This paper describes a thorough analysis of the pattern matching techniques used
to compute image motion from a sequence of two or more images. Several correla-
tion/distance measures are tested, and problems in displacement estimation are inves-
tigated. As a byproduct of this analysis, several novel techniques are presented which
improve the accuracy of flow vector estimation and reduce the computational cost by
using filters, multi-scale approach and mask sub-sampling. Furthermore new algorithms
to get a sub-pixel accuracy of the flow are proposed. A large amount of experimental
tests have been performed to compare all the techniques proposed, in order to understand
which are the most useful for practical applications, and the results obtained are very
accurate, showing that correlation-based flow computation is suitable for practical and
real-time applications.
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Introduction

Window-matching or correlation-based techniques are the most intuitive and perhaps also
the most widely applied techniques to compute the optical flow from an image sequence,
i.e. to estimate the 2D motion projected on the image plane by the objects moving in the
3D scene [4, 20, 1, 15, 18, 19] Optical flow estimation has many practical and industrial
applications, i.e. for object tracking, assisted driving or surveillance systems, obstacle
detection, image stabilisation or video compression [2, 7, 8, 9, 10]. In spite of this fact,
few works analysing the performances and the possible enhancements of these algorithms
have been presented [4, 20, 1] so that a more detailed analysis of this simple and widely
used optical flow technique seemed to us necessary. The aim of this paper is to give a
clear overview of window matching algorithms, presenting new solutions to improve on
their shortcomings (such as the computational cost, the pixel precision, and so on).

The paper is organised as follows: Section 1 gives an overview of correlation-based
techniques discussing advantages and drawbacks, Section 2 introduces the distance or
similarity measures we applied to our algorithms. Section 3 discusses the matching er-
ror due to high frequencies and search space quantisation. Section 4 introduces several
techniques in order to have the best results in matching, reducing the complexity and in-
creasing the accuracy obtaining also a sub-pixel motion estimation. Section 5 presents the
experimental results, with comparisons of algorithms on well-known test image sequences.

1 Overview: advantages and drawbacks

Correlation-based methods are based on the analysis of the gray level pattern around the
interested point and on searching for the most similar pattern in the successive image.
In a few words, defined a window W (Z) around the point #, we consider similar windows
W'(x+1,y+7) shifted by the possible integer values in pixels in a search space S composed
by the 7,7 such as —A < ¢ < A and —A < j < A. The optical flow, i.e. the estimated
image displacement is taken as the shift corresponding to the minimum of a distance
function (or maximum of a correlation measure) between the intensity pattern in the two
corresponding windows:

FW, W', 7)) (1)

The basic implicit assumptions are that the gray level pattern is approximately con-
stant between successive frames (no perspective effects) and that local texture contains
sufficient unambiguous information.

Many applications of similar algorithms are found in literature, but only few works inves-
tigated how to obtain the best results from them. In the well known optical flow technique
comparison by Barron et al. [4] only two among the algorithms analysed were based on
correlation, specifically on the comparison of image windows with the sum of squared
differences (SSD) measure. The first, by Anandan [1] reaches then a sub-pixel precision
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Table 1: Definitions of the most common difference measures for squared pattern of pixels.

by locally approximating with a quadratic surface the difference function, the other, by
Singh [20], reaches the same goal by performing a weighted sum of the displacements
around the minimum of the distance.

A comparison among several correlation/distance measure albeit limited to synthetic
images has been proposed by Aschwanden and Guggenbuhl [3].

Optical flow estimators based on correlation are less sensitive to noise than derivative
based ones. Usually they have better performances if the texture is not relevant and in the
case of large inter-frame displacements causing the aliasing problem [12] in the derivative
estimation. The main drawbacks are to be found in the computational weight and in the
quantisation of the computed values. In the following sections we will discuss methods to
partially overcome these problems. First of all we analysed different similarity measures
that can be used.

2 Distance-similarity measures

Many ways of measuring difference or similarity between gray-level pattern can be used.
In our work we compare squared windows of N x N and compute motion between a
window centered in (x,y) in the image [; and a window shifted by (7, ) in the image
I;. The most used distance measures are reported in Table 1. The widely used sum
of absolute differences (SAD) and sum of squared differences (SSD) can be modified to
consider the effect of global gray-level variations, setting the average gray level difference
equal to 0 (ZSSD, ZSAD) or locally scaling the intensity (LSAD, LSSD).

Distance minimisation can be replaced by the maximisation of a correlation measure
(see Table 2). The standard cross-correlation (CC) is too sensitive to noise and is usually
replaced by the normalised one (NCC) or by the zero-mean normalised version (ZNCC).

These measures are all based on computations made on the local gray level values.
An analysis of their robustness against several types of noise and image distortion on
synthetic images can be found in [3]. Another possible way to perform the comparison
is to reduce the amount of information by extracting local features of the images and
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Table 2: Definitions of the most common correlation measures for squared pattern of
pixels.

limiting to those features the comparison. Some authors proposed to match extracted
edges using the Hamming distance or the Hausdorfl fraction [16] as difference measure.
The Hamming distance is simply the number of bits in the opposite state (0/1). The
Hausdorff fraction, used by Huttenlocher and others [16] to compare binary maps, is the
fraction of pixels in the state ”1” in the original pattern that have distance less than a
threshold from a pixel in the same state in the shifted patch of the successive image. In
our experiments the threshold was fixed to the value of 1 pixel. Zabin and Woodfill [22]
have introduced two image transforms called Rank transform and Census transform to be
performed before the comparison. In the first case they compare with the SSD distance
the transformed images given by:

R(7) = [|7" € N(@) : 1(¥') < [(Z)]] (2)

i.e. for each location, the number of neighboring with gray level smaller than the central
value.

The Census transform consists of defining for each pixel a binary matrix with the value
”1” in the neighboring points where the gray level is above the central value and 70"
otherwise. The local matrixes are then compared by using the Hamming distance.
These techniques reduce the amount of information of the patches to be compared and
this means that the results obtained are good only for very simple images.

3 High frequencies and quantisation

Even if correlation based techniques are not affected by the aliasing problem as differential
ones, signal quantisation introduces error in flow computation due to high frequencies. If
the frequency of the signal has the same order of magnitude as the sampling frequency
and the displacements to be computed are not exactly integer (i.e. a multiple of the
sampling step), correlation may lead to completely wrong results as well. Let us show it
with a simple example: we consider a 1D sinusoidal pattern translating, as in Fig. 1. The
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Figure 1: Correlation on a sinusoidal pattern in 1D: signal quantisation creates problems

if the sampling frequency is small compared with the frequency of the signal.

similarity measure SAD is given by:

z+M
Z |sinw(x 4 1) — sinw(x + 16z + v — ddz)| (3)
i=x—M
where M is the mask half size, v the speed and dx the sampling step and d the tried
displacement. Applying simple trigonometrical formulas, we obtain:

+M
Z |sinw(a 4 1dx)(1 — cosw(v — ddéx)) — cosw(x + idx) sinw(v — dox )| (4)
i=—M
v — ddx represents the difference between the true value of the image motion and the
integer tentative value. It is evident that, if wdx is not small, the difference can be
relevant if ddx is close to v and negligible if w(v — ddx) ~ k.

It is therefore useful to filter the images before the distance computation. We apply
usually a Gaussian filter with o = 1.5. This is sufficient to avoid errors and to have an
estimated value close to the real displacement if the signal has low-frequency components.
We can show this fact more clearly with another example.

Consider a 1D signal like that in Fig. 2 A, roughly the superposition of a low frequency
and a frequency higher than the reciprocal of the sampling step. If the profile is moved of
a half sampling step and the signal is re-sampled, we have the sample value represented in
Fig. 2 B. If we compute the SAD distance for tentative displacements in the range (-2,2)
the distance is minimum for a displacement d = —2 (see Fig 2 C), with a completely
wrong motion estimate. If the sampled signal is filtered with a simple 3-point low-pass
mask like (0.25,0.5,0.25), the samples to be compared are now those represented in Fig.
3 A and B. Now the SAD distances measured are those in Fig. 3 C, and the minimum
values correspond to the integer displacements closest to the real value.
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Figure 2: A, B: Sampling at t and t+1 of a superposition of a low and an high frequency
translating to the left. C: The shift corresponding to the minimum of the SAD distance
do not approximate as expected the real displacement.
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Figure 3: A, B: The signals of Fig. 2 A B, filtered with a low pass 3 point mask. C: The
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4 Improving the method

The previous chapters have shown several features of correlation algorithms showing also
some problems of the method; in this chapter we will introduce several algorithms to solve
these problems and to improve the algorithm performances.

4.1 Optimal window size

What is the ideal size of the windows used to perform the matching? If small windows
are used, the amount of information inside the window is small and the estimate is not
reliable. If windows are too large the hypothesis of negligible deformations of the pattern
inside the window fails and the estimate can be wrong. Furthermore, computational
complexity is greatly increased. The ideal size depends on the texture inside. In our
experiments we usually took windows of 25 x 25 pixels, a good tradeoff as shown by our
experiments. However, following an idea already applied in the case of stereo matching
([17]), we considered the opportunity of using an adaptive window size, but the algorithm
we have implemented, enlarging the window size if the information inside is small, has
not given good results, because a small accuracy improvement required a relevant speed
reduction. As the window ”information” measure, we used the determinant of the first-
order derivatives matrix inside the window, divided by the pixel number. The algorithm
starts from a fixed (11 x 11) dimension then increase it until a threshold is reached or
a maximum value is obtained. Better accuracy results would be obtained by using an
iterative solution involving also flow regularity in the window adaptive algorithm, but
this would make the algorithm slower.

4.2 Complexity reduction: fast minimum/maximum search

Correlation-based optical flow algorithms are extremely complex and time-consuming.
They require repeated comparisons, each one needing N? operations for each velocity
value in the search space. If the distance (correlation) used for the comparison is obtained
from a certain number of operations for each mask point, the complexity as a function of
these operations is N?(2M + 1)? for each point where the flow is computed and execution
time is high even on fast machines.

It is possible to introduce techniques capable of reducing sensitively the computation
times, even if they can reduce the accuracy of the estimates.

In order to reduce the complexity of the method for a single point we propose the
following solutions:

e Reducing the tentative displacements (window sub-sampling).
e Changing the search strategy.
e Replacing arithmetic operations with the use of look-up tables.

If we want to compute a dense flow, there are other possibilities to reduce the complexity:
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Figure 4: Reducing the complexity of a factor 16 by window sub-sampling does not affect
the accuracy of the estimate.

e Storing partial results to avoid repeated calculations.

e Computing the flow at reduced densities and then filling the gaps in the flow field
computing in the other points the correlations for a reduced search space limited to
values close to those obtained in the neighboring points.

Here are a few details on the methods:

4.2.1 Mask subsampling

Tests performed on several images have shown that windows at least 15 pixels wide
are necessary to have good results in matching, but have also shown that there is the
possibility of using a small subset of the window points to compute differences without
affecting too much the results. If we use, for example 25 x 25 windows, no error is
introduced by computing differences for SSD sampling the windows with a step 4 (i.e.
calculating the value only for 1 pixel every 4 x 4), with complexity reduced of a factor 16.
This is due to the strong correlation between grey level in neighboring points, especially
after the spatial filtering.

In the general case, if the sub-sampling rate is s the complexity changes from N?(2M +
1)? for each displacement estimate to N*(2M + 1)?/s>.

4.2.2 Fast minimum/maximum search

The search for the minimum of the distance can be speeded up with different search
strategy. A simple method, that is effective only in very simple cases is the 1D-1D method
proposed by Ancona and Poggio [2] which searches for the minimum first moving the
window in one direction and then assuming that the motion component in that direction
is that corresponding to this minimum. The procedure is then repeated independently
for the other direction.



Figure 5: 2D and 1D-1D minimisation

It is clear that this technique will provide good results only if the minimum of the
distance function is well defined. The complexity is, of course, drastically reduced and
goes from the N? (2M + 1)? operations per point of the full search to N* 2(2M + 1).

4.2.3 Coarse-to-fine minimisation

A better way to reduce complexity consists of introducing a coarse-to-fine minimisation.
The search space is first quantised with a large step (2% pixels), and when the minimum
is found at this resolution a new search with step 25! is performed around the found
minimum, and the procedure is then repeated. When the step 1 is reached, a vector with
the pixel precision is obtained, with a complexity of only [(N/(28))? + 8 * K](2M + 1)?

steps.

4.2.4 Look-up tables

If the distance function is a sum of differences or products of the gray level of two points,
it is convenient to avoid the computation by generating and storing a look-up table as-
sociating the result of the operation with the values of the two gray levels. If the SSD
correlation is used and the number of gray level is 256, the following table is generated:

table(i,j) = (i — j)? (5)
and the program compute the distance as:

) N/2
SSD(Z,d) = Z table(li(x + i,y +j), (e + i1+ ds,y+ 7+ dy)) (6)

i, j=—N/2

The time saved depends on the operations replaced by the table access. The problem of
the method is that it requires the allocation of a large amount of memory for the table.



4.2.5 Increasing density algorithm

If the user wants to estimate a dense flow field, it is possible to exploit the linear de-
pendence of the estimates of neighboring points to reduce the complexity. To compute
a dense flow on a X x Y image region the complexity is XY N?(2M + 1)? times the ba-
sic operation. But to compute the flow in neighboring points, many of these operations
are repeated, so there is a redundancy and estimates of neighboring points are strongly
correlated. It is found that there is no accuracy loss in computing the flow only at a
reduced density, (X/2%) x (Y/2%) and then adding the missing estimates at the immedi-
ately finer resolution, (X/2571) x (Y/2°71) limiting the search space to the range of the
displacements values computed in the neighboring point at the coarser resolution. The
complexity reduction depends on the flow variations, but is usually relevant due to strong
flow continuity.

4.2.6 Avoiding repeated operations

As suggested before, when the flow is computed at a density such as overlapping windows
are used to compute the flow in different points, some operations are repeated if the usual
algorithm is applied to each pixel. It is however possible to avoid this waste of time with
a fast algorithm eliminating all the repeated operations by computing partial sums for
each tentative displacement and storing them in memory. The theoretical complexity is
thus drastically reduced. With the correlation estimate repeated for each point, we have
usually

(26 +1)2N?*(2M + 1)?

calls to the LUT and an equal number of additions. The fast algorithm works s follows:
first partial sums over horizontal segment of the window x-size are computed simply by
adding the following pixel and subtracting the previous one. The second step consists
in repeating the procedure by adding the partial sums vertically over segments of the
window size (2M + 1).

The two steps are repeated for each tentative displacement and all the distances are
then computed with

(26 +1)2N?

calls to the LUT and
(26 +1)°2N((2M + 1) +2(N — 1))

additions or subtractions. When N >> M the algorithm should be faster of a factor
that is of the magnitude of the squared window size, that is usually about 10%. In the
experiments the time saving is not so relevant (it is of a factor 10-20 for N=256 and
M=12) due to the memory management of the elaborator.

4.3 Subpixel precision

The motion to be estimated is, for most image sequences, small and not integer. On the
other hand, the motion estimated with correlation, is quantised. It is therefore useful
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to add to the algorithms some procedures to obtain a precision not limited by the pixel
dimension. Techniques to obtain this result are used in the correlation algorithms tested
in the work of Barron et al. ([4]). We propose similar and new methods that we have
tested in our experiments.

4.3.1 Anandan’s algorithm

Anandan [1] used SSD correlation to compute the flow with a multi-scale approach and
very small windows (3 x 3). He then approximated the surface of the distance function
with a quadratic surface, generating a potential where the continuous SSD approximation
is added to another term depending on velocity smoothness. This approach requires then
an iterative minimisation of the potential and therefore is computationally heavy.

4.3.2 Weighted average of displacements

Another possibility consists of computing the non integer displacement as an averaged
sum of the displacements for which the distance measure has been computed, using the
distance values to calculate the weights. Singh’s algorithm use the SSD correlation on 7x7
windows doing the correlation on 3 consecutive images: im(—1),:m(0),2m(1) minimizing
the distance:

SSD(Z,d,im(—1),im(0),im(1)) = SSD(Z, —d,im(—1),im(0))+SS D(Z, d, im(0), im(1)).
(7)

Then a weight function is build:
R(Z,d) = e* SSD(&,d) (8)
where k = —I[n(0.95)/minimum(SSD(im(—1),im(0),2m(1))) and the subpixel displace-

ment v(Z) = (u(Z),v(¥)) is given by:

—

> R(d)d,

=R W
. Y R(d)d,
== (10)

This method like similar ones give good results, even if it is not theoretically well-founded
and is computationally heavy. We implemented a simplified technique of this kind simply
performing a similar weighted sum of the displacements in a 1 x 1 neighborhood N of the
one corresponding of the minimum SSD:

- 2den R(d)d,

= S B "
-\ Z_'eN R(CZ) Yy

v(¥) = —Z . R(af) (12)



4.3.3 Interpolation

Another typical method to obtain a sub-pixel precision is to interpolate the signal in
order to have an image value also for non integer pixel positions. We have developed
an algorithm that introduces grey level values at non integer coordinates interpolating
neighboring values and then correct the best integer value searching for the best match
of the finer image around that value.

4.3.4 The ”"mixed” algorithm

The last method we propose is completely new and cosists of a combination of the classical
integer matching and the Lucas-Kanade differential technique. It consists of computing
the integer part of the motion vector with the correlation method, and then compute
corrections to this value by using the differential method on the locally warped sequence
obtained by shifting the neighborhood of the point in the previous and successive image
of the integer motion computed. In detail, let us call \7(5) = (U(&), V(%)) the computed
integer vector and W (%) a small window (e.g. of 9 x 9 pixels) around the considered point

Z. The non integer correction is computed by solving the overconstrained system:

Bali j)ea(®) + By(i )enl@) + B ) =0 i,jeW (13)
where FE] is the "shifted” derivative:
Bz + U(&),y + V(&), 1 +1) — E(x — U(@),y - V(&), 1 — 1)

E = 14
! : (14)

If the least square solution is considered reliable, i.e. if the residual of the least square fit:
QW) = > (Buli,g) + Ex(i,j)ea(@,t) + By (i, j)ey (#,1))*/N(W) — (15)
i, JEW(D)

(where N is the number of pixels inside the window) is low, the integer vector is corrected
and the best velocity estimate becomes:

v=V+é (16)

This method is effective because the differential technique is fast and gives good estimates
for corrections that are of less than one pixel (differential techniques are not reliable for
large inter-frame motions because of aliasing [12]).

4.4 Post-processing

Other techniques of post processing can be useful to improve the flow accuracy. If a reliable
confidence measure is provided by the optical flow algorithm, a non linear filtering able
to correct bad estimates can be introduced. As a confidence measure for correlation we
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consider the ratio between the distance value (or the reciprocal of the correlation value)
and the average distance value in the search space S(Z):

minses(z) 0

Q) = e (1)

Using this function it is possible to implement for example a multi-window filter ([5, 12])
or regularising filters performing weighted averages and possibly preserving the velocity

edges ([12]).

5 Experimental Results

To test the algorithms, we computed optical flows on synthetic or calibrated image se-
quences with the true displacements known at every pixel location. We measured the
average differences between the computed flow ¢ and the true motion ¢’ using the angular
distance introduced by Barron et al. [4]:

(18)

! ! 1
dist(0,v") = arccos ( e ot )

VUER + D72 + 1)

5.1 Comparison between similarity measures

Even if matching algorithms based on different similarity/distance measures are widely
used both for motion estimate and disparity computation, few works analysing their
performances can be found in literature. Furthermore, those works often present results
obtained only on simple or synthetic images. As a first experimental test, we have therefore
compared the accuracy of the displacements estimated with different measures on several
image sequences. In the case of rich texture and integer displacements, the results are,
as expected, accurate using all the considered measures. The only interesting comparison
can be done on the execution times. A good analysis of measure performances adding
controlled noise to similar images is presented in [22]. But real images are corrupted
by other noise sources and present other problems due to perspective effects and motion
discontinuities.

In order to verify the execution time and at the same time analyse the accuracy near
discontinuities we have generated a synthetic image sequence with integer inter-frame
displacements. The "MJ” sequence, represents the superposition of a textured circle
over a differently textured background. The circle translates with constant speed (2,3)
pixel/frame, while the background translates with speed (-1,0) pixel/frame. Poor texture
and discontinuities create problems even if there is no added noise..

In this case no speeding up algorithms are applied and time values (relative) are ap-
proximated. All the distances provide good results with the exception of a few points near
the motion discontinuity. Algorithms using reduced information are accurate too and as
expected faster. But when the sequence becomes more realistic, these last techniques

13



Measure Avg. error | std. dev | time/time(RANK)
SSD 6.0 20.5 2.5
755D 6.1 20.6 4.1
LSSD 6.1 20.5 4.5
SAD 3.6 17.6 2.5
ZSAD 4.4 17.3 4.5
LSAD 4.3 17.9 4.8
NCC 6.1 20.5 2.7
ZNCC 6.2 20.6 4.9
RANK 4.1 19.0 1.0
CENSUS 16.8 24.7 4.6
EDG(HAMMING) || 3.7 177 |19
EDG(HAUSD.) || 3.7 177 |19

Table 3: Comparison between distance measure over the MJ sequence. (SSD sum of
squared distances, ZSSD zero-mean sum of squared distances, LSSD locally scaled sum of
squared distances, SAD sum of absolute distances, ZSAD zero-mean sum of absolute dis-
tances, LSAD locally scaled sum of absolute distances, NCC normalized cross-correlation,
ZNCC zero-mean normalized cross-correlation, RANK rank transform, CENSUS census

transform, EDG (HAMMING) Hamming distance on binary edge image, EDG(HAUSD.)

Haussdorff distance on binary edge image.
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Figure 6: The MJ sequence. A: Central frame with the true motion superimposed. B:
Image motion estimated with SAD correlation, the "classical” algorithm giving the best
results. C: Edge map extracted from the central image. D: Optical flow computed on the
edge images with the Hamming distance.
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fail. The "Reduced Marbled Block” sequence represents a real motion of objects with a
rich texture. The results obtained are shown in Table 4. In this case algorithms based
on reduced information are not accurate. The best one, based on the Rank Transform,
provides results that are worser than those obtained with the worst classical method.

Distance Avg. Frr. | Std. Dev.
SSSD 20.7 10.8
255D 20.7 11.1
LSSD 20.7 11.1
SAD 20.6 10.7
ZSAD 20.2 10.7
LSAD 20.2 10.7
NCC 20.7 11.0
ZNCC 20.9 11.1
RANK 21.4 11.7
CENS 25.2 26.2
EDG(HAMMING) || 41.0 28.2
EDG(HAUSD.) 41.0 28.2

Table 4: Comparison between different correlation/distance measure on the 256x256 Mar-
bled Block sequence.

"Yosemite Valley”, is a synthetic sequence widely used to analyse the accuracy of optical
flow estimators over realistic images. In fact it presents many problems such as perspective
effects, non-integer displacements and global variations of brightness. Table 5 shows the
results obtained computing the flow at a reduced density (1 pixel every 4 x 4) with 25 x 25
masks, sub-sampled by a factor 4.

We can conclude that, for practical applications, standard measures based on gray
levels (SAD,SSD, ZSAD,ZSSD,LSAD,LSSD, NCC, ZNCC) are the best choice and their
performance are similar. Only in the case of global brightness variations as in the sky of
the Yosemite Valley Sequence, the performance of the non-normalised measures become
bad. Algorithms based on normalised measures, on the other hand, require the addition
of a large amount of operations and are therefore slower. SAD and SSD, depending only
on local gray level values, can be computed more efficiently by using look-up tables.

5.2 Window size

Table 6 shows the results obtained on the Yosemite Valley Sequence changing the window
size and keeping the other parameters fixed (SSD distance, Gaussian filtering with o = 1.5,
density 4). We compared the average angular distances and the execution times. It seems
that a window size of 25 x 25 pixels is a good tradeoff between accuracy and velocity.
Where not explicitly indicated otherwise we have always used windows of this size.

16



Distance || Avg. Err. | Std. Dev.
SAD 12.6 10.1
ZSAD 10.5 9.3
LSAD 10.3 10.1
SSD 12.7 9.3
755D 10.9 8.3
LSSD 10.5 9.0
NCC 10.4 8.8
ZNCC 10.0 8,5
RANK 18.6 19.1
CENS 25.2 26.2

Table 5: Comparison between different correlation/distance measure on the Yosemite
Valley sequence.

Win. size || Avg. err. | Std. dev | Time/Time(9)
9x9 17.58 19.05 1.0

15 x 15 13.09 13.58 2.6

21 x 21 11.80 7.89 4.2

25 x 25 11.36 7.67 5.7

33 x 33 11.79 7.61 10.1

41 x 41 12.51 9.07 13.6

Table 6: Comparison of results obtained on the ”Yosemite Valley” sequence using differ-
ently sized windows.
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table).
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accuracy is lower than the one obtained with 25 x 25 windows(see table).



The window size can be also made adaptive in order to use more pixels where the
local information is poor and less where it is rich. The results we obtained, however,
do not seem to be so good to compensate for the increased computation time. We used
the determinant of the matrix of the gray level derivatives as a measure of the local
information. Starting from an initial window size of 15 x 15, we increased the size of
the window until the information measure reached a previously fixed threshold. The
accuracy obtained on our test images was not better than that obtained with the fixed
21 x 21 window, but the computation time was higher.

Window || Avg. err. | Std. dev | Time/Time(15)
variable || 12.8 13.5 3.2
15 <15 || 13.1 13.6 1.0
21 x 21 | 11.8 7.9 4.2

Table 7: The adaptive window algorithm we tested did not yield good result.

5.3 Image filtering

In order to verify the improvements in flow accuracy due to image filtering before process-
ing, let us analyse the results obtained on the same sequence keeping the other parameters
fixed (25 x 25 mask, sub-sampled with step 4, density 4, search space (-4,4), SSD distance)
changing only the value of ¢ in the Gaussian filter.

o Avg. err. | std. dev
0 14.9 14.9
0.5 || 14.8 14.4
1.0 || 13.3 11.7
1.5 ] 12.8 10.1
2.0 || 12.8 10.0
2.5 || 13.8 11.7

Table 8: Changes in accuracy due to variations on the standard deviation of the Gaussian
filter used for pre-processing. The values are the average errors on estimates realized on
the Yosemite Valley Sequence.

We therefore used o = 1.5 as a default choice, a value that seems to give optimal results.
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5.4 Speeding up the computation
5.4.1 Mask sub-sampling

Mask sub-sampling has already been introduced in the previous section and it was stated
that it does not strongly affect the accuracy. We now demonstrate this fact by analysing
the quality deterioration as a function of the sub-sampling step. Fixing the other pa-
rameters, we computed the difference between true and estimated displacements on the
Yosemite sequence ( 25 x 25, Gaussian filtering with o = 1.5, density 4) changing the
sampling rate of the windows. The average errors obtained are in Table 9. It is evident

Step || Avg. err. | Std. dev | Time/Time(8)
8 14.9 14.5 1

6 11.9 7.8 1.2

4 11.7 7.8 1.8

3 11.8 8.1 2.5

2 11.3 7.7 4.7

1 11.4 7.7 17.2

Table 9: Effect of mask sub-sampling on the average precision an the computational speed.

that the computation of the best match can be performed in a faster way by computing
the distance only for a subset of the mask points: the reduction of the operations of a
factor 16 do not affect the accuracy of the results.

5.4.2 Fast minimisation

Still using ZNCC, we tested the effectiveness of our fast search strategies evaluating the
average error introduced as a function of the time saving, computed simply as the average
time of the program run on the same hardware. For the Yosemite Valley sequence, the
1D-1D method, giving good results for very simple images [2] introduces a too large
error, while the coarse to fine search strategy is effective in reducing the time without
introducing a large error.

Table 10 includes the results (SSD, o = 1.5, 25 x 25 mask, subsampled with step 4,
density 4).

5.4.3 Dense flows: Multi-resolution

The effectiveness of the multi-scale minimisation depends on the entity of the local varia-
tions of the flow. Discontinuities, however, are usually found at a few image locations so
the time savings is considerable. Table 5.4.3 represents the time decrease as a function
of the number of scales used for the minimisation, using SSD distance, 25 x 25 windows
sub-sampled with step 4, final density of the flow equal to 1, Gaussian filtering of the
images with o = 1.5.
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Algorithm || Avg. err. | Std. dev | Time/Time(1D-1D)
1D-1D 30.2 28.0 1

3 scale 15.6 18.2 1.4

2 scale 13.4 10.9 1.8

Full 12.8 10.1 3.2

Table 10: Results obtained with different search strategies: the 1D-1D by Ancona and
Poggio provides bad results. A 2D multi-grid strategy is slightly slower but much more
precise.

Density || Avg. err | std. dev | Time/Time(5)
5 11.7 9.1 1

4 11.7 9.2 1.2

3 11.7 9.2 1.6

2 11.7 9.2 3.5

1 11.7 9.2 11.3

Table 11: Speeding up the flow estimate by using a multi-scale minimisation does not
introduce a relevant error for the ”Yosemite Valley”.

The average error on the flow does not change at all, but the time is drastically reduced.

5.5 Look-up tables-Repeated operations

The replacement of the computation of the squared differences of SSD with the retrieval
of a look-up table value causes, for 25 x 25 windows sub-sampled of a factor 4 a time
saving of a factor 2.5. When the algorithm that eliminates all the repeated operations is
introduced, the time is reduced by a factor 15 for a 256 x 256 image and a 25 x 25 not
sub-sampled window. Of course, in this case there is no loss in accuracy.

The time saving is not as relevant as expected from the theoretical analysis because of
memory management.

5.6 Non-integer correction

Finally, we tested the performance of the three algorithms to refine the precision of the
flow to non-integer values presented in Section 5. We used the Barron angular distance
to compare the performance of weighted sum, interpolation and differential correction. In
Table 5.6 are reported the results obtained on the Translating Tree and Diverging Tree
sequences. Flow density is always equal to 100%. The differential algorithm gives the
best results both in accuracy and time.
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Figure 9: Results obtained with different techniques for non-integer approximation on
the Diverging Tree Sequence (only 1 arrow every 4 x 4 is displayed for clear visualization.
Zero length vectors are not shown.) A: Integer estimate (SSD). B: Weighted sum. C:
Interpolation. D: Differential.
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Figure 10: Optical flows obtained on the Yosemite Valley Sequence (only 1 arrow every 4 x



Algorithm Avg. err. | std. dev
Integer 1.12 0.67
Weighted sum || 1.05 0.54
Interpolation | 1.15 1.24
Differential 0.44 0.45
Diff (reg.) 0.34 0.39
Algorithm Avg. err. | std. dev
Integer 18.28 8.32
Weighted Sum || 15.29 7.91
Interpolation 10.39 5.36
Differential 3.65 3.27
Diff (reg.) 2.24 2.05

Table 12: Precision of the non-integer flows computed with different correction algorithms
on the Translating Tree and Diverging Tree sequences: the differential is clearly the best
one.

In the case of the ”Yosemite Valley” we used the NCC distance instead of the usual
SSD to have better performance for the sky region where the global brightness changes.
The results are reported in the Table 13.

Algorithm Avg. err. | std. dev
Integer(NCC) || 13.54 13.35
Weighted sum | 14.15 13.40
Interpolation | 8.70 10.91
Differential 5.73 9.43
Diff (reg.) 4.86 10.22

Table 13: Results obtained on the Yosemite Valley: notice that the flow density is 100%
and clouds are not removed.

The accuracy obtained is very good, especially considering that the flow density is equal
to 100% and that the sequence used includes the clouds.

5.7 Real world sequences

In order to show the robustness of the proposed algorithms, we applied the multi scale,
corrected and fast flow estimation to the real world. We have chosen examples where
usual differential algorithms perform badly due tue noise or large displacements. Fig
11 shows an image from a sequence taken by a camera mounted on a car. The optical
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flow superimposed to the image is computed on 32 x 32 window with 2 resolutions and
differential correction. The flow vectors computed are often very good even if the texture
is poor. The computed flow can be effectively used to estimate the car speed ant to detect
obstacles and other vehicles on the road, as pointed out in [13], and this means that the
estimate of the optical flow is precise. With the same parameters, we have computed the
flow on a sequence of METEOSAT images. The result shown in Fig. 12 superimposed to
the corresponding image, show a good behavior and is possible to think of applications of
these algorithms in weather forecasting, computing the future position and deformation of
clouds from the flow values in the past. Also on a very noisy ultrasound medical image it
is possible to have a good estimation of the optical flow. Fig. 13 shows the flow computed
on a sequence showing the left ventricle in the diastolic phase. The optical flow seems
reasonable, and it is not surprising therefore that we used the fast correlation algorithm
to help the contour tracking of the left ventricle described in [14].

Figure 11: Optical flow computed on the car sequence superimposed to the corresponding
image.

5.8 Flowtool

All the algorithms implemented can be executed from a user-friendly interface, Flowtool,
that we have developed during the tests. All the options described in this paper for the
correlation can be selected with the appropriate menu, and the user can also compute
the flow with differential algorithms, compute flow differences, display and print images
and flows. It has been developed using the X window and the Sun XView libraries
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Figure 12: Optical flow computed on the Meteosat sequence superimposed to the corre-
sponding image.

Figure 13: Optical flow computed on the ultrasound heart sequence superimposed to the
corresponding image.
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and an executable code for Sun-Sparcstation is available on the net from the web page
http://www.crsd.it /~giach.

Flowtool 96

—————————————— Load File dliﬂlav L
Load image Load flow | L g B

Image: - |TREE/newbinarytreed.20.9z

Flow:

[ Show seguenes ) WolEy 10 [

—————————— Flow visualization ——————
Scale 4 #|7| Density 4 &)=

Arrow 2 == Color 7| vellow
Tresh.x10 © [ Clear | Refresh )
Tools

Durnp | Difference | Linear fit |
Zoom | Factor 2 2 ——— 10

—————————— Flow computation —————————

Differential ) Correlational |
Save flow |

Flowtool 96 - release 1.0 Info
Last version - 21/11/1995 nfo )
by Andrea Giachetti

{giach@qge.infm.it) Quit 7 |8

| H 1, w131, BE:56, w000, vii(,00

(ol

Figure 14: The user-friendly tool realized for motion analysis.

6 Discussion

The use of techniques based on pattern matching between subsequent images is common
in practical applications, even if a few algorithms of this kind are considered in the litera-
ture reviews [4]. In this paper several variations of this kind of algorithms and some tricks
to reduce the major drawbacks of the method (i.e. the computational complexity and the
integer values of the estimates) are presented. All the solution proposed have been tested
on the classic images used by all the optical flow researchers and the results obtained are
very interesting. The accuracy of the flow estimated with the best correlation-based tech-
niques, especially the one obtained with the new "mixed” technique proposed, seem to be
extremely good even if compared with the outputs of the best differential or energy based
algorithms presented in [4]. The research and the tests performed provided also other
interesting information, showing clearly, for example, that the usual distance measures
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are better than non-parametric ones for complex images, that the gray-level normalisation
of the distance is useful only when global variations of brightness are present, that the
computational cost can be reduced without effects on the flow accuracy. Furthermore,
results obtained with our algorithms on real world sequence are presented in order to
demonstrate that when the texture is poor, the interframe motion is relevant or the time
frequency is high, the use of correlation-based algorithms provides results that are more
accurate than those obtained with differential techniques and makes possible practical
applications on cluttered images [8, 9, 10, 14, 13].

All the algorithms tested have been included in the Flowtool X-Window-based toolkit
available on the Internet (http:/www.crs4.it/~giach) as Sun-Sparcstation executable code.
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