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1 IntroductionThe Boussinesq model for subsurface ow in an idealized sloping aquifer has recently beenextended to hillslopes of arbitrary geometry by incorporating the width function w(x) intothe governing equation, where x is the distance along the length of the hillslope. The resultingmathematical model can be simpli�ed if three higher order terms containing (1=w)w0(x) aredropped. In this preliminary report we describe the model along with some characteristichillslopes that will be used to test it and develop it further.2 Hillslope-storage Boussinesq model2.1 MotivationThe Boussinesq equation f @h@t = @@x"kh(cos�@h@x + sin�)#+N (1)is commonly used to model subsurface ow in a sloping uncon�ned aquifer underlain by animpermeable layer [Childs 1971] (Figure 1). In this equation f is the drainable porosity,h = h(x; t) is the depth of the aquifer (or height of the water table) measured perpendicularto the bedrock, t is time, x is the distance along the hillslope taken parallel to the impermeablelayer, k is the hydraulic conductivity, � is the slope angle, and N is an e�ective recharge rateor source/sink term. Equation (1) has obvious appeal because it is one-dimensional and itcan be solved analytically for a wide variety of conditions [Serrano 1995], in particular for thedrainage-only case (N = 0) [Brutsaert 1994].There is much interest in current hydrological research to develop simple yet physically re-alistic models valid at the catchment scale, focusing on the subcatchment or hillslope as afundamental unit or building block. To this end a storage-based version of the Boussinesqmodel has recently been proposed [Troch et al. 2001], wherein, following a concept introducedby Fan and Bras [1998] for the kinematic wave model, the classical Boussinesq equation foridealized straight hillslopes is generalized by incorporating the width function w(x) and in-troducing the subsurface water storage S(x; t) = fwh as the dependent variable in the model.The resulting \hillslope-storage" Boussinesq model accomodates not only arbitrary plan cur-vature via w(x), but also arbitrary pro�le shape by treating the width-averaged soil depthD as spatially variable in the x direction in the de�nition of the maximum subsurface wa-ter storage Sc(x) = fD(x)w(x) (Figure 2). Thus the general features of a hillslope's plangeometry and terrain and bedrock shape, as derived for example from spatial analysis basedon soil and digital elevation maps, can be accounted for. When solved numerically, spatial(and temporal) variability in recharge, boundary conditions, and conductivity are also readilyhandled.The model can be used to simulate subsurface ow and storage dynamics on realistic hillslopes,and, via Sc, the surface saturation response activated by the saturation excess mechanismof runo� generation. Outow hydrographs at the hillslope outlet or seepage face are easilypartitioned between subsurface and overland ow contributions. We remark that the second2
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Figure 1: Schematic of a simpli�ed straight hillslope representing a sloping uncon�ned aquiferunderlain by an impermeable layer.
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z(x)Figure 2: Schematic of a more general three-dimensional hillslope.3



mechanism for generating surface runo� | in�ltration excess | can only be implicitly ac-counted for, in the absence of an unsaturated zone component in the Boussinesq model, byconsidering the recharge term N as an \e�ective" or actual in�ltration rate and not as thepotential rate represented by the rainfall amount. Addition of the source/sink term N toequation (1) extends the range of applicability of the Boussinesq model from drainage studiesto storm-interstorm simulations [Verhoest and Troch 2000].2.2 DerivationCombining the storage-based continuity equation@S@t = �@Q@x +Nw (2)with Darcy's law for a hillslope with width function w(x)Q = qw = �kh(cos�@h@x + sin�)w (3)and substituting S=fw for h in (3) we obtain the hillslope-storage Boussinesq equationf @S@t = k cos�f @@x"Sw (@S@x � Sw @w@x )#+ k sin�@S@x + fNw (4)where Q is a volumetric discharge ux and q is the Darcy ux for a sloping uncon�ned aquiferof unit width. Expanding the second order derivative term in (4) givesf @S@t = k cos�fw "(@S@x )2+S @2S@x2 � 3Sw @S@x @w@x + 2S2w2 (@w@x )2� S2w @2w@x2 #+k sin�@S@x + fNw (5)Dropping the 3 terms containing @w=@x yields the simpli�ed form of the hillslope-storageBoussinesq model f @S@t = k cos�fw "(@S@x )2 + S @2S@x2 # + k sin�@S@x + fNw (6)2.3 Simpli�ed form of the modelThe simpli�ed form of the hillslope-storage Boussinesq model given by equation (6) is a goodapproximation to the complete model whenR = k cos�fw "�3Sw @S@x @w@x + 2S2w2 (@w@x )2 � S2w @2w@x2 #= �kS cos�f " 3w2 @S@x @w@x � 2Sw3 (@w@x )2 + Sw2 @2w@x2 # (7)is small relative to the other terms that appear in equation (5). Applying the chain rulereduces this \residual" term toR = �kS cos�f "3@S@x ( 1w2 @w@x ) + S @@x( 1w2 @w@x )# (8)4



We seek therefore a functional form for w(x) such that (1=w2)(dw=dx) and its derivative are\very small". This condition is trivially satis�ed for straight hillslopes (w(x) constant), andindeed for this case (and taking unit width) the hillslope-storage model reduces exactly tothe classical Boussinesq equation (1), as expected.For a more general solution to the problem, the family of width functions given byw(x) = �1x+ �2 (9)has the property (1=w2)(dw=dx) = �1=�1, a constant, and so the derivative of (1=w2)(dw=dx)vanishes and we need only satisfy the condition that �1=�1 be very small in magnitude, orequivalently that j�1j be \very large". Analysis of the behavior of this family of widthfunctions is the topic of future work.3 Characteristic hillslopesA river basin is made up of interconnected hillslopes and the channel network which drainsthese hillslopes. Both hillslopes and channels transport water to the outlet of the basin. Inorder to understand the hydrological processes at the catchment scale one needs to understandthe characterisic response of the hillslopes and channel network within the catchment. Wedescribe nine characteristic hillslopes that can be used for hydrological investigations such asmodel intercomparisons and numerical analysis [Paniconi et al. 2001].The three-dimensional shape of our characteristic hillslopes can be described analytically.Analytical descriptions have several advantages over gridded approximations of surface shape:consistent translation between quasi-3D hillslope representations (using a function describingthe hillslope width, for example) and fully 3D representations; easy generation of gridded aswell as triangulated surface meshes at any regular or irregular resolution (useful for example inanalyzing grid size e�ects or in intercomparison of �nite element and �nite di�erence models).The hillslopes are characterised by the combined curvature in the length direction (pro�lecurvature) and the curvature in the width direction (plan curvature). This description givesthree possible shapes for pro�le as well as plan: concave, straight, and convex. Combiningplan and pro�le curvature leads to nine characteristic hillslopes. The equation describing thehillslope surface shape can be written asz(x; y) = E +H(1� x=L)n + aw2 (10)wherez [L] = elevation above a reference pointx [L] = distance along the length of the hillslopew [L] = slope widthL [L] = slope length parameterE [L] = elevation at point x = LH [L] = height di�erence between x = 0 and x = Ln [-] = pro�le curvature parameter (n > 0)a [1/L] = plan curvature parameterFor n < 1 the pro�le curvature curvature is convex, for n = 1 it is straight, and for n > 1it is concave. For a < 0 the plan curvature is convex, for a = 0 it is straight, and for a > 05



Table 1: Parameter Values for Nine Characteristic Hillslopes (L = 100)nr pro�le plan H n a(�10�4) Area1 concave concave 5.01 2.00 5 24962 concave straight 5.01 2.00 0 50003 concave convex 5.01 2.00 -5 6464 straight concave 5.25 1.00 5 21605 straight straight 5.25 1.00 0 50006 straight convex 5.25 1.00 -5 21617 convex concave 8.16 0.31 5 14108 convex straight 8.16 0.31 0 50009 convex convex 8.16 0.31 -5 2386it is concave. The parameters used to generate the nine characteristic hillslopes depicted inFigure 3 are listed in Table 1.The pro�le curvature is important because it reects the change in slope angle and thuscontrols change of velocity of mass owing down along the slope curve. The plan curvaturereects the change in aspect angle and determines the divergence or convergence of water ow.Thus, both plan and pro�le determine the location of the slope divides and consequently theslope width.A distinction can be made between three di�erent hillslope shapes: convergent, uniformand divergent. For convergent hillslopes (concave plan shape) the slope width decreases, foruniform hillslopes (straight plan shape) it is constant, and for divergent hillslopes (convexplan shape) it increases as one moves down the slope pro�le. In order to �nd the preciselocation of the slope divides, a gradient descent (for convergent and uniform hillslopes) orgradient ascent (for divergent hillslopes) is performed starting at the sides of the hillslope.The hillslopes are constructed in such a way that divergent hillslopes are widest at the outlet,convergent hillslopes are widest at the crest, and uniform hillslopes have a constant slopewidth. This is illustrated in Figure 4, which depicts a top view (view of the xy-plane) withcontour lines and slope divides.Acknowlegments This work has been supported in part by the by the Italian Ministry ofthe University (project ISR8, C11-B) and by the Sardinia Regional Authorities.ReferencesBrutsaert, W., The unit response of groundwater outow from a hillslope, Water Resour.Res. 30(10), 2759{2763, 1994.Childs, E. C., Drainage of groundwater resting on a sloping bed, Water Resour. Res. 7(5),1256{1263, 1971.Fan, Y. and R. L. Bras, Analytical solutions to hillslope subsurface storm ow and saturationoverland ow, Water Resour. Res. 34(4), 921{927, 1998.6
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