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1 IntroductionThis chapter is dedicated to presenting the mathematical and numerical formulations usedin this work for studying coupling phenomena between multiphase 
ow and biodegrada-tion. Referring to the modeling review presented in Chapter 3 for detailed presentation ofthe mathematical formulation, here the numerical solution and code implementation of theequations are documented. The codes contain the implementation for the one- and multi-dimensional case. As documented in chapter 2, a number of models and numerical simulatorshave been described in the literature. Given that a large e�ort was made already in imple-menting multi-dimensionalmultiphase 
ow simulators, such as STOMP (White and Oostrom1999) and TOUGH2 (K. Pruess 1991), there was no point to developing a brand new code.However, the research topic of this thesis, i.e., studying the coupling of multiphase 
ow andbiodegradation, did not �t perfectly with the model already available, in the sense that notall the features needed were already implemented. Thus, the following choices have beenmade. On the one hand, an easy-to-use and easy-to-modify one-dimensional simulator fortwo-phase 
ow plus biodegradation was developed for preliminary and basic studies. On theother hand, an available multiphase 
ow simulator was selected and modi�ed for introducingthe same biodegradation module developed for the one-dimensional code.The one dimensional simulator, 2FB (two-phase 
ow and biodegradation) implementsa two-phase (NAPL and aqueous) 
ow model plus multispecies transport in the aqueousphase coupled with biodegradation in a porous medium. The model is constituted by di�er-ent parts, namely, two-phase conservation equations, advection-dispersion transport in theaqueous phase, and biodegradation kinetics. Di�erent numerical techniques, namely mixed�nite elements and �nite volumes, were applied for solving the di�erent groups of the equa-tions. Two-phase is solved using a standard IMPES (implicit-pressure explicit-saturation)discretization approach (Aziz and Settari 1979).The STOMP (subsurface transport over multiple phases, White and Oostrom 1999) codewas selected for the multidimensional case. It includes features such as fractured media,multiple-phase systems, non-wetting 
uid entrapment, nonaqueous phase liquids, �rst-orderchemical reactions, radioactive decay, solute transport, and nonequilibrium dissolution. TheSTOMP simulator solves the governing-conservation equations and constitutive functionsusing numerical techniques for nonlinear systems. These equations are discretized usingthe integrated-�nite-di�erence method of Patankar (1980). Discretization in time is per-formed using a fully implicit backward Euler scheme, while the global coupling for solvingnonlinearities is performed by applying the Newton-Raphson linearization technique.Both simulators are integrated with the biomodule, which is constituted by a set ofroutines which include a number of di�erent biodegradation formulations chosen from thosepresented in Chapter 3. The biomodule is integrated in time using implicit time-steppingand the Newton-Raphson iterative procedure for solving nonlinearities present in the kineticequations.The outline of the chapter is as follows. Section 2 is dedicated to the one-dimensionalsimulator 2FB. In section 2.1 the equations describing the process included in the 2FBsimulator are listed. In section 2.2 the numerical solution of 2FB's equations is be presented.Section 3 is dedicated to describing the modi�ed version of the STOMP numerical sim-1



ulator. Section 3.1 summarizes the equations describing the process included in the 2FBsimulator will be described. In section 3.2 the numerical solution applied in the STOMPsimulator will be presented. Then the coupling strategy for solving nonlinearities located inthe di�erent parts of the model are described and schematized through the use of a 
owchartdiagram.Section 4 is dedicated to present biomodule's features. In section4.1 equations describingthree biodegradation modeling approaches as presented, while in section 4.2 the numericalsolutions are described. A description of biomodule's features is also included.Finally, in section 5 the coupling between the biomodule and the computational cores ofthe two simulators are discussed. Comments on the computational costs, memory require-ment, and convergence issues are made as well as on the applicability of those simulators.Tips and indications regarding the use of the simulators are also given. The application ofthese model through numerical simulations will be described in Chapter 6 and Chapter 7.2 The one-dimensional model2.1 The mathematical modelThe one-dimensional model was conceived for dealing with a limited number of processes,such as two-phase (NAPL and aqueous) 
ow, NAPL dissolution in the aqueous phase, mul-tispecies transport in the aqueous phase, and biodegradation. "Limited" is intended withrespect to the case of the multi-phase, multi-component, and multi-dimensional STOMPmodel. This choice is motivated by the need of having a 
exible and fast tool for analyzingfastly and accurately a restricted set of phenomena. In this section, equations governingtwo-phase 
ow, dissolution kinetics, and constitutive relationships are listed. Next, the nu-merical solution of these equations and their implementation in a one-dimensional model aredescribed.2.1.1 Two-phase 
owTwo-phase 
ow in porous media is described by mass conservation equations and Darcy'slaw for each phase (Hassanizadeh and Gray 1997):@(���S�)@t +r � (��v�) = �E� � = l; n (1)where � [-] is porosity, S [-] is saturation, and � [M/L3] is density. The source term E�[M/L3] is total mass transferred to phase � from other phases. We note that in our case,El = �En. Subscripts l and n stand for aqueous and NAPL phases, respectively. v� [L/M]is the super�cial velocity of phase � and is given by the extended Darcy's law for multiphasesystems (Hassanizadeh and Gray 1997):v� = � "kr��� K � (rP� � ��g)# � = l; n (2)2



whereK [L2] is soil permeability tensor, kr� [-] is relative permeability, �� [M/LT] is viscosity,P [M/LT2] is pressure, g [ML/T2] is the gravity force. These equations must be supplementedwith relationships for relative permeability and capillary pressure in terms of saturation.2.1.2 Multispecies transportUnder the assumption that no compositional e�ects are present (Hassanizadeh and Gray1997), transport of dissolved species in the aqueous phase can be described using the well-known advection-dispersion-reaction equation. Since biodegradation occurs only in the aque-ous phase, only transport in this phase is accounted for and the subscript l for concentrationsdropped, namely C il ! C i:@(�Sl C i)@t +r � �C ivl � �SlDih � rCi� =�SlEil � �SlBi i = 1; Nds (3)where C i [M/L3] is the concentration of species i, Dih [M/L2T] is the di�usion-dispersiontensor, Eil [M/L3T] is the rate of dissolution of species i into water, Bi [M/L3T] is thebiodegradation rate of species i and/or mass transfer to microcolonies or bio�lms, and Ndsis the total number of dissolved species; these could be electron acceptors (such as oxygen),nutrients, dissolved NAPL components, and transported bacteria.2.1.3 Interphase mass transferNAPL dissolution in the aqueous phase is modeled using a kinetic mass-transfer equation(see Chapter 3 for a detailed discussion on this topic):Eil = kdo �C i;eql � C i� (4)where C i;eql [M/L3] is the equilibrium dissolution concentration of the species i in the aqueousphase. We note that El = PNdsi=1 Eil . The mass-transfer rate constant kdo [1/T] is generallydependent on many parameters, but in the current implementation it is assumed to be agiven constant.2.1.4 Capillary and relative permeability curvesThese formulas incorporate the dependency of the relative permeability and capillary pres-sure from saturation. By assuming water as the wetting 
uid, capillary pressure is de�ned asPc = Pn�Pl. Fluid saturations are considered as unique functions of the capillary pressures,namely, no hysteretical behaviours included. The Brooks-Corey function (Brooks and Corey1964) relating saturation to capillary head is considered:Pc = Pd � S�1=�le (5)where Pd [M/LT2] is the entry pressure and � [-] is �tting parameter related to the pore-sizedistribution. Sle is the e�ective aqueous saturation, de�ned as Sle = (Sl�Slr)=(1�Slr�Snr),3



and Slr and Snr are the wetting- and nonwetting-phase residual saturations, respectively.Relative permeabilities for 
uid phases take the following formkrl = (Sle)m krn = (1 � Sle)m (6)where m [-] is determined experimentally.2.2 The numerical solutionThe numerical solution of the 2FB model is quite complex, since a number of di�erenttechniques are applied. Phase pressures and saturations are discretized by an IMPES -likeapproach (Aziz and Settari 1979), which �rst solves for a total velocity vT and the aqueouspressure Pl, and then advances the saturations to the next timestep by an explicit Runge-Kutta �nite volume method. Mixed-hybrid �nite elements (Brezzi et al. 1991) are usedto compute pressure and pressure gradients. Saturation equation is discretized in spaceusing a 2nd-order in space TVD FV (�nite volume) discretization (Harten 1986,1987) andusing a 2nd order in time RK (Runge-Kutta). An analogous discretization is implementedfor the transport equation. Biodegradation of dissolved NAPL is advanced in time using aOP (operator splitting) technique for decoupling the advection from dispersion and reactioncontributions.2.2.1 The split formulationLet us rewrite the system of equations for phase pressures and saturations as8>><>>: @@t(��lSl) + r � �lvl = �El@@t(��nSn) + r � �nvn = �En : (7)Phase velocities vl, vn are given by the Darcy's-like relation8><>: vl = ��l (rPl � �lg) ;vn = ��n (rPn � �ng) ; (8)with �l = krl�l K and �n = krn�n K. By introducing the total velocity vT = vl + vn and thetotal \fractional ratio" �T = �l + �n, we can write vT asvT = � (�l + �n)rPl + qS (9)where the source term qS is de�ned asqS = (�l�l + �n�n) g� �nP 0crSl: (10)Introducing QT = El�l + En�n , one obtainsr � vT = QT (11)4



Thus, the �nal system is obtained:( r � vT = QT ;vT = � (�l + �n)rPl + qS : (12)This set of equation is discretized by a mixed-hybrid �nite element approach. The methodof approximation gives an estimate of the normal 
ux of vT , which is necessary to advancein time the equation (7) for Sl. The following piece of metacode summarizes the iterativesplit approach which advances in time the initial solution:General initializationRead Inputt=0 while t < tmaxloop [Global] until convergenceloop [P-S] until convergenceestimate St+�t;k;rSt+�t;kcompute P t+�t;k+1 & vt+�t;k+1Tupwind St+�t;k ! vt+�t;k+1l ;vt+�t;k+1ncompute St+�t;k+1check: jjSt+�t;k+1 � St+�t;kjj2 < �satend looploop [C-bio] until convergencecompute ~C i;t+�t;m+1 (adv/disp/mass-transf.)call Biomodule (biodegradation)check: jjC i;t+�t;m+1 � C i;t+�t;mjj2 < �conc i = Nd:s:end loopcheck: Global convergenceend loopif Bio�lm-model thencompute �t+�t (porosity)compute K t+�t (permeability)end ift = t+�tend whileprint �nal results & statisticsStopwhere k and m are two iteration indexes, and �sat and �conc are user-speci�ed tolerances.Basically, the algorithm consists in the time loop (Global), which is split in two subloops,respectively called (P-S) and (C-bio). At each timestep the former subloop updates thephase pressures Pl, Pn and the saturations Sl, Sn. The latter one updates concentrations C iand the microbial distribution CX.At each step, system (12) is solved by approximating the normal component of the totalvelocity �eld at cell interfaces, vT � n say, by the discontinuous lowest order mixed-hybrid5



Raviart-Thomas �nite elements and the aqueous phase pressure Pl by piecewise constantelements over the computational cells and at cell interfaces (Brezzi 1991). Let us denotethese approximate �elds by respectively qh,  h and �h. The symbol h denotes the maximumdiameter of all the cells K in a given mesh Th, jKj is the cell volume and @K the cellboundary. The variational formulation reads as8>>>>>>>>>><>>>>>>>>>>: Z
 K�1(�l + �n) qh �wh �XK ZK  hr �wh +XK Z@K �hwh � nK + Z
 qS K�1(�l + �n) qh �wh = 0 ;XK ZK vhr � qh = Z
QTvh ;XK Z@K qh � nK�h = 0 ; (13)where the test functions wh, vh and �h are taken in the same functional spaces of thecorresponding unknowns. Standard algebraic manipulations yields a linear problem whichis solved for the set of Lagrangian multipliers �h by using the static condensation technique.Backward substitution closes the solution algorithm (Brezzi 1991). This non-conforming�nite element method guarantees that a zero-divergence constraint is well satis�ed by thetotal velocity �eld. This issue is required to fairly simulate the non-linear degradationkinetics, as pointed out in (Ewing 1998).The semi-discrete �nite volume formulation that approximates equations (1) is obtainedby integrating separately in a cell-wise fashion each phase saturation equation, applying thedivergence theorem, approximating the interface integrals with the midpoint rule, and �nallycomputing the advective 
uxes by an upwind estimation of the phase velocities vl and vn.This method takes the formjKjdSKdt + Xk2�(K) lkH(Sintk ; Sextk ;nk) +Xk02�0(K) lk0H(bc)k0 (Sintk ) = jKjQ(SK); 8K 2 Th;where SK indicates the K-th cell-averaged value for both Sl and Sn, �(K) is the set of cellsadjacent to K, �0(K) is the set of boundary edges on @K, H(Sintk ; Sextk ;nk) and H(bc)k0 (Sintk )are the numerical 
uxes at internal and boundary edges, Q(SK) stands for the source termsin (1), and lk, lk0 are the edge lengths. The numerical 
uxes depend on Sintk and Sextk ,which are the traces at each cell interface of the linearly reconstructed saturation. Theboundary 
ux H(bc)k0 (Sintk ) may also depend on a set of suitable external data. A speciallinear reconstruction procedure interpolates the cell-averaged saturation values fSKgK2Thand ensures a TDV stability condition by limiting the reconstructed slopes. This avoidsorder one oscillations to appear in sharp gradient solution regions (Ewing 1998). An explicittwo-stage 2nd-order Runge-Kutta scheme advances in time the approximate solutions SK.The method is formally second order accurate (Gallo and Manzini 1996). A predictor-corrector strategy is deserved to treat the non-linear dependence on conventrations C in thesink source term Bi. As for the phase saturations, the concentration equation is discretized6



by using a second order �nite volume scheme plus TVD reconstruction. Further details aregiven in (Gallo and Manzini 1998a).The transport of dissolved species, equation (3) includes also a di�usion-dispersion com-ponent. As well known from the literature this 2nd-order component should be computedusing an implicit scheme. Therefore, a standard 3-points �nite di�erence scheme in spaceand a fully implicit Euler discretization in time were selected. Starting from:@C@t jdisp = r � �Sl(Dh � rC) (14)the discretization in space and in time (using fully implicit Euler scheme) is performed.Discretization For the i-th cell of the domain between the times tk and tk+1, it is:Ck+1i � Ckitk+1 � tk = 1(�x)2 h�ki+1=2Sk+1l;i+1=2 �Ck+1i+1 � Ck+1i �� �ki�1=2Sk+1l;i�1=2 �Ck+1i � Ck+1i�1 �i (15)where the subscripts i�1=2 indicate the interfaces between cell i and cells i�1, respectively,where some � and Sl are evaluated. It should be noted that �k and Sk+1l were used, sinceSl at t+�t is already available from the P � S loop, while � is updated only at the end ofeach time step. Equation (15) leads to a symmmetric three-band system that is solved usinga standard iterative solver, such as conjugate gradient.3 The multi-dimensional model3.1 Mathematical formulationAs mentioned in the introduction, multi-dimensional multiphase 
ow is modeled using theSTOMP code (White and Oostrom 1999). This simulator relies on a number of mass conser-vation equations plus a set of constitutive relationships which make explicit the reciprocalinteractions between 
uid and solid phases (see for example Hassanizadeh and Gray 1998).Conservation relations are written for each phase and for each component. A \phase" refersto the sum of all components comprising a 
uid, such as gaseous, aqueous, and NAPL.3.1.1 Phase conservationPhase conservation equations is written as (Hassanizadeh and Gray 1997):@(���S�)@t +r � (��v�) = �X� E�;� � = g; l; n (16)where � [-] is porosity, S� [-] is phase saturation, � [M/L3] is phase density, v� [L/T] isphase velocity, E�;� [M/L3T] accounts for interphase mass exchange from phase � to phase� (this term is discussed later). Subscripts g; l; n stand for gaseous, aqueous, and NAPLphase, respectively. 7



3.1.2 Phase velocityThe phase velocity v� is given by the extended Darcy's law for multiphase systems (Has-sanizadeh and Gray 1997):v� = � "kr�K�� � (rP� � ��g)# � = g; l; n (17)where P� is the pressure [M/LT2], K [L2] is the permeability tensor, kr� is the relativepermeability function, �� [M/LT] is phase dynamic viscosity, and g [L/T2] is gravity.3.1.3 Component conservationGenerally, each component is assumed to be present in every phase and phase propertiesmay be a�ected by its composition. For each component of a phase, conservation equationis given as:@(���S�!i�)@t +r����!i�v� � Ji�� = �X� Ei�;���S�Bi��(1��)Aiads � = g; l; n i = o;w; a(18)where !i� [-] is the mass fraction of component i in phase �, Bi� [M/L3T] is the biodegradationterm, and Ei�;� [M/L3T] accounts for interphase mass exchange of component i from phase �to phase �, and Aiads for adsorption on the soil matrix. Ji� [M/L2T] is the di�usion-dispersioncomponent based on Fick's law.3.1.4 Transport of diluted species in the aqueous phaseDissolved oil is not the only component that is dissolved in the aqueous phase. Other species,such as oxygen, nitrates, nutrients, etc. can be transported by the bulk motion of the aqueousphase. In this case, however, their concentrations are quite small and possible variations inconcentration of these components do not a�ect aqueous phase properties and the 
ow pat-tern. Therefore, their transport is modeled using the classical advection-dispersion-reactionequation: @(�Sl C il )@t + r � �C ilvl � �SlDih;lrCil� = �X� Eil;� � �SlBil�(1� �)Aiads � = g; n i = 1; Nd:s: (19)where C i� [M/L3] is the concentration of species j in phase �, Dih;� [M/L2T] is the di�usion-dispersion 
ow term based on Fick's law, Bi� [M/L3T] is the biodegradation term of species iin phase l, and Aiads accounts for adsorption. The subscript d:s: stands for dissolved speciesin phase l.The equation set presented is quite typical for presenting multiphase 
ow and transportin porous media. In the case of the STOMP code, the equations are slightly modi�ed. Theseare equivalent to that shown in equations (16)-(19), although some simplifying assumptionsare applied. Dissolution of water and air in the NAPL phase is neglected; partitioning of oil,8



water, and air among the phases is computed at equilibrium; only oil can adsorb on the soilmatrix and this adsorption is instantaneous. Let us consider equation (18) and sum over allthe phases. The results is a conservation equation for component i over all phases.3.1.5 Water conservation: @@t 24 X�=g;l (���S�!w� )35+ X�=g;l (r � !w� ��v� � Jw� ) = qw (20)where Jw� is de�ned as: Jw� = �����MwM�Dw� � r�w� � = g; l (21)where � [-] is tortuosity,Mw [-], andM� [-] are the molecular weights of water and of phase �,respectively, and �w� [-] is the molar fraction of water in phase �. qw [M/L3T] is a source/sinkterm accounted for explicitely.3.1.6 Air conservation: @@t 24 X�=g;l (���S�!a�)35+ X�=g;l (r � !a���v� � Ja�) = qa (22)where Ja� is de�ned as: Ja� = �����MaM�Da� � r�a� � = g; l (23)Ma is the molecular weights of air, and qa [M/L3T] is a source/sink term accounted forexplicitely.3.1.7 Oil conservation: @@t 24 X�=g;l;n (���S�!o�) + (1� �)!os�s35+ X�=g;l;n (r � !o���v� � Jo�) = qo (24)where Jo� is de�ned as: Jo� = �����MoM�Do� � r�o� � = g; l;n (25)where Mo [-] is the molecular weight of oil and qo [M/L3T] is a source/sink term accountedfor explicitely. 9



3.1.8 Transport of solutesThe solutes mass concentration equation assumes that the solute mass is partitioned amongthe 
uid and the solid phases assuming thermodynamic and geochemical equilibrium. Solutetransport is assumed to take place in every phase by advection and di�usion-dispersion. Thefollowing expression is obtained by extending equation (19) for every phase, namely n, l,and g, and summing over all phases. Thus solute transport equations reads as follows:@C i@t = � X�=l;g;n �r � hC i�v�i�+ X�=l;g;n �r h��S��DCi� + �S�Dh;�iC i��+ X�=l;g;n�S�Bi� (26)where C = X�=l;g;n �S�C i� + [1� �]C is (27)and Cs is concentration in the solid phase.3.1.9 Constitutive relationshipsA number of constitutive relationships are implemented in the STOMP simulator. Di�erentchoices are available for relative permeability curves, capillary curves, density, tortuosity,etc. Including these equations would be cumbersome and not important for the purpose ofthis work. Thus, the interested reader can refer to the STOMP theory guide (White andOostrom 1999).3.2 The numerical solution3.2.1 General featuresThe numerical discretization in space and in time of the balance equations of the componentsair, water, and oil, and the solute transport is brie
y described (refer to the STOMP theoryguide (White and Oostrom 1996 for further detail).The STOMP simulator solves the governing conservation equations and constitutive func-tions using numerical techniques for nonlinear systems. These equations are discretized usingthe integrated-�nite-di�erence method of Patankar (1980). This method is locally and glob-ally conserving and requires the physical domain be spatially discretized into an orthogonalcomputational domain which comprises nonoverlapping volumes (nodes). Each volume canhave a maximum of two neighbouring nodes for each dimensional direction. Intrinsic prop-erties are assumed to be uniform over the volume domain and are de�ned for a node pointat the geometric center of the volume. Fluxes are de�ned at the geometric center of thesurfaces between node volumes and along a direction parallel to the surface normal. Fluxesacross node surfaces between nodes adjacent to the domain boundary are controlled throughboundary conditions.The system of algebraic equations that include the discretized governing conservationequations and the constitutive functions is nonlinear. Nonlinearities in the soil moisture10



retention functions, relative permeability functions, and physical properties near phase tran-sitions are the primary contributors. Nonlinearities are solved by applying the Newton-Raphson linearization technique, which yields quadratic convergence of the residuals, givena su�ciently close estimates of the primary unknowns. At this point it is useful to schematizethrough a piece of metacode how the STOMP simulator works.Start Executionem do initializationset chemical-physical propertieswhile t < tmax solve FLOW problemloop [Newton] until convergenceset Boundary Properties and Fluxes, Source terms;build Jacobian matrixsolve Linear Systemcompute Convergence if convergence [Newton] = true ThenExit loop [Newton]elseif not iteration limit [Newton] thenperform another iterationelseset Convergence [Newton] = Falseexit loop [Newton]end ifend ifif convergence [Newton] = true thencompute transport solutioncall Biomoduleprint resultsupdate Primary Variables & Propertiesset t = t+�telse if Time Reduction limit not reached Thenreduce time stepreturn to solve 
owelseSTOP simulationprint diagnosticsend loopprint �nal results & statisticsSTOP Execution3.2.2 Spatial and temporal discretization3.2.2.1 Accumulation/source terms The mass conservation equations (20), (22), and(24) are discretized by assuming a piecewise pro�le to express the variation in primaryvariables between node points and integrating over the node volume. The accumulation11



terms are integrated over the node volume. Intrinsic properties for the node volume arerepresented by properties at the node centroid. Source terms are similarly integrated overthe node volume, as follows:@@t hMwV ei = @@t 24V e X�=l;g (�!w� ��S�)35 (28)@@t hMaV ei = @@t 24V e X�=l;g (�!a���S�)35 (29)@@t hM oV ei = @@t 24V e X�=l;g;n (�!o���S�) + (1� �)!os�s35 (30)where @@t �ZV eM jdV � = @@t hM jV ei for j = w; a; o (31)and ZV e qjdV = qjV e for j = w; a; o (32)3.2.2.2 Flux terms Flux terms, advection and di�usion/dispersion, are evaluated on thenode surfaces. Integration of the 
ux terms over the node volume is performed by applyingGreen's theorem to the volumetric integrals to obtain the integrals over the cell boundaries.Control volumes are transformed into nodal control surfaces. Flux directions parallel tothe surfaces are transformed in summations over the six faces. This transformation strictlyrequires an orthogonal grid system for the 
ux directions to be aligned with the surfacenormals, in order to avoid mass balance errors.Darcy 
uxes are discretized in the six coordinated directions (Top,Bottom, North, South,East, and West { T, B, N, S, E, W, respectively), using (by default) upwind interfacialaveraging for the component mass fraction, phase density, and relative permeability, whileharmonic averaging is used for the intrinsic permeability and phase viscosity.ZV e 24 X�=l;g;n �r!j���v� +rJ j��35 dV = Z�e 24 X�=l;g;n �r!j���v� +rJ j��35 � nd� for j = w; a; o(33)where F j� and J j� are de�ned in equations (20), (22), (24), for j = w; a; o, respectively. Bytransforming the integral (33) into the summation over the six surfaces of the node, we get:Z�e 24 X�=l;g;n �r!j���v� + J j��35�nd� = X&=W;E;S;N;T;B24 X�=l;g;n �r(!j���v�)j& + J j�&�35A& j = w; a; o(34)where A& is the area of the & face, and where we specify the following:(!j���v�)j& = h !j���kr;� iuw& hKih&h��ih& 0@ � P�&+ � P�&� ��x& + h��gia& zg&1A12



for � = l; g; n; j = w; a; o; & = E;W;S;N;B; T (35)J j�& = �*�����S�M jM�Dj�+h& ��j�&+ � �j�&���x&for � = l; g; n; j = w; a; o; & = E;W;S;N;B; T (36)Subscripts uw, h, and a stand for upwind, harmonic, and average respectively, and refer tohow parameters are evaluated at cell interfaces.3.2.2.3 Time discretization The mass conservation equations are discretized in timeusing a fully implicit scheme. The primary unknowns for the mass conservation equationsare intrinsic properties at node volume centroids (node grid point) for time level t+�t. Inthe residual form, the �nal discretized equation is written asnRjot+�t = V e 24 fM jgt+�t � fM jgt�t 35� V e nqjot+�t2+ X&=W;E;S;N;T;B24 X�=l;g;n ��!j���v��j&�t+�t + nJj�&ot+�t!35A& j = w; a; o(37)3.2.2.4 Global coupling The discretized governing equations for component mass con-servation form a nonlinear set of algebraic equations. Nonlinearities arise from the depen-dence of secondary variables on the primary unknowns. A set of assumptions is made whensolving the problem. The Newton-Raphson scheme is used for solving the nonlinear systemof the discretized equation. It is assumed that concentrations of diluted species do not a�ectthe 
ow pattern, thus they are excluded from the global coupling through the Newton Raph-son linearization algorithm. This can be summarized as follows. Given a vectorial functionF(x) of the vector variable x, it is supposed that for x = �x it is F(�x) = 0, while for a genericx, F(x) 6= 0. Thus, if the correct solution �x is su�ciently close to x, it can be written as aTaylor expansion around the x, as follows (stopped at the �rst order derivative):F (�x) = F (x+�x) � F (x) + F0 (x)�x (38)where �x = �x�x and F0 is the Jacobian matrix of F. The iteration scheme is the following:�xm+1 = � F (xm)F0 (xm) (39)xm+1 = xm +�xm+1 (40)until �xm+1 < � (41)where � is a pre-speci�ed tolerance.The application of this scheme implies two major computational issues. One is relatedto the evaluation of the Jacobian matrix and the other is related to the solution of the linearsystem. In the STOMP simulator, the following choices have been made. The derivatives ofF in the components of x are computed numerically as incremental ratios instead of using13



analytic derivatives due the numerical stability reasons. Thus, the numerical derivative ofthe i-th components of F in the j-th component of x is expressed as:@Fi@xj � Fijxj+�xj � Fijxj�xj (42)The Newton-Raphson procedure starts at any new time step, convergence failure, or timestep reduction. Finally, the solution of the linear system of equation is solved using either adirect solver or an iterative solver (refer to STOMP user guide for further details).3.2.2.5 Solute transport The solute mass conservation equation (19) is discretized byassuming a piecewise pro�le for the solute concentration between node points and integrat-ing over the node volume. The advection and di�usion/dispersion transport terms of thesolute mass conservation are combined following the power-law scheme of Patankar (1980) .Integration of the accumulation term for solute mass over the node volume proceeds asfollows ZV e  @C@t ! dV = @C@t V e (43)Solute transport 
uxes are computed between node points and comprise advective anddi�usive-dispersive components. The di�usive-dispersive term is computed using a user-de�ned interfacial average for the e�ective di�usion-dispersion coe�cient (harmonic averag-ing by default). Thus, we write:ZV e 24� X�=l;g;n (rC�v�) + Xl;g;n �r h���S��DC� + S��Dh;��rC�i�35 dV =Z� 24� X�=l;g;n (C�v�) + Xl;g;n ����S��DC� + S��Dh;��rC��35 � nd� =X&=W;E;S;N;T;B24� X�=l;g;n (rC�v�)& + Xl;g;n ����S��DC� + S��Dh;��rC��&35A& (44)where we have: v�& = hkr;� iuw& hKih&h��ih& 0@ � P�&+ � P�&� ��x& + h��gia& zg&1Afor � = l; g; n; & = E;W;S;N;B; T (45)and ����S��DC� + S��Dh;��rC��& =D��S��DC� + S��Dh;�Eh& � C�&+ � C�&� ��x&for � = l; g; n; & = E;W;S;N;B; T (46)14



The solution of the solute transport equation depends on the local Peclet number. Thepower law scheme is based on the solute concentration pro�le for steady conditions with nosource nor decay. The power-law scheme closely approximates the exact solution for steadyconditions without excessive computational expense. Solute 
ux from combined advectiveand di�usive-dispersive transport can be expressed using the power-law scheme as follows:Pe�& = V�&�x&h��S��DC� + S��Dh;�ih& (47)GC�& = �C�&+ 24max(�V�& ; 0) + �DC�e�& max0@ 1 � 0:1 jV�& jDC�e !5 ; 01A35+ C�&� 24max(V�& ; 0) + �DC�e�& max0@ 1� 0:1 jV�& jDC�e &!5 ; 01A35for � = l; g; n & =W;E;S;N;B; T (48)where �DC�e�& = D��S��DC� + S��Dh;� Eh&�x& (49)According to the previous de�nitions, we can write the solute transport equation in thespatial discretized form: Xl;g;n X& GC�&! = @C@t V e (50)Equation (50) is to be advanced in time. The time discretization is made using a fullyimplicit scheme, which reads as follows:Xl;g;n X& GC�&!t+�t = C t+�t � C t�t V e (51)4 BiodegradationIn chapter 3 biodegradation modeling in the literature was reviewed. There three majormodeling approaches di�ering in some underlying assumptions were identi�ed. For each ofthese approaches a number of alternatives proposed were mentioned. In this section, thefocus is on selecting a single modeling formulation for each of the three approaches. Thecomplete set of equation is here re-written in detail and the numerical solution described.All these equations are incorporated in the bio-module which is plugged in both the 2FBand the STOMP simulators.4.1 Mathematical modelIn the following paragraphs the equations describing biodegradation of free-bacteria (FB),microcolony (MC), and bio�lm (BF) models are brie
y listed. Basic hypotheses and assump-tions for each of the three models are described in detail in Chapter 3.15



4.1.1 Free-bacteria equationsThe �rst approach considered is the \free-bacteria" model (FB). In this model, the sameconcentration value of each chemical species is used in the transport equation (bulk 
ow)and in the equation describing the kinetics of degradation. The biodegradation rate (termBi in equation 19) is given by:Bi = CX�i0 NEAXl=1 Yi;l C iK i;l + C i C lK l + C l NnutYj=1 CjKj;l + Cj i = 1; NS (52)Bl = CX C lK l + C l NSXl=1 �i0Yi;l C iK i;l + C i NnutYj=1 CjKj;l + Cj l = 1; NEA (53)Bj = CX NSXl=1 Yi;j�i0 NEAXl=1 C iK i;l + C i C lK l + C l NnutYj=1 CjKj;l + Cj i = 1; Nnut (54)where Kj;l and K l [M/L3] are half-saturation constants, Y j;l yield coe�cients, �i0 [1/T] isthe maximum degradation rate constant. The kinetics of growth/decay of biomass is :BX = 1CX @CX@t = NSXi=1 �i0 NEAXl=1 C iK i;l + C i C lK l + C l NnutYj=1 CjKj;l + Cj � kd (55)where CX [M/L3] is the bacterial population density and kd [1/T] is the bacterial decayconstant.4.1.2 Microcolony-based equationsThe second approach is the \microcolonies" based model (MC). Growth/decay of increase/decreasein the number of occurs within the microcolonies only. All concentrations within micro-colonies. The B-terms equation (19) reads as:Bi = �Nc�iAc (C i � cim)� ; i = 1; Nd:s: (56)where cim [M/L3] is the concentration of species i within the microcolonies, �i [L2/T] isthe mass-exchange coe�cient between the bulk and microcolonies, mc [M] is the mass of amicrocolony, Ac [L2] is the contact area of one microcolony for the mass di�usion process, �[L] is the boundary layer between bulk 
ow and microcolonies.dcidt = ��i0Yi NEAXl=1 �i0 ciK l;i + ci � clK l + cl � NnutYj=1 cjK l;j + cj + �iAc (C i � ci)� i = 1; Ns (57)dcldt = � clK l + cl � NsXi=1 �i0Yi ciK l;i + ci � NnutYj=1 cjK l;j + cj + �lAc (C l � cl)� l = 1; NEA (58)dcjdt = � NsXi=1 �i0Yi � NEAXl=1 ciK l;i + ci � clK l + cl � NnutYj=1 cjK l;j + cj + �jAc (Cj � cj)� j = 1; Nnut(59)16



Microcolony growth/decay kinetics reads as:1Nc @Nc@t = NSXi=1 �i0 NEAXl=1 ciK i;l + ci clK l + cl N inutYj=1 cjKj;l + cj � kd (60)4.1.3 The bio�lm model equationsThe third approach is the bio�lm approach (BF). The key processes are biodegradation inthe bulk phase, mass exchange between bulk 
ow and bio�lm, and biodegradation withinthe bio�lm. Moreover, porosity changes caused by bio�lm growth/decay are also included.In this case the B-terms are written as follows:BS = CXYSrbio + ESl;b (61)BO = CXYOrbio + EOl;b (62)BX = �CXrbio + EXl;b + kdCX (63)where Eil;b is the transfer of mass from the aqueous phase to the bio�lm and rbio is the rateof biodegradation within the aqueous phase, given by equation (64)rbio = �0 CSKS + CS COKO + CO (64)An equation for Eil;b is needed. This reads as follows:ESl;b = �b hKbCS � cSb i (65)EOl;b = �b hKbCO � cOb i (66)EXl;b = �b hKbCX � cXb i (67)where cib is the concentration within the bio�lm (mass of species per unit volume of thebio�lm), �b [1/T] and Kb [-] are the mass transfer coe�cient and the macroscale partitioncoe�cient, respectively.The equations describing the change of concentrations within the bio�lm are (Has-sanizadeh 1999): @ ��bcSb �@t = ��bYScXb rbio;b + �ESl;b (68)@ ��bcOb �@t = ��bYOcXb rbio;b + �EOl;b (69)where �b is bio�lm volume fraction, i.e. fraction of total soil volume occupied by the bio�lm.The rate of biodegradation within the bio�lm, rbio;b, is given byrbio;b = �0 cSbKS + cSb cObKO + cOb (70)17



An equation similar to (69) gives the rate of growth/decay of bio�lms:@ ��bcXb �@t = �bcXb rbio;b � �bkdcXb + �EXl;b (71)The sum of � and �b is equal to the total porosity of the medium which is assumed to be aconstant. Thus, it holds: @�@t = �@�b@t (72)Assuming that the average mass of bacteria per unit volume of the bio�lm, cXb is a knownconstant, the combination of equations (71) and (72) yields:@�@t = ��bcXb rbio;b � �bcXb kd + EXl;bcXb (73)Permeability variations are described as follows (Bird et al. 1960):KnewKold =  �new�old !3, 1 � �new1 � �old !2 (74)4.2 Numerical solution of biodegradation equationsThe solution of biodegradation implies the solution of both the transport in the aqueousphase and the biodegradation module. As widely described in the literature (Yeh and Tri-pathi 1989), the solution of multispecies transport with chemical reactions is generally ac-complished in two separate steps: after computing advection-dispersion concentrations areupdated accounting for to the contribution given by biodegradation. This procedure is cho-sen due to the prohibitive computational e�ort of implementing a global Newton-Raphsoniterative algorithm. Actually, the operator-splitting solution procedure introduces a weakcoupling between the equations: this coupling, however, can be strengthened by performingan iteration between the advection-dispersion and biodegradation blocks until convergenceis achieved. Let us consider the following reactive transport equation:@C@t = r � (vC) +r � (D � rC) +B(C) = L(C) +B(C) (75)where the advection/dispersion operator is de�ned asL(C) = r � (vC) +r � (D � rC) (76)and B accounts for biodegradation. The total variation of C in time within the controlvolume is split in two di�erent contributions, i.e., the advective-dispersive component andthe biodegradation component:@C@t =  @C@t !adv;disp +  @C@t !bio (77)18



Time derivatives are expressed as incremental ratios between tk and tk+1. This discretizationis made in two steps, as follows:@C@t =  @C@t !adv;disp +  @C@t !bio��C�t � = ��C�t �adv;disp + ��C�t �bioCk+1 � Cktk+1 � tk = ~Ck+1 �Cktk+1 � tk + Ck+1 � ~Ck+1tk+1 � tk (78)where ~Ck+1 is an intermediate concentration accounting for contribution of the advection-dispersion. Accounting for equations (75), (76), and (77), we can write:~Ck+1 �Cktk+1 � tk = L( ~Ck+1) (79)Ck+1 � ~Ck+1tk+1 � tk = B(Ck+1) (80)4.2.1 Free-bacteria modelEquations (52-54) describing the degradation of substrate(s), electron-acceptor(s), and nu-trient(s) are discretized in time using an implicit time stepping. By recalling thatBk+1 =  �C�t !bio = Ck+1 � ~Ck+1tk+1 � tk (81)the discretization in time is written as follows:C i;k+1 � ~C i;k+1tk+1 � tk = �CX;k�i0 NEAXl=1 Yi;l C i;k+1K i;l + C i;k+1 C l;k+1K l + C l;k+1 NnutYj=1 Cj;k+1Kj;l + Cj;k+1i = 1; NS (82)C l;k+1 � ~C l;k+1tk+1 � tk = �CX;k+1 C l;k+1K l + C l;k+1 NSXl=1 �i0Yi;l C i;k+1K i;l + C i;k+1 N inutYj=1 Cj;k+1Kj;l + Cj;k+1l = 1; NEA (83)Cj;k+1 � ~Cj;k+1tk+1 � tk = �CX;k NSXl=1 �i0 NEAXl=1 Yj;i C i;k+1K i;l + C i;k+1 C l;k+1K l + C l;k+1 NnutYj=1 Cj;k+1Kj;l + Cj;k+1i = 1; Nnut (84)The solution procedure implies the solution of the nonlinearity arising by the presence ofCk+1 in both R.H.S. and L.H.S. of the equation. Therefore, the Newton-Raphson (NR)linearization scheme is applied for solving the nonlinear system, given its convergence prop-erties (Gallo and Manzini 1998a,1998b). Let us de�ne C = (C1; :::; CNs+NEA+Nnut) as thearray containing the concentrations of all the species present in the system, and B =(B1; :::; BNs+NEA+Nnut). Thus, starting from equation:Ck+1 = ~Ck+1 + (tk+1 � tk) B(Ck+1) (85)19



equation (85) is re-written in the form of a residual function:G(Ck+1) = Ck+1 � ~Ck+1 � (tk+1 � tk)B(Ck+1) (86)Assuming thatG(Ck+1+Ck+1) = 0,G can be expanded around Ck+1 using Taylor's formulaand stopping at the �rst term, one obtains:G(Ck+1 +�Ck+1) � G(Ck+1) + J �G(Ck+1)��Ck+1 (87)where J is the Jacobian of the vector function G. Imposing thatG(Ck+1) + J �G(Ck+1)��Ck+1 = 0 (88)the iteration scheme appears as follows:�Ck+1;m+1 = �J�1 �G(Ck+1;m)�G(Ck+1;m) (89)Ck+1;m+1 = Ck+1;m +�Ck+1;m+1 (90)until �Ck+1;m+1 < �where the �rst iteration for starting the scheme is Ck+1;m = ~Ck+1.After solving for Ck+1, microbial growth (equation 55) is integrated in time analyticallyat the end of each time iteration of the transport equations as follows:ln CX;k+1~CX;k+1! = 24NSXi=1 �i0 NEAXl=1 C i;k+1K i;l + C i;k+1 C l;k+1K l + C l;k+1 N inutYj=1 Cj;k+1Kj;l + Cj;k+1 � kd35 �tk+1 � tk�(91)4.2.2 Microcolony-based modelEquations (57)-(59) governing the MC model are discretized in time using an implicit (back-ward Euler) time stepping:ci;k+1 � ci;ktk+1 � tk = ��i0Yi NEAXl=1 �i0 ci;k+1K l;i + ci;k+1 � cl;k+1K l + cl;k+1 � NnutYj=1 cj;k+1K l;j + cj;k+1+�iAc ( ~C i;k+1 � ci;k+1)� i = 1; Ns (92)cl;k+1 � cl;ktk+1 � tk = � cl;k+1K l + cl;k+1 � NsXi=1 �i0Yi ci;k+1K l;i + ci;k+1 � NnutYj=1 cj;k+1K l;j + cj;k+1+�lAc ( ~C l;k+1 � cl;k+1)� l = 1; NEA (93)cj;k+1 � cj;ktk+1 � tk = � NsXi=1 �i0Yi � NEAXl=1 ci;k+1K l;i + ci;k+1 � cl;k+1K l + cl;k+1 � NnutYj=1 cj;k+1K l;j + cj;k+1+�jAc ( ~Cj;k+1 � cj;k+1)� j = 1; Nnut (94)20



Equations (92)-(94) forms a nonlinear system. The Newton-Raphson linearization scheme ischosen for computing the solution. The iterative scheme can be obtained in a way similarto that presented in the previous section. Let us de�ne C = (C1; :::; CNs+NEA+Nnut) andc = (c1; :::; cNs+NEA+Nnut), and be � = (�1; :::;�Ns+NEA+Nnut) the array containing theR.H.S. of equations (92)-(94). This system of equations is re-written in a residual form ina compact fashion as follows:G(ck+1) = ck+1 � ~ck � (tk+1 � tk)�b(ck+1) (95)Assuming that G(ck+1+ck+1) = 0, G can be expanded around ck+1 and we stop at the �rstterm: G(ck+1 +�ck+1) � G(ck+1) + J �G(ck+1)��ck+1 (96)and we impose that G(ck+1) + J �G(ck+1)��ck+1 = 0 (97)Equation (97) is revealing of the iteration scheme:�ck+1;m+1 = �J�1 �G(ck+1;m)�G(ck+1;m) (98)ck+1;m+1 = ck+1;m +�ck+1;m+1 (99)until �ck+1;m+1 < �where the �rst iteration for starting the scheme is ck+1;m = ~ck.Recalling equation (56) and discretizing in timeBi = Ck+1 � ~Ck+1tk+1 � tk = �Nc�Ac ( ~Ck+1 � ck+1)� (100)Ck+1 is updated as follows:Ck+1 = ~Ck+1 � (tk+1 � tk)Nc�Ac ( ~Ck+1 � ck+1)� (101)Microbial growth, equation (60), is integrated in time analytically at the end of each timeiteration as:ln Nk+1cNkc ! = 24NSXi=1 �i0 NEAXl=1 ci;k+1K i;l + ci;k+1 cl;k+1K l + cl;k+1 N inutYj=1 cj;k+1Kj;l + cj;k+1 � kd35 �tk+1 � tk� (102)4.2.3 Bio�lm modelThe numerical solution of the bio�lm model is similar to that of FB and MC models. Equa-tions (61), (62), (63), (68), and (69) are discretized in time using backward Euler implicittime stepping scheme:CS;k+1 � ~CS;k+1tk+1 � tk = �CX;k+1YSrk+1bio + ES;k+1l;b (103)21



CO;k+1 � ~CO;k+1tk+1 � tk = �CX;k+1YOrk+1bio + EO;k+1l;b (104)CX;k+1 � ~CX;k+1tk+1 � tk = CX;k+1rk+1bio + EX;k+1l;b + kdCX;k+1 (105)�kb �cS;k+1b � cS;kb ��t = ��kbYScXb rbio;b + �kES;k+1l;b (106)�kb �cO;k+1b � cO;kb ��t = ��kbYOcXb rbio;b + �kEO;k+1l;b (107)where, according to equations (65), (66), (67), (64), and (64), the following formulas areconsidered: ES;k+1l;b = �b hKbCS;k+1 � cS;k+1b i (108)EO;k+1l;b = �b hKbCO;k+1 � cO;k+1b i (109)EX;k+1l;b = �b hKbCX;k+1 � cX;k+1b i (110)rk+1bio = �0 CS;k+1KS + CS;k+1 CO;k+1KO + CO;k+1 (111)rk+1bio;b = �0 cS;k+1bKS + cS;k+1b cO;k+1bKO + cO;k+1b (112)The equations (103) through (107) constitute the nonlinear system that is solved usingNewton-Raphson algorithm. Let us de�neC = (CS; CO; CX; cSb ; cOb ) and be�b = (�CSb ;�COb ;�CX;�cSb;�cOb )the array containing the R.H.S. of equations (103)|(107). This system of equations can bere-written in a residual form in a compact fashion as follows:G(Ck+1) = Ck+1 � ~Ck � (tk+1 � tk)�b(Ck+1) (113)Assuming that G(Ck+1 +Ck+1) = 0, G can be expanded around Ck+1 stopping at the �rstterm: G(Ck+1 +�Ck+1) � G(Ck+1) + J �G(Ck+1)��Ck+1 (114)and we impose that G(Ck+1) + J �G(Ck+1)��Ck+1 = 0 (115)Equation (115) is revealing of the iteration scheme:�Ck+1;m+1 = �J�1 �G(Ck+1;m)�G(Ck+1;m) (116)Ck+1;m+1 = Ck+1;m +�Ck+1;m+1 (117)until �Ck+1;m+1 < �where the �rst iteration for starting the scheme isCk+1;m = ( ~CS;k+1; ~CO;k+1; ~CX;k+1; cS;kb ; cO;kb ).Variation of bio�lm volume ratio are then calculated by discretizing in time equation (73)as follows �k+1b � �kbtk+1 � tk = �k+1b cXb rk+1bio;b � �k+1b cXb kd + �EX;k+1l;bcXb (118)22



Porosity is updated to equation (72) which is discretized in time ( tk+1� tk vanished in bothterms of equation 119): �k+1 = �k � (�k+1b � �kb ) (119)Variation of permeability is computed after the completion of the nonlinear iteration andare thus coupled in a weakly fashion with biodegradation:jKjk+1jKjk =  �k+1�k !3, 1� �k+11 � �k !2 (120)4.2.4 MetacodeIn order to give a visual appearance of how the biomodule works, a piece of metacode isgiven:****** biomodule is invoked***startforeach node/cellsetup local variables from global onesstart biomoduleloop [local-bio] until convergencecompute functional valuesbuild Jacobian matrixcompute R.H.S.solve linear system (Gauss-Jordan)check: jjC i;t+�t;m+1 � C i;t+�t;mjj2 < �bioif Niter � Niter;max thenprint "Convergence not achieved"stop codeend ifif model=FB thenupdate CX;k ! CX;k+1else if model=MC thenupdate ~Ck+1 ! Ck+1update Nkc ! Nk+1c (microcolonies)else if model=BF thenupdate �kb ! �k+1b (bio�lm volume ratio)end ifupdate global variables from local onesend loop 23



5 Comments on the code coupling and interfacing5.1 Coupling di�erent modulesThe 2FB and the modi�ed version of the STOMP code are coupled with the biomodulewhich solves biodegradation. Two di�erent coupling strategies have been chosen for the twocodes. In the case of the 2FB code the coupling between the 
ow-solver and the biomodulehas been implemented in a strong fashion. The biomodule is invoked just after computingthe advection/dispersion contributions and is inserted in an iterative loop which strengthensthe coupling by means of a block iteration between the various components. The same hasnot been done for the STOMP modi�cation. In the STOMP simulator the computation thebiomodule is invoked after computing advection/dispersion and no iteration is performedbetween the two components. This is aimed at reducing the computational complexity thatfor the STOMP code is very high, although an approximate solution is expected.5.2 Stabilization proceduresBiodegradation computation in some cases needed a stabilization procedure, due to non-convergence of the Newton-Raphson linearization procedure. A number of experiments (notpresented) showed that this was related to the magnitude of the timestep that caused theiteration convergence to fail. The solution to this problem was found in solving biodegrada-tion using a fractional time-stepping procedure. This implies that if �t = Nstep ��tbio, thebiomodule is run Nstep times using a time step �tbio. This ensure that, on the one hand, theprocedure will converge and, on the other hand, that at the end of the biodegradation step,time will be consistent in the computation.5.3 Interfacing the modulesFor both codes, the use of the biomodule is strongly dependent on a couple of "interface"subroutines. These are invoked at the beginning and at the end of the biomodule andare aimed at interfacing local with global variables and viceversa. The biomodule solvesbiodegradation at each node/cell of the domain, but for only one node/cell at the time.Also, the biomodule works with mass concentration, while, in the case of the STOMP code,dissolved oil is referred in terms of mass-fraction. Further, the possibility of using a di�erenttime stepping algorithm (as mentioned in the previous paragraph) relies on a proper interface.These routines also keep track of zeroing variables and to retrieve the values of variables whichare not used in the calling module (either 2FB or STOMP), such as concentration withinmicrocolonies, bio�lm volume fraction, and concentration within bio�lm.5.4 Units of measureAnother issue that should be regarded carefully is related with the units of measure. The2FB simulator uses whatever units the user inputs. The only requirement is that they areconsistent in the whole. The STOMP code can be input with almost any possible unit andmakes automatically checks and conversions in the S.I. system. Due to the complexity of24



the STOMP source it was chosen not to extend this procedure to the biomodule. Thus,all the input regarding the biomodule must be made in S.I. since STOMP makes all thecomputations using the S.I. system and interface routines are conceived to preserve it.5.5 On the computational costsThe computational cost of biodegradation is quite di�erent for the 2FB and the modi�edSTOMP simulator. In the case of 2FB, the biomodule has a large impact on the globalcomputation both because it is in a iteration block and can a�ect convergence, and becausethe convergence is generally quite fast in the case of one-dimensional two-phase 
ow. Anumber of numerical experiments (seeGallo and Manzini 2000) was performed and con�rmedthis fact. The situation is quite di�erent in the case of the STOMP simulator. Given thecomplexity of the phenomena accounted for, such as the presence of three phases, the useof di�erent saturation and permeability curves, and, above all, the presence of multipledimensions, the convergence of the global Newton-Raphson iteration (see section 3.2) ismore di�cult and time demanding. In this case, biodegradation is a minor part of thecomputation and does really a�ect the global CPU time in terms of computation.With regards to memory requirements, inserting the biomodule in an available simulatordoes not require a particular e�ort. Apart of the array variables containing the concentrationsin microcolonies and/or bio�lm no other relevant memory allocations are needed.AcknowledgementsThe �nancial support of this work was provided by the Italian Ministryof the University, Project ISR8, C11-B.References[1] K. Aziz and A. Settari. "Petroleum Reservoir Simulation". Applied Sciences Publishers,London, 1979.[2] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport phenomena. Jon Wiley andSons Inc., New York, 1960.[3] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Verlag,Berlin, 1992.[4] R. E. Ewing and S. Weekes. Numerical methods for contaminant transport in porousmedia. Computational Mathematics, 202:75{95, 1998.[5] V.S. Tripathy G. T. Yeh. A critical evaluation of recent developments in hydrogeologicaltransport models of reactive multichemical components. Water Resources Research,25(1):93{108, 1989.[6] C. Gallo and G. Manzini. A mixed �nite element/�nite volume approach for solvingbiodegradation transport in groundwater. International Journal of Numerical Methodsin Fluids, 26:533{556, 1998. 25



[7] C. Gallo and G. Manzini. 2-d numerical modeling of bioremediation in heterogeneoussaturated soils. Transport in Porous Media, 31:67{88, 1998b.[8] C. Gallo and G. Manzini. Numerical experiments on two-phase 
ow with contaminanttransport and biodegradation. Submitted to: "Communication of Numerical Methodsin Engineering, 2000.[9] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high-order accu-rate essentially nonoscillatory schemes, iii. Journal of Computational Physics, 71:231{303, 1987.[10] A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy. Some results on uniformlyhigh-order accurate essentially nonoscillatory schemes. Applied Numerical Mathematics2, pages 347{376, 1986.[11] S. M. Hassanizadeh. Upscaling equations of solute transport and biodegradation insoils. Technical report, Dept. of Civil Engineering and Geosciences, TUDelft, TheNetherlands, 1999.[12] S. M. Hassanizadeh and W. G. Gray. Basic equations of 
ow and transport in porousmedia. In S. K. Sikdar and R. Irvine, editors, BIOREMEDIATION: Principles andPractice. Vol. 1: Fundamentals and Applications, pages 19{57. Technomic PublishingCo., Inc, Lancaster, Basel, 1998.[13] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere PublishingCorporation, Washington D.C., 1980.[14] K. Pruess. Tough2, a general-purpose numerical simulator for multiphase 
uid and heat
ow. Technical Report LBL-29400, Lawrence Berkeley Laboratory, Berkeley, CA, May1991, 1991.[15] Brooks R.H. and A.T. Corey. Hydraulic properties of porous media. hydrology paper3. Technical report, Colorado State University, Fort Collins, Colorado, 1964.[16] M.D. White and M. Oostrom. Stomp subsurface transport over multiple phase: Theoryguide. Technical Report PNNL-11216 (UC-2010), Paci�c Northwest National Labora-tory, Richland, Washington, 1996a.
26


