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1 Introduction

This chapter is dedicated to presenting the mathematical and numerical formulations used
in this work for studying coupling phenomena between multiphase flow and biodegrada-
tion. Referring to the modeling review presented in Chapter 3 for detailed presentation of
the mathematical formulation, here the numerical solution and code implementation of the
equations are documented. The codes contain the implementation for the one- and multi-
dimensional case. As documented in chapter 2, a number of models and numerical simulators
have been described in the literature. Given that a large effort was made already in imple-
menting multi-dimensional multiphase flow simulators, such as STOMP ( White and Oostrom
1999) and TOUGH2 (K. Pruess 1991), there was no point to developing a brand new code.
However, the research topic of this thesis, i.e., studying the coupling of multiphase flow and
biodegradation, did not fit perfectly with the model already available, in the sense that not
all the features needed were already implemented. Thus, the following choices have been
made. On the one hand, an easy-to-use and easy-to-modify one-dimensional simulator for
two-phase flow plus biodegradation was developed for preliminary and basic studies. On the
other hand, an available multiphase flow simulator was selected and modified for introducing
the same biodegradation module developed for the one-dimensional code.

The one dimensional simulator, 2FB (two-phase flow and biodegradation) implements
a two-phase (NAPL and aqueous) flow model plus multispecies transport in the aqueous
phase coupled with biodegradation in a porous medium. The model is constituted by differ-
ent parts, namely, two-phase conservation equations, advection-dispersion transport in the
aqueous phase, and biodegradation kinetics. Different numerical techniques, namely mixed
finite elements and finite volumes, were applied for solving the different groups of the equa-
tions. Two-phase is solved using a standard IMPES (implicit-pressure explicit-saturation)
discretization approach (Aziz and Settari 1979).

The STOMP (subsurface transport over multiple phases, White and Oostrom 1999) code
was selected for the multidimensional case. It includes features such as fractured media,
multiple-phase systems, non-wetting fluid entrapment, nonaqueous phase liquids, first-order
chemical reactions, radioactive decay, solute transport, and nonequilibrium dissolution. The
STOMP simulator solves the governing-conservation equations and constitutive functions
using numerical techniques for nonlinear systems. These equations are discretized using
the integrated-finite-difference method of Patankar (1980). Discretization in time is per-
formed using a fully implicit backward Euler scheme, while the global coupling for solving
nonlinearities is performed by applying the Newton-Raphson linearization technique.

Both simulators are integrated with the biomodule, which is constituted by a set of
routines which include a number of different biodegradation formulations chosen from those
presented in Chapter 3. The biomodule is integrated in time using implicit time-stepping
and the Newton-Raphson iterative procedure for solving nonlinearities present in the kinetic
equations.

The outline of the chapter is as follows. Section 2 is dedicated to the one-dimensional
simulator 2FB. In section 2.1 the equations describing the process included in the 2FB
simulator are listed. In section 2.2 the numerical solution of 2FB’s equations is be presented.

Section 3 is dedicated to describing the modified version of the STOMP numerical sim-



ulator. Section 3.1 summarizes the equations describing the process included in the 2FB
simulator will be described. In section 3.2 the numerical solution applied in the STOMP
simulator will be presented. Then the coupling strategy for solving nonlinearities located in
the different parts of the model are described and schematized through the use of a flowchart
diagram.

Section 4 is dedicated to present biomodule’s features. In section4.l equations describing
three biodegradation modeling approaches as presented, while in section 4.2 the numerical
solutions are described. A description of biomodule’s features is also included.

Finally, in section 5 the coupling between the biomodule and the computational cores of
the two simulators are discussed. Comments on the computational costs, memory require-
ment, and convergence issues are made as well as on the applicability of those simulators.
Tips and indications regarding the use of the simulators are also given. The application of
these model through numerical simulations will be described in Chapter 6 and Chapter 7.

2 The one-dimensional model

2.1 The mathematical model

The one-dimensional model was conceived for dealing with a limited number of processes,
such as two-phase (NAPL and aqueous) flow, NAPL dissolution in the aqueous phase, mul-
tispecies transport in the aqueous phase, and biodegradation. ”Limited” is intended with
respect to the case of the multi-phase, multi-component, and multi-dimensional STOMP
model. This choice is motivated by the need of having a flexible and fast tool for analyzing
fastly and accurately a restricted set of phenomena. In this section, equations governing
two-phase flow, dissolution kinetics, and constitutive relationships are listed. Next, the nu-
merical solution of these equations and their implementation in a one-dimensional model are

described.

2.1.1 Two-phase flow

Two-phase flow in porous media is described by mass conservation equations and Darcy’s
law for each phase (Hassanizadeh and Gray 1997):

%—I—V-(pava):qﬂ?a a=1I0Ln (1)
where ¢ [-] is porosity, S [-] is saturation, and p [M/L?] is density. The source term F,
[M/L?] is total mass transferred to phase o from other phases. We note that in our case,
E; = —F,. Subscripts [ and n stand for aqueous and NAPL phases, respectively. v, [L/M]
is the superficial velocity of phase v and is given by the extended Darcy’s law for multiphase
systems (Hassanizadeh and Gray 1997):
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where K [L%] is soil permeability tensor, k,, [-] is relative permeability, p, [M/LT] is viscosity,
P [M/LT?] is pressure, g [ML/T?] is the gravity force. These equations must be supplemented
with relationships for relative permeability and capillary pressure in terms of saturation.

2.1.2 Multispecies transport

Under the assumption that no compositional effects are present (Hassanizadeh and Gray
1997), transport of dissolved species in the aqueous phase can be described using the well-
known advection-dispersion-reaction equation. Since biodegradation occurs only in the aque-
ous phase, only transport in this phase is accounted for and the subscript [ for concentrations
dropped, namely C} — C*:

d(¢S) ¢! i i i
%+v. (CYZ_QSSth'VC) —
OSIE] — oSIB" 1 =1, Ny (3)

where O [M/L?] is the concentration of species 7, D} [M/L2T] is the diffusion-dispersion
tensor, Ei [M/L?T] is the rate of dissolution of species i into water, B' [M/L3T] is the
biodegradation rate of species ¢ and/or mass transfer to microcolonies or biofilms, and Nz
is the total number of dissolved species; these could be electron acceptors (such as oxygen),
nutrients, dissolved NAPL components, and transported bacteria.

2.1.3 Interphase mass transfer

NAPL dissolution in the aqueous phase is modeled using a kinetic mass-transfer equation
(see Chapter 3 for a detailed discussion on this topic):

B} = kg, (O] = C7) (4)

where C;’eq [M/L?] is the equilibrium dissolution concentration of the species 7 in the aqueous
phase. We note that E; = YN4 Ei. The mass-transfer rate constant kg, [1/T] is generally
dependent on many parameters, but in the current implementation it is assumed to be a
given constant.

2.1.4 Capillary and relative permeability curves

These formulas incorporate the dependency of the relative permeability and capillary pres-
sure from saturation. By assuming water as the wetting fluid, capillary pressure is defined as
P. = P, — P,. Fluid saturations are considered as unique functions of the capillary pressures,
namely, no hysteretical behaviours included. The Brooks-Corey function (Brooks and Corey
1964) relating saturation to capillary head is considered:

P.o= Py S (5)

where Py [M/LT?] is the entry pressure and A [-] is fitting parameter related to the pore-size
distribution. Sj. is the effective aqueous saturation, defined as S;. = (57— S, )/(1— St — Spr ),



and S;, and 5,, are the wetting- and nonwetting-phase residual saturations, respectively.
Relative permeabilities for fluid phases take the following form

by = (Sle)m b = (1 - Sl@)m (6)

where m [-] is determined experimentally.

2.2 The numerical solution

The numerical solution of the 2FB model is quite complex, since a number of different
techniques are applied. Phase pressures and saturations are discretized by an IMPES-like
approach (Aziz and Settari 1979), which first solves for a total velocity vy and the aqueous
pressure P}, and then advances the saturations to the next timestep by an explicit Runge-
Kutta finite volume method. Mixed-hybrid finite elements (Brezzi et al. 1991) are used
to compute pressure and pressure gradients. Saturation equation is discretized in space
using a 2"¥-order in space TVD FV (finite volume) discretization (Harten 1986,1987) and
using a 2" order in time RK (Runge-Kutta). An analogous discretization is implemented
for the transport equation. Biodegradation of dissolved NAPL is advanced in time using a
OP (operator splitting) technique for decoupling the advection from dispersion and reaction
contributions.

2.2.1 The split formulation

Let us rewrite the system of equations for phase pressures and saturations as

0
S (epS)  + Vepvi = ok
at (7)
Phase velocities v;, v,, are given by the Darcy’s-like relation
vi = —AN(VR—-pg),
(8)
v, = =M (VP —pug),

kT krn
with \; = 2K and \, =

K. By introducing the total velocity vy = v; + v,, and the

total “fractiolnal ratio” Ay = 75\; + A, we can write vy as
vr=—(AN+ M) VP +gs (9)
where the source term ¢g is defined as
s = (\ipi + Anpn) 8 — M LIV 51 (10)
Introducing Qr = % + %, one obtains
Vvr=Qr (11)
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Thus, the final system is obtained:

{V'VT = QT?

12
vr = —(M+X) VP +gs. (12)

This set of equation is discretized by a mixed-hybrid finite element approach. The method
of approximation gives an estimate of the normal flux of vy, which is necessary to advance
in time the equation (7) for S;. The following piece of metacode summarizes the iterative
split approach which advances in time the initial solution:

General initialization
Read Input
t=0 while ¢ < 1,45

loop [Global] until convergence
loop [P-S] until convergence
estimate STHALF 7 STHALE
compule PHHALML & VtT-FAt’k-I'1
upwind St-I-At,k N Vzlf-I-At,k-I-l’V?-At,kH
compute STHALFH
check: ||STHALAFL _ QALK < e, 0
end loop
loop [C-bio] until convergence
compute CHFALHL (ady /disp /mass-transf. )
call Biomodule (biodegradation)
check: ||CHFALmEL __ OutrALm | e i = Ny,
end loop
check: Global convergence
end loop
if Biofilm-model then

compute ¢!T2! (porosity)

compute K'T2! (permeability)
end if
t=1t+ Al

end while
print final results & statistics
Stop

where k and m are two iteration indexes, and €,; and €..,. are user-specified tolerances.
Basically, the algorithm consists in the time loop (Global), which is split in two subloops,
respectively called (P-S) and (C-bio). At each timestep the former subloop updates the
phase pressures P;, P, and the saturations S;, S,. The latter one updates concentrations C*
and the microbial distribution C'¥.

At each step, system (12) is solved by approximating the normal component of the total
velocity field at cell interfaces, vy - n say, by the discontinuous lowest order mixed-hybrid



Raviart-Thomas finite elements and the aqueous phase pressure P, by piecewise constant
elements over the computational cells and at cell interfaces (Brezzi 1991). Let us denote
these approximate fields by respectively qz, ¢, and A,. The symbol & denotes the maximum
diameter of all the cells K in a given mesh 7, |K| is the cell volume and JK the cell
boundary. The variational formulation reads as

K-!

VY A / R
/Q()\l—l_)\n) Z/ YRV - Wh-l-Z/ EWR D+ | s+ B -I-)\ qn-wp =20,
Z/,vhv'Qh:/Qth,

K VK Q
Z/*qh'nk’ﬂh:oa
o JOK

(13)

where the test functions wy, v, and pj are taken in the same functional spaces of the
corresponding unknowns. Standard algebraic manipulations yields a linear problem which
is solved for the set of Lagrangian multipliers A;, by using the static condensation technique.
Backward substitution closes the solution algorithm (Brezzi 1991). This non-conforming
finite element method guarantees that a zero-divergence constraint is well satisfied by the
total velocity field. This issue is required to fairly simulate the non-linear degradation
kinetics, as pointed out in (Fwing 1998).

The semi-discrete finite volume formulation that approximates equations (1) is obtained
by integrating separately in a cell-wise fashion each phase saturation equation, applying the
divergence theorem, approximating the interface integrals with the midpoint rule, and finally
computing the advective fluxes by an upwind estimation of the phase velocities v; and v,.
This method takes the form

dSX
|[ | d] _I_ Z lk znt ext7nk) _I_
k€o(K)
SO HE(SI) = |K|Q(Sk), YK €T,
k'eo!(K)

where Sk indicates the K-th cell-averaged value for both S; and S, o(K) is the set of cells
adjacent to K, o/(K) is the set of boundary edges on dK, H(Si", Sg*! ny) and H,E?C)(S,im)
are the numerical fluxes at internal and boundary edges, Q(Sk) stands for the source terms
in (1), and Iy, I are the edge lengths. The numerical fluxes depend on S and S§*!,
which are the traces at each cell interface of the linearly reconstructed saturation. The
boundary flux H,g?c)(S,im) may also depend on a set of suitable external data. A special
linear reconstruction procedure interpolates the cell-averaged saturation values {Sk}re7,
and ensures a TDV stability condition by limiting the reconstructed slopes. This avoids
order one oscillations to appear in sharp gradient solution regions (Fwing 1998). An explicit
two-stage 2"%-order Runge-Kutta scheme advances in time the approximate solutions Sg.
The method is formally second order accurate (Gallo and Manzini 1996). A predictor-
corrector strategy is deserved to treat the non-linear dependence on conventrations C' in the
sink source term B'. As for the phase saturations, the concentration equation is discretized



by using a second order finite volume scheme plus TVD reconstruction. Further details are
given in (Gallo and Manzini 1998a).

The transport of dissolved species, equation (3) includes also a diffusion-dispersion com-
ponent. As well known from the literature this 2"¢-order component should be computed
using an implicit scheme. Therefore, a standard 3-points finite difference scheme in space
and a fully implicit Fuler discretization in time were selected. Starting from:

oC
E|disp =V ¢Sl(Dh : VC) (14)

the discretization in space and in time (using fully implicit Euler scheme) is performed.

Discretization For the i-th cell of the domain between the times t* and ¥+, it is:

CH _CF 1
Pt T (Ag)

5 Ok ST e (OB = CFY) = ol SR (CFF = 1)) (19)

where the subscripts ¢ +1/2 indicate the interfaces between cell ¢ and cells ¢ £ 1, respectively,
where some ¢ and S; are evaluated. It should be noted that ¢* and SF™' were used, since
Sy at t + At is already available from the P — S loop, while ¢ is updated only at the end of
each time step. Equation (15) leads to a symmmetric three-band system that is solved using
a standard iterative solver, such as conjugate gradient.

3 The multi-dimensional model

3.1 Mathematical formulation

As mentioned in the introduction, multi-dimensional multiphase flow is modeled using the
STOMP code ( White and Oostrom 1999). This simulator relies on a number of mass conser-
vation equations plus a set of constitutive relationships which make explicit the reciprocal
interactions between fluid and solid phases (see for example Hassanizadeh and Gray 1998).
Conservation relations are written for each phase and for each component. A “phase” refers
to the sum of all components comprising a fluid, such as gaseous, aqueous, and NAPL.

3.1.1 Phase conservation

Phase conservation equations is written as (Hassanizadeh and Gray 1997):

NoR) LG (o) = 6 X B @ =g,lm (o)
ot B

where ¢ [-] is porosity, S, [-] is phase saturation, p [M/L?] is phase density, v, [L/T] is
phase velocity, Es, [M/L*T] accounts for interphase mass exchange from phase /3 to phase
« (this term is discussed later). Subscripts g¢,[,n stand for gaseous, aqueous, and NAPL
phase, respectively.



3.1.2 Phase velocity

The phase velocity v, is given by the extended Darcy’s law for multiphase systems (Has-
sanizadeh and Gray 1997):

k.. K
[

Vo =

(VP — pag) a=gqg,l,n (17)

where P, is the pressure [M/LT?], K [L?] is the permeability tensor, k,, is the relative
permeability function, u, [M/LT] is phase dynamic viscosity, and g [L/T?] is gravity.

3.1.3 Component conservation

Generally, each component is assumed to be present in every phase and phase properties
may be affected by its composition. For each component of a phase, conservation equation
is given as:

NOPB) 4 (psive =) = 63 By =05, B,—(1=0) Ay 0= g.Ln i = 0.0
B

(18)

where W', [-] is the mass fraction of component 7 in phase o, B! [M/L*T] is the biodegradation

term, and Eﬁa [M/L?T] accounts for interphase mass exchange of component 7 from phase /3

to phase «, and A’ , for adsorption on the soil matrix. J! [M/L?T] is the diffusion-dispersion

ads
component based on Fick’s law.

3.1.4 Transport of diluted species in the aqueous phase

Dissolved oil is not the only component that is dissolved in the aqueous phase. Other species,
such as oxygen, nitrates, nutrients, etc. can be transported by the bulk motion of the aqueous
phase. In this case, however, their concentrations are quite small and possible variations in
concentration of these components do not affect aqueous phase properties and the flow pat-
tern. Therefore, their transport is modeled using the classical advection-dispersion-reaction
equation:

(51 CY)

G T Vo (Civi—SDLVC) = 03 By — 0SB
8

~(1=¢)A, B=g.n i=1 Ny, (19)

where C, [M/L?] is the concentration of species j in phase a, Dj , [M/L*T] is the diffusion-
dispersion flow term based on Fick’s law, B! [M/L3T] is the biodegradation term of species

»4s accounts for adsorption. The subscript d.s. stands for dissolved species

in phase [, and A
in phase [.

The equation set presented is quite typical for presenting multiphase flow and transport
in porous media. In the case of the STOMP code, the equations are slightly modified. These
are equivalent to that shown in equations (16)-(19), although some simplifying assumptions

are applied. Dissolution of water and air in the NAPL phase is neglected; partitioning of oil,



water, and air among the phases is computed at equilibrium; only oil can adsorb on the soil
matrix and this adsorption is instantaneous. Let us consider equation (18) and sum over all
the phases. The results is a conservation equation for component : over all phases.

3.1.5 Water conservation

a w w W w
a[z (¢paSawa) —I_ Z (v'wapava_']oz):q (20)
a=g,l a=g,l
where J¥ is defined as:
T = —ropy DYV =gl (1)
where 7 [-] is tortuosity, M"™ [-], and M, [-] are the molecular weights of water and of phase «,

respectively, and ' [-] is the molar fraction of water in phase a. ¢* [M/L3T] is a source/sink
term accounted for explicitely.

3.1.6 Air conservation

a a a a a
o [Z (6p05a2) | + 20 (V-wipave —J2) = g (22)
a=g,l a=g,l
where J2 is defined as:
Jo = _TW“MQ Di-Vx, a=g,l (23)

M*® is the molecular weights of air, and ¢* [M/L>T] is a source/sink term accounted for
explicitely.

3.1.7 Oil conservation

0

ot Z (¢pa5aw2) + (1 - ¢)w2ps + Z (v “WoPaVa — Jg) =q’ (24)

O‘:ngn O‘:ngn
where J¢ is defined as:

o

M.,

Jo = —7¢pa——D; - Vyxo a=g,ln (25)

where M° [-] is the molecular weight of oil and ¢° [M/LT] is a source/sink term accounted
for explicitely.



3.1.8 Transport of solutes

The solutes mass concentration equation assumes that the solute mass is partitioned among
the fluid and the solid phases assuming thermodynamic and geochemical equilibrium. Solute
transport is assumed to take place in every phase by advection and diffusion-dispersion. The
following expression is obtained by extending equation (19) for every phase, namely n, I,
and ¢, and summing over all phases. Thus solute transport equations reads as follows:

ag:— S (Vo Civa] )+ X (V[raSadDS + 68aDna| CL) + Y. 658 (26)
a=l,gn a=l,g,n a=l,g,n
where
C= 3 ¢8.C+ [1-4¢]C] (27)
a=l,g,n

and (' is concentration in the solid phase.

3.1.9 Constitutive relationships

A number of constitutive relationships are implemented in the STOMP simulator. Different
choices are available for relative permeability curves, capillary curves, density, tortuosity,
etc. Including these equations would be cumbersome and not important for the purpose of
this work. Thus, the interested reader can refer to the STOMP theory guide ( White and
Oostrom 1999).

3.2 The numerical solution
3.2.1 General features

The numerical discretization in space and in time of the balance equations of the components
air, water, and oil, and the solute transport is briefly described (refer to the STOMP theory
guide ( White and Qostrom 1996 for further detail).

The STOMP simulator solves the governing conservation equations and constitutive func-
tions using numerical techniques for nonlinear systems. These equations are discretized using
the integrated-finite-difference method of Patankar (1980). This method is locally and glob-
ally conserving and requires the physical domain be spatially discretized into an orthogonal
computational domain which comprises nonoverlapping volumes (nodes). Each volume can
have a maximum of two neighbouring nodes for each dimensional direction. Intrinsic prop-
erties are assumed to be uniform over the volume domain and are defined for a node point
at the geometric center of the volume. Fluxes are defined at the geometric center of the
surfaces between node volumes and along a direction parallel to the surface normal. Fluxes
across node surfaces between nodes adjacent to the domain boundary are controlled through
boundary conditions.

The system of algebraic equations that include the discretized governing conservation
equations and the constitutive functions is nonlinear. Nonlinearities in the soil moisture
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retention functions, relative permeability functions, and physical properties near phase tran-
sitions are the primary contributors. Nonlinearities are solved by applying the Newton-
Raphson linearization technique, which yields quadratic convergence of the residuals, given
a sufficiently close estimates of the primary unknowns. At this point it is useful to schematize
through a piece of metacode how the STOMP simulator works.

Start Execution
em do initialization
set chemical-physical properties
while ¢ < t,,,, solve FLOW problem
loop [Newton] until convergence
set Boundary Properties and Fluxes, Source terms;
build Jacobian matrix
solve Linear System
compute Convergence if convergence [Newton] = true Then

Exit loop [Newton]
else

if not iteration limit [Newton] then
perform another iteration

else
set Convergence [Newton] = False

exit loop [Newton]
end if
end if

if convergence [Newton| = true then

compute transport solution
call Biomodule
print results
update Primary Variables & Properties
sett =1+ At
else

if Time Reduction limit not reached Then
reduce time step

return to solve flow
else

STOP simulation
print diagnostics

end loop
print final results & statistics

STOP Execution
3.2.2 Spatial and temporal discretization

3.2.2.1 Accumulation/source terms The mass conservation equations (20), (22), and
(24) are discretized by assuming a piecewise profile to express the variation in primary
variables between node points and integrating over the node volume. The accumulation

11



terms are integrated over the node volume. Intrinsic properties for the node volume are
represented by properties at the node centroid. Source terms are similarly integrated over
the node volume, as follows:

0 o[
v = = |ve <¢w$pa5a>] (28)
TV = G|
0 o[
Zrvey) = S ve <¢wzpa5a>] (29)
o TV = |
a 70 e a i e 9] o
a [M V ] = a |% Z (¢wapoz5a) + (1 - ¢)wsp5 (30)
L a=l,g,n
where 5 P
=77 vl e s
a[/eMdV]za[MV] for 7 =w,a,o (31)
and
/ ¢dV = ¢'Ve for j=w,a,0 (32)
V&

3.2.2.2 Flux terms Fluxterms, advection and diffusion/dispersion, are evaluated on the
node surfaces. Integration of the flux terms over the node volume is performed by applying
Green’s theorem to the volumetric integrals to obtain the integrals over the cell boundaries.
Control volumes are transformed into nodal control surfaces. Flux directions parallel to
the surfaces are transformed in summations over the six faces. This transformation strictly
requires an orthogonal grid system for the flux directions to be aligned with the surface
normals, in order to avoid mass balance errors.

Darcy fluxes are discretized in the six coordinated directions (Top,Bottom, North, South,
Fast, and West — T, B, N, S, E, W, respectively), using (by default) upwind interfacial
averaging for the component mass fraction, phase density, and relative permeability, while
harmonic averaging is used for the intrinsic permeability and phase viscosity.

/e [ Z (chzypavcy —I-VJC{)

a:l7g7n

a:l7g7n

dV = . [ Z (vwggpava —|—in)] -ndl" for ]: w,da, o

(33)
where F and JJ are defined in equations (20), (22), (24), for j = w, a, o, respectively. By
transforming the integral (33) into the summation over the six surfaces of the node, we get:

/e [ Z (chzypavcy + Ji)

a:l7g7n

A. j=w,a,0

wr— Y [z (V(wpova)i + 1)

c=W,E,S,N,T,B | a=l,g,n

(34)

where A, is the area of the ¢ face, and where we specify the following:

/ / < wépakr,a >uw <K>h Pac B Pac_ a
(Whpava)l = (i >Z - ( JrAxg ) + (pag)i 2y,
BYAS
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for a=1lg,n j=w,a,0; ¢c=KEW SN BT (35)
; h J J
. M (Xa - Xa _)
J = —{1a¢paSe—D! 4 :
2 <T LR a>< Az,
for a=1lg,n; j=w,a,0; ¢c=FE WS N BT (36)

[}

Subscripts uw, h, and a stand for upwind, harmonic, and average respectively, and refer to
how parameters are evaluated at cell interfaces.

3.2.2.3 Time discretization The mass conservation equations are discretized in time
using a fully implicit scheme. The primary unknowns for the mass conservation equations
are intrinsic properties at node volume centroids (node grid point) for time level ¢t + At. In
the residual form, the final discretized equation is written as

e e R
L [ (R4 RN | KR
c=W,E SN, T, a=l,g,n

3.2.2.4 Global coupling The discretized governing equations for component mass con-
servation form a nonlinear set of algebraic equations. Nonlinearities arise from the depen-
dence of secondary variables on the primary unknowns. A set of assumptions is made when
solving the problem. The Newton-Raphson scheme is used for solving the nonlinear system
of the discretized equation. It is assumed that concentrations of diluted species do not affect
the flow pattern, thus they are excluded from the global coupling through the Newton Raph-
son linearization algorithm. This can be summarized as follows. Given a vectorial function
F(x) of the vector variable x, it is supposed that for x = X it is F(X) = 0, while for a generic
x, F(x) # 0. Thus, if the correct solution X is sufficiently close to x, it can be written as a
Taylor expansion around the x, as follows (stopped at the first order derivative):

F(x)=F(x+Ax)~ F(x) + F'(x) Ax (38)
where Ax = X —x and F’ is the Jacobian matrix of F. The iteration scheme is the following:

F(x™)

Axmrt = X 39
* F(xm) (39)
XM = x™ o Ax™ Tt (40)
until  Ax™t < ¢ (41)

where ¢ is a pre-specified tolerance.

The application of this scheme implies two major computational issues. One is related
to the evaluation of the Jacobian matrix and the other is related to the solution of the linear
system. In the STOMP simulator, the following choices have been made. The derivatives of
F in the components of x are computed numerically as incremental ratios instead of using

13



analytic derivatives due the numerical stability reasons. Thus, the numerical derivative of
the ¢-th components of F in the j-th component of x is expressed as:
OF; _ Bilojpae, — Fils,

al']‘ - Al‘j (42)

The Newton-Raphson procedure starts at any new time step, convergence failure, or time
step reduction. Finally, the solution of the linear system of equation is solved using either a
direct solver or an iterative solver (refer to STOMP user guide for further details).

3.2.2.5 Solute transport The solute mass conservation equation (19) is discretized by
assuming a piecewise profile for the solute concentration between node points and integrat-
ing over the node volume. The advection and diffusion/dispersion transport terms of the
solute mass conservation are combined following the power-law scheme of Patankar (1980) .
Integration of the accumulation term for solute mass over the node volume proceeds as

follows oc oc

Solute transport fluxes are computed between node points and comprise advective and
diffusive-dispersive components. The diffusive-dispersive term is computed using a user-
defined interfacial average for the effective diffusion-dispersion coefficient (harmonic averag-
ing by default). Thus, we write:

a=l,g,n l,gmn

/. [— S (VCva) + Y (V[(705a6DS + Sa6Dya) VC| ) | dV =
a=lgyn Lo
[ 5 s 5 (fsont sy ve) -

3 [— > (VOuwa) + 3 ((7aSadDS + SudDin) VC,) | A (44)
=W,ESNTB | a=lgn Lam N
where we have:
U ) (K (Po = Po ) :
Y T T e, T\l
for a=1lLgn, ¢=EW SN BT (45)
and
((raS20DE + 5u¢Dia) VCL) =
C h ( Cad' B Cac_ )
<TozSoz¢Da + Sa¢Dh,a>< Al'g
for a=lgn; ¢c=E W S N, BT (46)
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The solution of the solute transport equation depends on the local Peclet number. The
power law scheme is based on the solute concentration profile for steady conditions with no
source nor decay. The power-law scheme closely approximates the exact solution for steady
conditions without excessive computational expense. Solute flux from combined advective
and diffusive-dispersive transport can be expressed using the power-law scheme as follows:

LA
Peo, = ot (47)
<TozSoz¢Dg + Sa¢Dh,a>g
0.1 Vo |\’
Ggg = —Ca€+ [maX(—Vag,O) + (Dgﬂ)gmax ((1 — T) ,0)]
0.1 Vo] \°
+ Cag_ [maX(Vag,O) + (Dgﬂ)gmax ((1 — # ) ,0)]
Qe s
for a=lgn =W E S N,B,T (48)

where i
c
(b)), = AP D), ()

According to the previous definitions, we can write the solute transport equation in the
spatial discretized form:

oC
> (Z GS) =V (50)
l,g,n S ’ at
Equation (50) is to be advanced in time. The time discretization is made using a fully
implicit scheme, which reads as follows:

t+At t+AL vt
I o e 1)

l,gmn

4 Biodegradation

In chapter 3 biodegradation modeling in the literature was reviewed. There three major
modeling approaches differing in some underlying assumptions were identified. For each of
these approaches a number of alternatives proposed were mentioned. In this section, the
focus is on selecting a single modeling formulation for each of the three approaches. The
complete set of equation is here re-written in detail and the numerical solution described.
All these equations are incorporated in the bio-module which is plugged in both the 2FB
and the STOMP simulators.

4.1 Mathematical model

In the following paragraphs the equations describing biodegradation of free-bacteria (FB),
microcolony (MC), and biofilm (BF) models are briefly listed. Basic hypotheses and assump-
tions for each of the three models are described in detail in Chapter 3.
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4.1.1 Free-bacteria equations

The first approach considered is the “free-bacteria” model (FB). In this model, the same
concentration value of each chemical species is used in the transport equation (bulk flow)
and in the equation describing the kinetics of degradation. The biodegradation rate (term
B in equation 19) is given by:

NEA CZ Cl Nnut C]

B = X Y — : : . 4 =1.N 52
o IZ; TR CTRT 4 O H Kiyci fT 2
Bl — X :, - l:l N 53
[(I+CIZIMO l[(zl_l_Cz H [{],l+0] » IVEA ( )

4 Ng 'NEA Cz Cl Nput C]
B = XNl : : — i =1.N,, 54
z; o l; K+ CiR1 O ]1;[1 Kilyci T (54

where K7 and K' [M/L?] are half-saturation constants, Y7 yield coefficients, u [1/T] is
the maximum degradation rate constant. The kinetics of growth/decay of biomass is :

¥ 1 90X N¥ Nga i Nnut
B = —— — k 5d
CX ot Z} IZ; W+CZKI+CZ Hl wl+CJ ! (55)

where CX [M/L?] is the bacterial population density and k; [1/T] is the bacterial decay
constant.

4.1.2 Microcolony-based equations

The second approach is the “microcolonies” based model (MC). Growth/decay of increase/decrease
in the number of occurs within the microcolonies only. All concentrations within micro-
colonies. The B-terms equation (19) reads as:

(C" = c)

m

B’ = —N.x'A,
K S 5

t =1, Ngs. (56)
where ¢ [M/L?] is the concentration of species 7 within the microcolonies, «* [L?/T] is
the mass-exchange coefficient between the bulk and microcolonies, m. [M] is the mass of a
microcolony, A, [L.?] is the contact area of one microcolony for the mass diffusion process, §
[L] is the boundary layer between bulk flow and microcolonies.

dect Npa ] ol Nnut &l (Cz _ Ci)

_ . A——%) i=1,N, (57
dt Zﬂojlz_|_cl Kl+d ]HKU—I—CJ—I_K 5 =LA (57)
_— = = 21/27 I rarE— lAci lzlvN 58
dt K+ d ;”O Klitc ]1;[1 Kiva  ° 5 4 (58)
de; Ne Nga cl ol Nt & , (Cj — cj) ]
L S B | (I el R B PP
dt 2V X s R ]1;[1 Kityo " 5 429)
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Microcolony growth/decay kinetics reads as:

1 6N N¥ Nga c Nt &l
~ —k 60
N. ot Z} ZK”—I—CK’—I—CZ}_[[X”—I-C] ! (60)

4.1.3 The biofilm model equations

The third approach is the biofilm approach (BF). The key processes are biodegradation in
the bulk phase, mass exchange between bulk flow and biofilm, and biodegradation within
the biofilm. Moreover, porosity changes caused by biofilm growth/decay are also included.
In this case the B-terms are written as follows:

BS == CXYSTMO + Eﬁb (61)
BO == CXYOTMO + El(,)b (62)
BY = —C%ry, + By + kCF (63)

where E;,b is the transfer of mass from the aqueous phase to the biofilm and r;, is the rate
of biodegradation within the aqueous phase, given by equation (64)

Cc? Cc©

0 — 64
Thie = RS TS KO 00 (64
An equation for Eli,b is needed. This reads as follows:
ES, = w [K,C% =g (65)
ES, = wy [K,C0 =] (66)
By = m [KCY =] (67)

where ¢ is the concentration within the biofilm (mass of species per unit volume of the
biofilm), &y [1/T] and K} [-] are the mass transfer coefficient and the macroscale partition
coefficient, respectively.

The equations describing the change of concentrations within the biofilm are (Has-

sanizadeh 1999):

o = —gbbYSCg(Tbio,b + ¢Eﬁb (68)
0 becb
(6t ) = —gbbYng(Tbio,b + </5E1(,)b (69)

where ¢ 1s biofilm volume fraction, i.e. fraction of total soil volume occupied by the biofilm.
The rate of biodegradation within the biofilm, ry;,;, is given by

s 10
Gy Gy

07> p
[&5—|-c§]x0—|-c§)

(70)

Thioy = H
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An equation similar to (69) gives the rate of growth/decay of biofilms:

0 ¢bCX
% = ¢bcg(rbio,b — qﬁbkdci( + ¢E1),(b (71)

The sum of ¢ and ¢, is equal to the total porosity of the medium which is assumed to be a

constant. Thus, it holds:
09 _ _9%

ot ot
Assuming that the average mass of bacteria per unit volume of the biofilm, ¢ is a known
constant, the combination of equations (71) and (72) yields:

(72)

@ B _¢bcg(rbio,b — dyep kg + Ele
ot e

(73)

Permeability variations are described as follows (Bird et al. 1960):

Kow ([ Gnew\’ /(1= bnew\’
Koaa ( Gold ) /( 1 — ¢oig ) (74)

4.2 Numerical solution of biodegradation equations

The solution of biodegradation implies the solution of both the transport in the aqueous
phase and the biodegradation module. As widely described in the literature ( Yeh and Tri-
pathi 1989), the solution of multispecies transport with chemical reactions is generally ac-
complished in two separate steps: after computing advection-dispersion concentrations are
updated accounting for to the contribution given by biodegradation. This procedure is cho-
sen due to the prohibitive computational effort of implementing a global Newton-Raphson
iterative algorithm. Actually, the operator-splitting solution procedure introduces a weak
coupling between the equations: this coupling, however, can be strengthened by performing
an iteration between the advection-dispersion and biodegradation blocks until convergence
is achieved. Let us consider the following reactive transport equation:

o0

=5 = V- (vO)+ V- (D- V) + B(C) = L(C) + B(C) (75)

where the advection/dispersion operator is defined as
L(C)y=V.-(v(C)+V-(D-VCQC) (76)
and B accounts for biodegradation. The total variation of €' in time within the control

volume is split in two different contributions, i.e., the advective-dispersive component and
the biodegradation component:

aC aC aC
E a (E) adv,disp * (5) bio (77)
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tk-l—l

Time derivatives are expressed as incremental ratios between ¢* and . This discretization

is made in two steps, as follows:

oo _ (o) (oc
at B at adv,disp at bro

) - )
At N At adv,disp At bio

Ck-|—1 _ Ck Crk+1 _ Ck Ck-|—1 _ Crk+1
tk-l-l _ tk = tk-l-l _ tk —I_ tk-l-l _ tk (78)

where C**1 is an intermediate concentration accounting for contribution of the advection-
dispersion. Accounting for equations (75), (76), and (77), we can write:

Crk+1 . Ck

~k
—m e = et (79)
(k1 _ C«k+1 L

4.2.1 Free-bacteria model

Equations (52-54) describing the degradation of substrate(s), electron-acceptor(s), and nu-
trient(s) are discretized in time using an implicit time stepping. By recalling that

AC Ck-|—1 _ ék-|—1
Btl=—) =——— (81)
At ), T ek
the discretization in time is written as follows:
(rik+l _ Cri,k+1 CX,k ; Npa v (k1 (LRt Npaut (k41
L _ gk = = Ho ; Wil T OOk KT Ok o Kl £ okt
i =1,Ns (82)
Ok _ Gk . olas! gs: iy ikt N (k1
1l _ 4k - KU+ Lkt e Ho Wil + Caktt = Kl 4 Okt
[ =1, Npa (83)
ikt er,k-H - Ng ; Npa (k1 (LRt Npaut (k41
th+1 _ ¢k = ¢ ;”0 ; Y“ Kl 4 Cik+1 K1 4 Okt i Kl 4 Cik+1
i =1, Nput (84)

The solution procedure implies the solution of the nonlinearity arising by the presence of
CH1 in both R.H.S. and L.I.S. of the equation. Therefore, the Newton-Raphson (NR)
linearization scheme is applied for solving the nonlinear system, given its convergence prop-
erties (Gallo and Manzini 19982a,1998b). Let us define C = (C1, ..., ONtNpatNnut) a5 the
array containing the concentrations of all the species present in the system, and B =
(BY, ..., BN+NpatNou)  Thus, starting from equation:

Ck-|—1 — ék-|—1 4 (tk+1 . tk) B(Ck-H) (85)
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equation (85) is re-written in the form of a residual function:
G(Ck-l—l) — Ck-l—l _ ék-l—l _ (tk+1 _ tk)B(Ck+1) (86)

Assuming that G(C*! 4+ C*1) = 0, G can be expanded around C**! using Taylor’s formula
and stopping at the first term, one obtains:

G(CH! + ACH!) & G(CHM!) + T (G(CH)) ACH! (87)
where J is the Jacobian of the vector function G. Imposing that
G(CH!) +J (G(CM) ACH! =0 (88)
the iteration scheme appears as follows:
ACHmHL = g7 (G(CH™)) G(CH™) (89)
ChHimtl = CHbm L ACHmH! (90)
until ACHmH < ¢

where the first iteration for starting the scheme is CF+lm = CHHL,
After solving for Ck+1 microbial growth (equation 55) is integrated in time analytically
at the end of each time iteration of the transport equations as follows:

| (X 4 NS Npa ikt CrLk+ N (k1 N
M\ oxkt Z; Z Kil £ Cik+1l K1 1 OLk+1 Hl Kid 4 Coktt ( B )
K =

(91)

4.2.2 Microcolony-based model

Equations (57)-(59) governing the MC model are discretized in time using an implicit (back-
ward Euler) time stepping:

kL ik iy ]VZEj4 ; ikl bkl Nnut Rl
Rl gk Holi £ Hogeri bt KT R L KT
) Cri,k+1 _ bkl .
—|—/<;ZAC( 5 ) 1 =1, N, (92)
ARl ok Aokt % Gkt Nt k1
ik T kel foYi i ikl 1 okt
i i K + b Kb+ v i Kb+ ¢
Lk+1 Lk+1
! (C —C )
+kK Ac 5 lzl,NEA (93)
R+l ik _ gi//y ‘ ]VZEj4 ikl ‘ bkl ‘fo Rl
tk"'l _ tk - 0+ 121 [(l,z + cz,k+1 [(l + cl,k+1 i [(l,] + c],k+1
, ((jyyk+1 A
—|—/£]Ac ] = 17Nnut (94)

)
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Equations (92)-(94) forms a nonlinear system. The Newton-Raphson linearization scheme is
chosen for computing the solution. The iterative scheme can be obtained in a way similar
to that presented in the previous section. Let us define C = (C1, ..., CNtNpatNnut) and
c = (..., cNetNEatNnu) “and be A = (AY, ..., AN=TNea+Nnut) the array containing the
R.H.S. of equations (92)-(94). This system of equations is re-written in a residual form in
a compact fashion as follows:

G(c"Mh) = M — ek — (tF — ) A () (95)

Assuming that G(c**! +c**1) = 0, G can be expanded around c¢**! and we stop at the first
term:

G+ Act!) & G(cH) + T (G(c")) Act! (96)
and we impose that
G(c"1) + I (G(cM)) Attt = 0 (97)
Equation (97) is revealing of the iteration scheme:
Ack-l—l,m-l—l _ _J—l (G(Ck-l—l,m)) G(Ck-l—l,m) (98)
Ck—l—l,m—l—l — Ck—l—l,m _I_ Ack—l—l,m—l—l (99)
until Ackttmtl ¢
k+1,m k

where the first iteration for starting the scheme is ¢ = c”.

Recalling equation (56) and discretizing in time

o Ck+1 _ ék-|—1 (ék+1 _ ck"'l)

B' = T TE —N.kA, 5 (100)
CH1 is updated as follows:
. ék-l—l k1
O = i (i gy en (G ) (101)

)

Microbial growth, equation (60), is integrated in time analytically at the end of each time
iteration as:

N+ N  Nga ikl ikt N Ikt . .
c _ 2 : 7 2 : . +1
" NE ) |E o = KO AL KT bR 2 KO ekl ka (t ! ) (102)
C = = =

4.2.3 Biofilm model

The numerical solution of the biofilm model is similar to that of FB and MC models. Equa-
tions (61), (62), (63), (68), and (69) are discretized in time using backward Euler implicit
time stepping scheme:

Skt _ Cfs,k-u

_ _CX,k+1YSr§;g1_I_Eﬁék+1 (103)

tk‘H _ tk
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Co,k+1 . CrO,k-l—l

thtl _ 4k = O Yt 4 B (104)
CX,k-H . CrX,k-H
fh _ th = ORI 4 B 4 kO (105)
Sk+1 Sk
& ( — ) ) _ —¢bYSCb Phios + ¢kESk+1 (106)
4 ( S g)k) kyo X k 70, k+1
Al = =&Yoo Thiop + OBy (107)

where, according to equations (65), (66), (67), (64), and (64), the following formulas are
considered:

B = gy [K 00— ] (108)
BRI =y [Ky, 0O — )] (109)
BN =y [K, 0 = O (110)
S,k+1 0,k+1
R (111)
KS 4 CSk1 O 4 (0k+1
Skt Okt
s = Mo - (112)

0 Sk+1 - O,k+1
]&S—I—cb’+ [&O—I—cb’+

The equations (103) through (107) constitute the nonlinear systern that is solved using
Newton-Raphson algorithm. Let us define C = (C°,C%,C¥X ¢}, cf) and be Ay, = (ACIS>, ACY ACT A, A
the array containing the R.H.S. of equations (103)— (107). This system of equations can be

re-written in a residual form in a compact fashion as follows:

G(CH1) = CH — CF — (1! — %) Ay, (CKFY) (113)

Assuming that G(C*+! 4+ C*+1) = 0, G can be expanded around C**! stopping at the first
term:

G(CH! + ACH!) & G(CHM!) + T (G(CH)) ACH! (114)
and we impose that
G(CH1) +J (G(CH)) ACH! =0 (115)
Equation (115) is revealing of the iteration scheme:
Ack—l—l,m—l—l _ _J—l (G(Ck—l—l,m)) G(ck—l—l,m) (116)
Ck—l—l,m—l—l — Ck—l—l,m _I_ Ack—l—l,m—l—l (117)
until ACHmH < ¢

where the first iteration for starting the scheme is C*+1m = (C’S’k+1, COkH1 CX R+ fk cg) k)

Variation of biofilm volume ratio are then calculated by discretizing in time equation (73)

as follows k+1 k+1 k+1 X, k+1
X
P gk _ v Tb;(f,b — &y e kg + ok, (118)
tk+1 — tk cr
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Porosity is updated to equation (72) which is discretized in time ( t*+1 —#* vanished in both
terms of equation 119):

¢ = g8 — (6" — &) (119)

Variation of permeability is computed after the completion of the nonlinear iteration and
are thus coupled in a weakly fashion with biodegradation:

K |[k+1 qbk"'l 3 1_¢k+1 2
=) /() 20

In order to give a visual appearance of how the biomodule works, a piece of metacode is

4.2.4 Metacode

given:

Fokok

**% hiomodule is invoked
ok ok

start
foreach node/cell

setup local variables from global ones
start biomodule
loop [local-bio] until convergence

compute functional values
build Jacobian matrix
compute R.H.S.
solve linear system (Gauss-Jordan)
check: ||Ci,t+At,m+1 _ Ci,t+At,m||2 < €pio
if Nye, > Niter,max then
print ”Convergence not achieved”
stop code

end if
if model=FB then

update CXF — OXHk+1
else if model=MC then

update Ck+1 _y CkH1
update N¥ — N**1 (microcolonies)

else if model=BF then
update ¢F — o5T' (biofilm volume ratio)
end if

update global variables from local ones
end loop
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5 Comments on the code coupling and interfacing

5.1 Coupling different modules
The 2FB and the modified version of the STOMP code are coupled with the biomodule

which solves biodegradation. Two different coupling strategies have been chosen for the two
codes. In the case of the 2FB code the coupling between the flow-solver and the biomodule
has been implemented in a strong fashion. The biomodule is invoked just after computing
the advection/dispersion contributions and is inserted in an iterative loop which strengthens
the coupling by means of a block iteration between the various components. The same has
not been done for the STOMP modification. In the STOMP simulator the computation the
biomodule is invoked after computing advection/dispersion and no iteration is performed
between the two components. This is aimed at reducing the computational complexity that
for the STOMP code is very high, although an approximate solution is expected.

5.2 Stabilization procedures

Biodegradation computation in some cases needed a stabilization procedure, due to non-
convergence of the Newton-Raphson linearization procedure. A number of experiments (not
presented) showed that this was related to the magnitude of the timestep that caused the
iteration convergence to fail. The solution to this problem was found in solving biodegrada-
tion using a fractional time-stepping procedure. This implies that if At = Ny, X Aty;,, the
biomodule is run Ny, times using a time step Aty;,. This ensure that, on the one hand, the
procedure will converge and, on the other hand, that at the end of the biodegradation step,
time will be consistent in the computation.

5.3 Interfacing the modules

For both codes, the use of the biomodule is strongly dependent on a couple of "interface”
subroutines. These are invoked at the beginning and at the end of the biomodule and
are aimed at interfacing local with global variables and viceversa. The biomodule solves
biodegradation at each node/cell of the domain, but for only one node/cell at the time.
Also, the biomodule works with mass concentration, while, in the case of the STOMP code,
dissolved oil is referred in terms of mass-fraction. Further, the possibility of using a different
time stepping algorithm (as mentioned in the previous paragraph) relies on a proper interface.
These routines also keep track of zeroing variables and to retrieve the values of variables which
are not used in the calling module (either 2FB or STOMP), such as concentration within
microcolonies, biofilm volume fraction, and concentration within biofilm.

5.4 Units of measure

Another issue that should be regarded carefully is related with the units of measure. The
2FB simulator uses whatever units the user inputs. The only requirement is that they are
consistent in the whole. The STOMP code can be input with almost any possible unit and
makes automatically checks and conversions in the S.I. system. Due to the complexity of
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the STOMP source it was chosen not to extend this procedure to the biomodule. Thus,
all the input regarding the biomodule must be made in S.I. since STOMP makes all the
computations using the S.I. system and interface routines are conceived to preserve it.

5.5 On the computational costs

The computational cost of biodegradation is quite different for the 2FB and the modified
STOMP simulator. In the case of 2B, the biomodule has a large impact on the global
computation both because it is in a iteration block and can affect convergence, and because
the convergence is generally quite fast in the case of one-dimensional two-phase flow. A
number of numerical experiments (see Gallo and Manzini 2000) was performed and confirmed
this fact. The situation is quite different in the case of the STOMP simulator. Given the
complexity of the phenomena accounted for, such as the presence of three phases, the use
of different saturation and permeability curves, and, above all, the presence of multiple
dimensions, the convergence of the global Newton-Raphson iteration (see section 3.2) is
more difficult and time demanding. In this case, biodegradation is a minor part of the
computation and does really affect the global CPU time in terms of computation.

With regards to memory requirements, inserting the biomodule in an available simulator
does not require a particular effort. Apart of the array variables containing the concentrations
in microcolonies and/or biofilm no other relevant memory allocations are needed.
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