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1 Introduction

The Boussinesq model for subsurface flow in an idealized sloping aquifer has recently been
extended to hillslopes of arbitrary geometry by incorporating the width function w(z) into
the governing equation, where z is the distance along the length of the hillslope. The resulting
mathematical model can be simplified if three higher order terms containing (1/w)w’(z) are
dropped. In this preliminary report we describe the model along with some characteristic
hillslopes that will be used to test it and develop it further.

2 Hillslope-storage Boussinesq model

2.1 Motivation

The Boussinesq equation
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is commonly used to model subsurface flow in a sloping unconfined aquifer underlain by an
impermeable layer [Childs 1971] (Figure 1). In this equation f is the drainable porosity,
h = h(x,t) is the depth of the aquifer (or height of the water table) measured perpendicular
to the bedrock, t is time,  is the distance along the hillslope taken parallel to the impermeable
layer, k is the hydraulic conductivity, « is the slope angle, and N is an effective recharge rate
or source/sink term. Equation (1) has obvious appeal because it is one-dimensional and it
can be solved analytically for a wide variety of conditions [Serrano 1995], in particular for the
drainage-only case (N = 0) [Brutsaert 1994].

There is much interest in current hydrological research to develop simple yet physically re-
alistic models valid at the catchment scale, focusing on the subcatchment or hillslope as a
fundamental unit or building block. To this end a storage-based version of the Boussinesq
model has recently been proposed [ Troch et al. 2001], wherein, following a concept introduced
by Fan and Bras [1998] for the kinematic wave model, the classical Boussinesq equation for
idealized straight hillslopes is generalized by incorporating the width function w(z) and in-
troducing the subsurface water storage S(z,t) = fwh as the dependent variable in the model.
The resulting “hillslope-storage” Boussinesq model accomodates not only arbitrary plan cur-
vature via w(z), but also arbitrary profile shape by treating the width-averaged soil depth
D as spatially variable in the z direction in the definition of the maximum subsurface wa-
ter storage S.(z) = fD(z)w(z) (Figure 2). Thus the general features of a hillslope’s plan
geometry and terrain and bedrock shape, as derived for example from spatial analysis based
on soil and digital elevation maps, can be accounted for. When solved numerically, spatial
(and temporal) variability in recharge, boundary conditions, and conductivity are also readily

handled.

The model can be used to simulate subsurface flow and storage dynamics on realistic hillslopes,
and, via 5., the surface saturation response activated by the saturation excess mechanism
of runoff generation. Outflow hydrographs at the hillslope outlet or seepage face are easily
partitioned between subsurface and overland flow contributions. We remark that the second
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Figure 1: Schematic of a simplified straight hillslope representing a sloping unconfined aquifer
underlain by an impermeable layer.
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Figure 2: Schematic of a more general three-dimensional hillslope.



mechanism for generating surface runoff — infiltration excess — can only be implicitly ac-
counted for, in the absence of an unsaturated zone component in the Boussinesq model, by
considering the recharge term N as an “effective” or actual infiltration rate and not as the
potential rate represented by the rainfall amount. Addition of the source/sink term N to
equation (1) extends the range of applicability of the Boussinesq model from drainage studies
to storm-interstorm simulations [ Verhoest and Troch 2000].

2.2 Derivation

Combining the storage-based continuity equation
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with Darcy’s law for a hillslope with width function w(x)
h
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and substituting S/ fw for h in (3) we obtain the hillslope-storage Boussinesq equation
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where @) is a volumetric discharge flux and ¢ is the Darcy flux for a sloping unconfined aquifer
of unit width. Expanding the second order derivative term in (4) gives
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Dropping the 3 terms containing dw/dz yields the simplified form of the hillslope-storage
Boussinesq model

—I—ksinaa—s—l—wa (6)

2 _
)+ S e

0x?

a9 B kcos [(85

a5 a5 %8
ot fw oz

2.3 Simplified form of the model

The simplified form of the hillslope-storage Boussinesq model given by equation (6) is a good
approximation to the complete model when
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is small relative to the other terms that appear in equation (5). Applying the chain rule
reduces this “residual” term to
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We seek therefore a functional form for w(z) such that (1/w?)(dw/dz) and its derivative are
“very small”. This condition is trivially satisfied for straight hillslopes (w(z) constant), and
indeed for this case (and taking unit width) the hillslope-storage model reduces exactly to
the classical Boussinesq equation (1), as expected.

For a more general solution to the problem, the family of width functions given by

At
wlo) = 9)
has the property (1/w?)(dw/dx) = —1/A;, a constant, and so the derivative of (1/w?)(dw/dz)
vanishes and we need only satisfy the condition that —1/A; be very small in magnitude, or
equivalently that |A| be “very large”. Analysis of the behavior of this family of width
functions is the topic of future work.

3 Characteristic hillslopes

A river basin is made up of interconnected hillslopes and the channel network which drains
these hillslopes. Both hillslopes and channels transport water to the outlet of the basin. In
order to understand the hydrological processes at the catchment scale one needs to understand
the characterisic response of the hillslopes and channel network within the catchment. We
describe nine characteristic hillslopes that can be used for hydrological investigations such as
model intercomparisons and numerical analysis [Paniconi et al. 2001].

The three-dimensional shape of our characteristic hillslopes can be described analytically.
Analytical descriptions have several advantages over gridded approximations of surface shape:
consistent translation between quasi-3D hillslope representations (using a function describing
the hillslope width, for example) and fully 3D representations; easy generation of gridded as
well as triangulated surface meshes at any regular or irregular resolution (useful for example in
analyzing grid size effects or in intercomparison of finite element and finite difference models).

The hillslopes are characterised by the combined curvature in the length direction (profile
curvature) and the curvature in the width direction (plan curvature). This description gives
three possible shapes for profile as well as plan: concave, straight, and convex. Combining
plan and profile curvature leads to nine characteristic hillslopes. The equation describing the
hillslope surface shape can be written as

2z,y)= E+ H(1—2/L)" + aw? (10)

where

z [L] = elevation above a reference point

z  [L] = distance along the length of the hillslope

w  [L] = slope width

L [L] = slope length parameter

E [L] = elevation at point z = L

H 1] = height difference between 2 =0 and 2 = L

n o [] = profile curvature parameter (n > 0)

a [1/L] = plan curvature parameter

For n < 1 the profile curvature curvature is convex, for n = 1 it is straight, and for n > 1
it is concave. For a < 0 the plan curvature is convex, for ¢ = 0 it is straight, and for ¢ > 0



Table 1: Parameter Values for Nine Characteristic Hillslopes (L = 100)

nr  profile plan H n a(-107%)  Area
1 concave concave | 5.01 2.00 5 2496
2 concave straight | 5.01 2.00 0 5000
3 concave convex | 5.01 2.00 -5 646

4 straight concave | 5.25 1.00 5 2160
5 straight straight | 5.25 1.00 0 5000
6 straight convex | 5.25 1.00 -5 2161
7 convex concave | 816 0.31 5 1410
8 convex straight | 8.16 0.31 0 5000
9 convex convex | 816 0.31 -5 2386

it is concave. The parameters used to generate the nine characteristic hillslopes depicted in
Figure 3 are listed in Table 1.

The profile curvature is important because it reflects the change in slope angle and thus
controls change of velocity of mass flowing down along the slope curve. The plan curvature
reflects the change in aspect angle and determines the divergence or convergence of water flow.
Thus, both plan and profile determine the location of the slope divides and consequently the
slope width.

A distinction can be made between three different hillslope shapes: convergent, uniform
and divergent. For convergent hillslopes (concave plan shape) the slope width decreases, for
uniform hillslopes (straight plan shape) it is constant, and for divergent hillslopes (convex
plan shape) it increases as one moves down the slope profile. In order to find the precise
location of the slope divides, a gradient descent (for convergent and uniform hillslopes) or
gradient ascent (for divergent hillslopes) is performed starting at the sides of the hillslope.
The hillslopes are constructed in such a way that divergent hillslopes are widest at the outlet,
convergent hillslopes are widest at the crest, and uniform hillslopes have a constant slope
width. This is illustrated in Figure 4, which depicts a top view (view of the xy-plane) with
contour lines and slope divides.
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Figure 3: The nine characteristic hillslopes generated from equation (10).
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Figure 4: Contour lines and slope divides of the nine characteristic hillslopes.
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