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1 Introduction

1.1 Overview

Water-related directives emanating from the FEuropean Union increasingly emphasize the
hydrological catchment as the fundamental organizational unit for integrated planning and
management of surface and subsurface freshwater resources. Continued progress in our scien-
tific understanding of hydrological processes at the catchment scale relies on making the best
possible use of advanced simulation models and the large amounts of environmental data that
are increasingly being made available. Processes at the interface between the land surface and
the atmosphere, for instance, determine the partitioning of rainfall into infiltration and runoff
and the redistribution of water between the surface, soil, underlying aquifers, and streams.
Understanding and predicting these exchanges is important to agriculture (irrigation plan-
ning and vegetation and crop growth), climate studies (weather prediction and global change),
natural hazards prevention and mitigation (floods, droughts, erosion, landslides), and water
quality management (point and nonpoint source pollutants in catchment and stream waters).
Demographic and land use changes, in turn, can effect the rainfall-runoff response of a river
basin, and these impacts, which can have grave socio-economic consequences, are difficult to
assess without reliable data and simulation models.

A wide variety of distributed hydrological models has been developed over the past decades,
ranging from simple empirical equations that can be solved analytically to complex systems
of partial differential equations that require sophisticated numerical algorithms and powerful
computers. The common feature of distributed models is that they can incorporate the spa-
tial distribution of various inputs and boundary conditions, such as topography, vegetation,
land use, soil characteristics, rainfall, and evaporation, and produce spatially detailed outputs
such as soil moisture fields, water table positions, groundwater fluxes, and surface saturation
patterns. A major factor contributing to the popularity of the distributed modeling approach
is the availability of digital terrain data, and GIS-based algorithms for extraction of hydrolog-
ically relevant information from this data. One of the major problems plaguing distributed
modeling is parameter identifiability, owing to a mismatch between model complexity and
the level of data which is available to parameterize, initialize, and calibrate models, and to
uncertainty and error in both models and observation data. One outcome of this is that most
models have not yet been validated in all their detail.

New data sources for observation of hydrological processes however can alleviate some of the
problems facing the validation and operational use of hydrological models. In situ or ground-
based measurement has become more feasible with the advent of simpler and cheaper sensors,
gauges, and loggers, while satellite and airborne remote sensing has begun to fulfill some of
its potential for hydrological applications, allowing monitoring and measurement of rainfall,
snow, soil moisture, vegetation, surface roughness, and land cover over large areas. In situ
and remote measurement techniques are complementary, the one offering high temporal detail
and the other fine spatial resolution.

Modeling and observation of soil moisture will be a particular focus of the study undertaken
here as part of the EU-financed DAUFIN project (Data assimilation within a unifying mod-
eling framework for improved river basin water resources management). The importance of
surface soil moisture in hydrometeorology and agriculture is such that the study of its spatial
and temporal variability continues to receive a lot of attention. One of the main developments



to this end has been the deployment of active and passive microwave remote sensing instru-
ments to measure soil moisture at basin and regional scales, although additional progress is
needed before accurate moisture mapping becomes a reality. As this goal is neared, however,
the combined use of models and remotely sensed soil moisture data is being proposed to
address the important problem of inferring soil moisture information for the deeper layers of
the soil profile, beyond the 5-20 centimeters directly detectable by remote sensors.

1.2 Objectives of the study

The main objectives of the DAUFIN project are:

¢ To develop a unifying modeling framework applicable at the catchment scale and based
on rigorous conservation equations for the study of hydrological processes in the stream
channel, land surface, soil, and groundwater components of a river basin;

e To implement data assimilation methodologies within this modeling framework and for
other control models to enable the optimal use of remote sensing, ground-based, and
simulation data;

e To test and apply the models and the data assimilation methods at various catchment
scales, including hillslopes and subcatchments of the of the Ourthe watershed in Belgium
and the entire Meuse river basin, one of the major basins in Europe with a drainage
area of 33 000 km? that comprises the Ourthe.

In general terms, geophysical data assimilation is a quantitative, objective method to infer the
state of the earth-atmosphere-ocean system from heterogeneous, irregularly distributed, and
temporally inconsistent observational data with differing accuracies [U. S. National Research
Council 1991]. Tt represents a formal methodology to integrate these data with simulation
models to provide physically consistent estimates of spatially distributed environmental vari-
ables, providing at the same time more reliable information about prediction uncertainty in
model forecasts. In operational systems where observation data is available on a routine
basis at regular intervals, data assimilation is an important tool in assessing data quality,
identifying for instance any biases or systematic errors in satellite-based sensors.

In terms of the DAUFIN project, where some first attempts at adopting data assimilation
techniques for catchment scale hydrological applications are being undertaken, one aim is
to show how these techniques are able to add value with respect to stand-alone data and
model predictions, for instance as applied to the problem of soil moisture profile estimation.
In particular in our study a physically-based catchment hydrologic model, CATHY [Bizio
et al. 2000], will form the basis for the formulation and implementation of a simple data
assimilation scheme. In the longer term it is hoped that data assimilation will lead to, for
this restricted application and in more general cases, improved models and parameterizations
(including initial and surface boundary conditions), a more effective framework for hypothesis
testing and scenario analyses, better data sampling strategies as the characteristics of different
data sources become incorporated into the modeling framework, and ultimately improved
predictions and model predictability.



1.3 Data assimilation in hydrology

Data assimilation is by now routinely used in research and operational meteorology, although
many scientific challenges remain for improving and extending existing methodologies [U. S.
National Research Council 1991]. More recently, data assimilation is being introduced in the
oceanographical and hydrological sciences, owing to the trend towards better and more regular
observation of a wide range of parameters of interest to the Earth sciences, beyond those tra-
ditionally used in numerical weather prediction, and to the need, in addressing global change
and other environmental problems, for both longer-range and more local forecasting. This
need arises where ocean — land surface — atmosphere exchange processes play an important
role and where there are inadequacies in the simple spatial integration or upscaling methods
currently used to derive, from hydrological models representative of processes at the small
scale of a vertical soil column, field plot, or small watershed, land surface parameterizations
for climate models operating at scales of several hundred kilometers.

Although there are many spatially distributed models in hydrology which could provide a ba-
sis for data assimilation [McLaughlin 1995], the most advanced domain of application, to the
extent that global model-assimilated datasets are currently being generated, is atmospheric
hydrology, due to the important role this “fast component” of the global hydrological cycle
plays in weather forecasting. In other domains, early applications of data assimilation in
hydrology, reviewed in a later section, have concentrated on how to incorporate into mod-
els information from some of the new remote sensors, often based on synthetic experiments,
and on assessing available data assimilation methodologies. It is still premature to see “re-
sults” (in terms of models being validated or observations being corrected) out of current
implementations of data assimilation in hydrological models.

One aspect that may hinder initial attempts at producing such results is incomplete knowledge
of the spatial and temporal variability of important hydrological processes and state variables
such as soil moisture, rainfall, evapotranspiration, and hydraulic conductivity. Adequate
characterization of this variability is needed in the measurement equations or interpolation
and extrapolation formulas used in many data assimilation schemes. For soil moisture, for
example, widely varying correlation lengths have been reported in the literature, ranging
from 1 to 1000 m, and it is questionable whether even at the hillslope scale one can speak
of a unique and fixed (in space and time) correlation length, due to diurnal and seasonal
cycles and topographic and geomorphologic factors that influence the wetness of a soil. On
the other hand, with improvements in model and data quality arising from data assimilation
and other advances, progress can be expected in turn in our understanding of the dynamics
and interactions responsible for the spatial patterns we observe in runoff, water table levels,
and other components of the catchment scale water balance and, at larger scales, for the
generation and persistence of floods, droughts, etc on seasonal and interannual bases.

1.4 Data assimilation in the CATHY model

The CATHY (CATchment HYdrological) model, a coupled overland and subsurface flow
model, is physically-based (or process-based) in the sense that its underlying equations are
derived from first principles and represent as complete a description as possible of the un-
derlying physics of water flow, within the limits of the processes and observations of interest.
The main processes not accounted for in the current version of the model are preferential



(macropore) flow, a separate air phase in the unsaturated zone, hysteresis in the soil hy-
draulic properties, and explicit modeling of vegetation (transpiration and root-water uptake).
The model simulates the dynamics of catchment flow processes in a consistent manner based
on conservation principles, and so is a good candidate for data assimilation. Indeed data
assimilation is one means of addressing an oft-cited drawback of distributed, data-intensive
models such as CATHY, that of requiring more data than is readily or accurately available.
Until this data limitation, related to the high degree of heterogeneity found in catchment
properties, is overcome, and the computational costs of running detailed three-dimensional
models for large basins become less prohibitive, a model such as CATHY will normally be
restricted to hillslopes and small catchments.

Other features that make the model appealing for data assimilation include its coupled nature,
handling in a unified manner all the mechanisms of rainfall-runoff partititioning and stream-
flow generation where other models treat these processes as separate components and in a
more ad hoc manner. This applies, for instance, to the distinction between infiltration excess
and saturation excess overland flow and to the dynamics of storm vs interstorm catchment
response. The model readily produces detailed primary (pressure head) and derived (mois-
ture content, integrated measures of soil water, surface saturations, water table positions,
groundwater velocities, surface water fluxes) output fields at selected times that can be used
for comparison against, and integration with, observation data in an assimilation context. In
addition, hydrograph output from the model (typically at the catchment outlet node) gives
the spatially integrated response of the basin to potential and actual atmospheric forcings;
this is the time series traditionally used for calibration of hydrologic models. One consider-
ation to bear in mind concerning the CATHY model is possible additional complexities in
implementing sophisticated data assimilation algorithms for a three-dimensional finite ele-
ment model such as this, as opposed to the one-dimensional finite difference implementations
most commonly found in the hydrological literature to date (see Section 2.4).

The CATHY model is one of the control models to be used in the DAUFIN project for testing
and validating the various algorithms and hypotheses within the unified modeling and data
assimilation framework to be developed. Issues of consistency, accuracy, and computational
efficiency are especially important given the limited possibility there will be to conduct ex-
tensive field tests in the pilot phase of the project. Outputs and implementation details to
be intercompared and assessed will concentrate on distributed water table and soil moisture
response and the representation and handling of exchange terms (mass fluxes) between soil
and aquifer and between subsurface (saturated and unsaturated) and surface (overland and
channel flow).

Some fairly simple data assimilation algorithms will be implemented as first trials for the
CATHY model, with more advanced methods that allow incorporation of model and data
uncertainty in an optimal sense reserved for future research. Given the data scarcity in hy-
drology described earlier and the flexibility of the CATHY model to generate various output
fields, the more immediate interest is for a data assimilation formulation that can systemati-
cally combine information from different observation sources, both satellite and ground-based,
and is not restricted to a single data source by the measurement error models embedded in
more advanced assimilation methodologies. The primary focus, as already mentioned, will
be on soil moisture, soil profile estimation, and, given the three-dimensional nature of the
model, incorporation of oft-neglected lateral subsurface flow and other effects to yield reliable
estimates of four-dimensional soil moisture distributions (in space and time).



2 Review of data assimilation techniques and applications

Data assimilation in the geophysical sciences refers to a methodology to estimate in a physi-
cally consistent way the state of a given physical system using observations. In general this
is accomplished, in a optimal way, using also some prior knowledge of the system such as
climatology and error covariance of the model and of the observations. With reference to the
aims of the DAUFIN project we are interested in all those methodologies that are able to
improve the predictive skill of a hydrological model “including”, in the physical state of the
simulation model, scattered measures of various kinds (satellite, in situ, indirect measures,
etc.). Besides providing a better estimate of the initial condition of the system state, a gen-
eral procedure of data assimilation should be able to assimilate measurements during model
simulation every time new observations are available (four-dimensional data assimilation). In
this section we will describe the more commonly used data assimilation techniques starting
from the simplest one, and following a brief review of data assimilation in meteorology and
hydrology we will describe applications to the problem of the estimation of soil moisture using
a catchment scale hydrological model.

2.1 Sub-optimal data assimilation methods
2.1.1 Direct insertion

If during the model integration some measure or indirect estimate of the state variable s, is
available at position r;, this estimate is simply substituted for the corresponding variable s
of the model:

s(ri) = so(74) (1)
Although of trivial implementation this procedure is of little, if any, utility. In fact, due
to dynamical inconsistency with the model solution, the introduction of observations into
the model generates as a side effect non-physical noise that quickly propagates from the
insertion point to the entire integration domain, usually rendering the solutions physically
inconsistent and sometimes even producing model instabilities. Another major drawback is
that observations must be given at the same location as model nodes so the spreading of
information can be achieved only via model physics advection, and therefore slowly.

2.1.2 Statistical correction

Since, in general, model estimates are affected by systematic and not negligible errors, prior
knowledge of the system statistics obtained by observations can be used to adjust the mean
value and standard deviation of the model (3, ¢) to that of the measures (55, 0,).

First the standard deviation is adjusted re-defining “a posteriori” the model state estimation
on all the domain grid points r;:

S(r0) = Zs(r) (2)

Mean values of the model estimates can be then adjusted

() = ) = (7 =) (3)



where s is the mean value of the estimate (2). This technique, although simple to implement,
makes use of an important concept common to all the more sophisticated data assimilation
procedures, that is, the use of the observation statistics to assimilate data in a more consistent
and physical way. On the other hand the method implicitly assumes that the statistics have
zero bias and that spatial patterns of model estimates are correct but biased. Also, as with
direct insertion, advection of information can be accomplished only via model physics.

2.1.3 Statistical and optimal interpolation or analysis

Contemporaneous use of data and model statistics can be accomplished, and problems related
to non-correspondence of model and observation points avoided, using the technique known
as statistical interpolation (SI).

Suppose we want to assimilate the observations s, to establish a better initial condition for
our model, knowing an initial estimate of the same field s, (known also as first guess or
background field). s; reflects our prior and imperfect knowledge of the system and depending
on the problem at hand, can be identified, for example, with the climatology or with a prior
integration of the model. The fundamental idea behind SI is the estimate of the “optimal
state” s, (generally known as “analysis”) that is at a minimum distance both from observation
and first guess. This can be done in a mathematical way minimizing a quadratic cost function
that in matricial form reads as

T(50) = 5 (50 = 50707 (50 = 50) (50— 50)T B~ (5, — )} (4)

where O and B are the covariance matrices of the observation and background error, super-
script I’ denotes transposition, and the s are column vectors. Minimizing the first variation
of this functional with respect to the analysis, we obtain

_aJ

0= s,

= O_l(sa —so)—l—B_l(sa — Sp) (5)

In explicit matrix form, solutions of the previous problem are of the form

L
sa(ri) = so(ri) + > Wirlso(re) — sp(ri)] (6)
k=1
where L is the number of measures and the weight matrix W is obtained by solving the system
of linear equations

W; = B;(B+0)™! (7)
where W; is the ith column of the matrix W.

If the estimates of covariance matrices B and O are exact then the interpolation is said to
be optimal, meaning that in this case the variance of the analysis is really a minimum. More
reasonably we can think that only estimates of B and O are known and for this reason this
technique is known as statistical interpolation.

The minimization of the functional (4) has been performed here taking implicitly the number
and position of measures equal to that of the grid model nodes. If this is not the case
equation (6) remains formally identical but in this case B; are the column vectors containing
the covariance between the background error at the ith analysis grid point and the background
error estimate at every observation point.



Observations information is in this case propagated (advected) implicity through the covari-
ances matrices B, O and benefits of the inizialitions, also where observations are not available,
can be obtained from the beginning of the model integration.

2.1.4 Newtonian relaxation or nudging

The procedures of assimilation considered to this point do not have any explicit time depen-
dence (for the SI procedure however if the background state is derived by a model simulation
this time dependence exists implicitly). Depending on the problem at hand, the analysis of
the system obtained via these procedures is not suitable to be used as initial conditions of the
model (see for example the discussion on meteorology in Section 2.3). In these cases space
and time dependence must be considered together and explicitly in the assimilation process
(four-dimensional data assimilation).

Nudging is the simplest 4D data assimilation procedure. In this procedure model variables
are driven toward observations adding to the forcing F of the model equation

ds
L (s)

an additional term with the aim to relax the actual model state to the observed one. This
relaxation term is taken to be active for a certain period of time t,, called assimilation time,
preceding the observation time ¢,. After observation time is reached this term is relaxed
(made zero) and the model equation is integrated in its original form!. The main objective is
to obtain, at least partially, a dynamical consistency between measured data and numerical
solution of the model. This should avoid introduction of non-physical noise, typical of direct
insertion, and assure at the same time an improvement of the variable estimate.

In practice during the assimilation time the model equation is integrated adding a term
proportional to the difference between the model solution and the observed state of the
system (the so-called “nudging term”) to the physical forcing term F(s). In general we can
write

J

5 = F&) + GW(rne(r)(s, - 9) (9)
where s are the observation interpolated to the model grid, G determines the relative strength
of the nudging term with respect to the physical forcing term, W(r,t) are weights to be
specified (see Section 4.2), and € < 1 is a factor measuring the accuracy of the observation

that if we assume perfect measures should be taken equal to 1.

To understand some of the features of the nudging technique let us consider a limiting case
that can be solved analytically. We assume the physical forcing term of the system equation
to be zero, € = 1, and the observed state s, and the product of the nudging factor with the
weighting function to be constant. In this case a general solution of equation (9) is

s(t) = s, + e_GWt(s(to) - S,) (10)

with to = t, —t,. This equation shows that even in the case where the analysis quality factor
¢ is equal to 1 the “nudged” solution reaches the observed state only if the assimilation time
is infinite.

1Some authors argue that the assimilation time must be centered with respect to the time of observation,
thus retaining the nudging term also after the observation time is reached. In this case ¢, can be interpreted
as a time of influence or correlation between the observations and the model state.



Since measures are taken at discrete points, to be of practical use the continuum form of the
nudging term in equation (9) must be discretized. This can be done in a general way allowing
the system equation to be relaxed to individual scattered observations. To do this we first
interpolate the model grid values to the observation points r; (forward interpolation), then
backward to the model grid including this last step in the nudging term. A useful form that
is generally given to equation (9) is

ds Soisy W(ri, O)e(ri)(sh(ri) — s(ri))

—=F t GW t
ot (8,7‘, )+ M(Tv ) ZLZI W(Ti,t)

(11)

where Was(r;,t) is the maximum weight for any single observation. Factorization of this term
prevents the nudging algorithm from giving too much relative weight to closely located obser-
vations (not much new information is really added in this case) with respect to measures that
are farther apart. To further reduce this kind of problem backward and forward interpolation
required by the algorithm should be performed taking steps similar to those used in the SI
procedure for trying to obtain an “optimal a posteriori estimate” of weight coeflicients. In
operational practice however the weight matrix is generally set a priori. This consideration
suggests that particular care must be paid to the choice of weighting function in order for the
nudging technique to be of real effectiveness.

2.2 Optimal data assimilation methods
2.2.1 4D variational data assimilation

The idea beyond these methods is that of minimizing, using the variational method, the differ-
ence between a temporal series of objective analysis of measured data and the corresponding
time series simulated by the model. The aim is to obtain a state of the system closest as
possible to observation but also dynamically consistent with the model equation over the
assimilation time. Since the technique is quite general and can be implemented in many ways
for the same problem (imposing the model as a strong or weak constraint, for example) we
will introduce here the technique in its basic form without reference to any specific imple-
mentation. A more general formulation that has been applied to a case study of hydrological
problems at large scale can be found in Reichle et al. [2000].

To preserve generality and to show the applicability of the procedure also to nonlinear prob-
lems we will use here explicit functional notation. Suppose M is a differentiable operator (in
general nonlinear) relating the state variable s to an observation o

o(t) = M[s(?)] (12)

M, known as the measurement prediction operator, will also provide, in general, interpolation
from the model grid to that of the measures. Define R; as the matrix of observation error
covariance that can be thought of as the sum of the covariance of instrument errors (matrix O
of equation (4)) and the covariance of representiveness error due both to errors in interpolation
and errors of the measurement prediction operator itself.

We introduce the following functional sum of a least-squares performance measure plus a term
introducing the Lagrange multipliers:

)4 () = [ {lott) = ML B o) = MU} + 2050~ Fdt (13
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In this expression the first term is proportional to the difference between the time series
of measurements and the prediction of the model during the entire assimilation time ¢,
normalized with the covariance of observation error, and the second term assures dynamical
consistence of the solution.

Minimizing the first variation of this functional we have

oA

- = ST+ MR Vo — M(s)] A(ta), AN(0) = 0 (14)
ds
o= F(s) 5(0) = sq (15)

where S = [%] and M; = [%] are the Jacobian matrices of partial derivatives of the system
equation and of the measurement operator. The explicit time index for these linear operators
(matrices) is mandatory because they are no longer independent of s and must be re-evaluated
after each time step during integration.

The algorithm defined by equations (14)-(15) works as follows: first the system equation is
solved starting from one reasonable, but arbitrary, initial condition s(0). The time series s(t)
is then used to solve the “adjoint equation” for A using reverse time to obtain A(0) subject
to initial value A(¢,) = 0. In general, this “first guess” value of A will not satisfy the natural
boundary condition A(0) = 0. Nevertheless, it can be used iteratively in a descent algorithm
to find the initial condition s(0) = s, that satisfies the natural boundary condition A(0) = 0
and minimizes the whole functional (13).

2.2.2 Extended Kalman filtering

With the development in the last two decades of various remote sensing techniques (from
satellites but also from ground instruments), increasing amounts of data, inhomogenous in
both type and spatio-temporal resolution, are available to be assimilated in models related
to enviromental sciences. To meet this challenge new approaches have been devised in which
data can be assimilated continuously as they become available, and at any moment of the
operational chain an analysis usable as optimal initial conditions for the simulation can be
released.

One technique by means of which continuous data assimilation can be implemented in an
elegant and powerful manner is the Kalman filter (KI') procedure [Daley 1991]. KI' has been
variously applied to signal processing and other fields and is used for example to determine,
and continuously correct, orbital parameters of satellites. To present the methodology as sim-
ply as possible we will suppose the model and measurement operators to be linear. It should
be stressed however that the procedure is powerful enough to be applied to the nonlinear case
making considerations similar to those used in 4D variational assimilation.

One fundamental assumption to derive the KF algorithm is to admit our model to be randomly
perturbed. We write then the stochastic version of the linearized system equation discretized
in time as:

St41 = Std: + € (16)

which evolves the true status § of the system at time ¢ to time ¢ + 1 except for an unbiased
and uncorrelated error in time due to model imperfection. Defining the error of the analysis

11



(observation error) €/ = s§ — §; and because by definition

St4+1 = StS? (17)
we have for the error of the model estimates
€41 = StG? - G?L. (18)

Multiplying on the right this last expression by €¥:I_1 and applying the expectation operator
we obtain

Pt-l—l = StPtaStT —|— Qt (19)

where P;y; is the covariance error matrix of the model, P/ is the covariance of the analysis
error, and ) is the covariance matrix of the model error. Equations (17) and (19) are the
predictive part of the algorithm. The other three equations needed to close the algorithm
are obtained minimizing a cost function such as that used to obtain the SI equations. In
particular we can introduce the functional

1
J = 5{[015 — Mys{TTR™ o — Mysy] + [0 — s§]T P s — s8]} (20)

where, as before, R is the error covariance of the measurement operator. Minimizing with
respect to the analysis we get

8? — S8 = ]X/rt[O — MtSt] (21)
K, = PMJ[R + M PM™ (22)
Pta - [I - ](tMt]Pt (23)

where [0; — Mys;] is the observational increment or innovation vector, Ky is the gain matrix,
[s§ — s¢] is the analysis increment, R; the covariance error matrix of observations, and the
other symbols are as defined in a previous section.

KF contains as particular cases direct insertion when only equation (17) is used, s{ being
in this case the interpolated field, and statistical interpolation when P is estimated a priori
in some way and only the three equations (22), (21), and (17) are used. In this last case
equation (23) can be used to diagnose the covariance error of the analysis from that of the
estimate.

2.3 Meteorological perspective

Until the middle of the 20th century the state of the atmosphere was diagnosed using manual
and subjective techniques. Drastic changes were introduced with the rapid increase of com-
putational resources and with the complexity and the amount of atmospheric data collected
every day all over the globe and from various and inhomogeneous sources (radiosoundings,
satellites, radars, in situ measurements, etc). Since then, techniques of data assimilation have
had, in meteorology more than in other enviromental sciences, great developments. This is
due to the fact that meteorological forecasts are subject to a continuous validation by direct
comparison with data from the global meteorological observation network, and by virtue of
the fact that such forecasts have a great social and economic impact and thus national au-
thorities have allocated substantial resources aimed at improving the accuracy and skill of
meteorological forecasts.

12



Besides the great spatial and temporal variability of the observational network, to understand
data assimilation in meteorology and its peculiarities it is necessary to give some details about
the atmospheric system and the equations used to simulate it. Almost all of the numerical
weather prediction centres in the world use, to solve the atmospheric problem, the so-called
primitive equations which include the two-component (u,v) equations of the horizontal mo-
tion, the hydrostatic law for the vertical component, the first law of thermodynamics for the
potential temperature (8), the gas equation state for density and pressure (p,p), and the
conservation of mass and moisture equations for specific humidity (¢). The solution of these
equations are characterized by two different time scales:
L 10%m

-1 4 5
= ~ 10 3h = — = =10 1d 24
n=1f s < 79 Vi T0m /s s > ay (24)

where f is the Coriolis parameter and Viy and Ly are the charateristic horizontal velocity and
length scales. Motions of primary importance in meteorology are the midlatitude perturba-
tions that have horizontal scales of order 10® m, last 1 day or more, and are clearly forced by
the diurnal cycle (Rossby wave scale). At the spatial scale of 10 m the motion field (u, v) and
the mass field (p, ¢, ) can be in not perfect balance. If this happens perturbations that last
a few hours, and propagate much faster than Rossby waves, can be excited. These motions,
with time scale < O(7y), are known as inertial gravity waves. Power spectra analysis for me-
teorological observation shows that the bulk of the energy in the atmosphere is confined to the
Rossby wave scale, indicating that most of the time the atmosphere is in a “balanced state”.
So, if initial conditions (analysis) used to forecast the future state of the atmosphere is not
dynamically consistent with the model equations, spurious gravity waves are excited that can
strongly affect the quality of the simulation. To eliminate these non-physical high frequency
waves from the model integration two different approaches were proposed by Charney [1947]:

o Integrate a model that doesn’t permit propagation of inertia-gravity waves. This so-
lution is clearly the simplest and far less CPU-intensive, but gives forecasts of limited
potential skill.

o Integrate the primitive equations model but using as initial conditions a state that
doesn’t excite gravity waves.

For the first numerical weather prediction (NWP) models, in the late 40s, the first solution
was the only feasible one, and as initialization procedure the optimal analysis (OA) method
was used. The old data assimilation cycle could be schematized with the following three
components:

e collection and validation of observations;

¢ short forecast to obtain background or first guess fields;

e analysis (OA).

When computer power increased, in the mid 50s, and operational forecasts based on the
primitive equations were made possible, the problem of data assimilation gradually moved to
the more complex component cited in the second item above. With the use of the primitive
equations another step had to be added, known as initialization. Initialization is a numer-
ical process by means of which high frequency noise in the analysis is filtered out. Various
procedures have been used for this purpose.
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The simplest initialization procedure consists of disregarding the first few hours (typically
6 hours) of time of forecast, during which non-physical noise is dissipated by the model dy-
namics itself. This solution is generally adopted by national and regional meteorological
services to initialize limited area models (LAMs). To obtain optimal forecasts with general
circulation models (GCMs), on the other hand, increasingly complex initialization proce-
dures have been devised, such as QG initialization, linear and nonlinear balance equations,
procedures based on the solution of some variational problem subject to various dynamical
constraints, and the most widely used, normal model initialization.

The explanation of these procedures is beyond the scope of this brief review although some of
these are not very complex to understand. For example in the dynamic initialization procedure
the model itself is used for the initialization, executing alternatively forward and backward
time stepping with high frequency damping properties. In this way an initial condition free
of gravity waves can be obtained that is fully consistent with model dynamics.

All of these procedures, however, suffer in principle a serious limitation because are all based
on a static principle. When asynoptic satellite remote sensing data became available to be
assimilated in a meteorological model, in the late 60s, a very different approach to the problem
of analysis and initialization became possible/necessary: continuos data assimilation. Since
then, assimilation methods based on 3D or hopefully 4D variational procedures are used or are
going to be used. The ideal technique for meteorological applications would be the Kalman
filter procedure but the great amount of computational effort needed to multiply and invert
matrices in equation (22) makes this technique currently not feasible.

2.4 Recent applications of data assimilation to soil moisture and catchment
hydrology

Although relatively new to hydrology, a handful of papers related to data assimilation go
back as far as 20 years. Newton et al. [1983] combined a hydrologic model and passive
microwave soil moisture observations to derive deeper (root-zone) soil moisture estimates
from near-surface measurements but were only partially successful due to complications from
temperature (diurnal variations), surface roughness, vegetation, and soil texture on the signal
response. Active microwave soil moisture observations from a C band scatterometer were
used by Prevot et al. [1984] in another 1D model application, without data assimilation,
using observed surface soil moisture data as an upper boundary condition for a Richards
equation soil water transfer model to improve the accuracy of simulated actual evaporation
rates. Bruckler and Witono [1989] later applied similar techniques to soil water balance
estimation.

Milly [1986] and Milly and Kabala [1986] introduced the extended Kalman filter, and hence
a data assimilation context, to some of these earlier efforts to integrate remote sensing data
and hydrologic models for soil moisture profile estimation. FEntekhabi et al. [1994] took this
approach further, integrating passive microwave and infrared emitted radiation observations
into a coupled heat transport and moisture flow model based on Kalman filter data assimila-
tion algorithms. A similar approach but with an application to active microwave soil moisture
data, and so simpler from a modeling point of view since there is no need for a heat transport
model and a radiative transfer inversion scheme, has been recently presented by Hoeben and

Troch [2000).
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Away from 1D soil moisture profile estimation, hydrologic applications of 3D and 4D data as-
similation at the larger scales of catchments and river basins are only very recently appearing.
Hostetler and Giorgi [1993] and Georgakakos and Baumer [1996] suggested some of the links
with climate modeling and the potential benefits (as well as problems to be overcome) for
hydrology. In coupling a regional climate model (RCM) to a lake model and to a streamflow
model, using the output from the RCM (surface temperature, evaporation, precipitation) to
drive the landscape-scale hydrologic models (LSHMs), Hostetler and Giorgi [1993] reported
that the RCM scale (60 km in this application) is still not fine enough for hydrologic modeling,
especially in complex mountainous terrain. This echoes the problems faced with assimilating
many types of remote sensing data which are still too coarse-scale for most hydrologic needs.
Georgakakos and Baumer [1996], in an overview of past regional and national U.S. soil mois-
ture measurement campaigns, propose a data assimilation technique for ground-based soil
moisture and discharge data together with remotely sensed data for estimation of soil water
content aggregated over large areas. They discuss at length aspects concerning the charac-
terization of the spatial and temporal variability of soil water at these scales. The authors
suggest that using basin-average soil water, computed by integrating over drainage basins and
over depth in several layers, is a viable approach for large scale hydrometeorologic studies. At
the smaller SVATS scale (soil-vegetation-atmosphere transfer scheme) Wigneron et al. [1999)]
applied statistical interpolation and a radiative transfer model together with coupled moisture
and heat diffusion equations to assimilate ground-measured surface soil moisture data in an
effort to define the requirements for the eventual use of passive remotely sensed microwave
observation data.

The 6 years since the publication of a review paper on nascent developments in hydrologic
data assimilation [MecLaughlin 1995] have seen increasing research activity on various aspects
of the topic, investigating both appropriate methodologies and potential applications. Houser
et al. [1998] provide an assessment of several sub-optimal sequential data assimilation algo-
rithms for a distributed conceptual catchment scale water and energy balance model. Li
and Islam [1999] present a simple “hard-update” (direct insertion) method for assimilation
of passive microwave data using a 1D 4-layer land surface moisture and heat balance model
applied to a 15 x 15 km Kansas prairie field site. Perhaps the most ambitious effort so far at
implementing data assimilation for hydrologic models is the work of Reichle et al. [2000] and
Reichle [2000] where a weak constraint variational scheme is used in a Richards equation-based
coupled moisture and heat transport model intended for passive microwave remote sensing
soil moisture and temperature data. The authors claim that their variational algorithm is
more efficient than other optimal data assimilation techniques such as KF.

A number of recent papers pertaining more to inverse problems for model calibration and
parameter estimation suggest that there are strong similarities between this problem and
that of data assimilation, for affinity of ends (improving the reliability or prediction accuracy
of models) as well as means (methodologies that share a number of traits). Cahill et al. [1999)]
address the upscaling and inverse problem of estimating a large scale hydraulic conductivity
function from measurements obtained on a small scale, applying an extended Kalman filter
to a 1D Richards equation. In particular the authors explore issues related to estimation of
the covariance matrix, which is “the most difficult parameter of the KI algorithm to supply”,
and other fine points concerning practical implementation and performance of this algorithm.
Senarath et al. [2000] move to a larger scale watershed application and employ the shuffled
complex evolution method for calibration on a “continuous basis” of a simple hydrologic model
using soil moisture data.
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3 The CATHY model

3.1 General description

Precipitation fluxes during storm events and potential evapotranspiration during interstorm
periods are the driving forces of catchment dynamics. The catchment partitions this at-
mospheric forcing into surface runoff, groundwater flow, actual evapotranspiration, and changes
in storage. Surface runoff involves different phenomena such as hillslope and channel flow and
retardation and storage effects due to pools and lakes, while groundwater flow includes infil-
tration to and exfiltration from the vadose zone. The CATHY model simulates these various
processes based on a coupling of the Richards equation for variably saturated porous me-
dia and a diffusion wave approximation for surface water dynamics. It combines a three-
dimensional finite element subsurface flow module, FLOW3D [Paniconi and Wood 1993;
Paniconi and Putti 1994], with a one-dimensional finite difference surface routing module,
SURF_ROUTE [Orlandini and Rosso 1996]. Hillslope flow is assumed to concentrate in rills
or rivulets, allowing both channel and hillslope flow to be described by a one-dimensional
convection-diffusion equation. Retardation and storage effects due to lakes or depressions are
also implemented, giving a complete description of the catchment flow dynamics.

Starting from a DEM (digital elevation model) discretization of the catchment surface and
a corresponding three-dimensional grid of the underlying aquifer, atmospheric input (precip-
itation and evaporation data) is partitioned into surface and subsurface components by the
FLOW3D module. The overland flux values calculated by FLOW3D at the grid nodes are
transferred to the DEM cells and implemented as sink or source terms in the SURF_ROUTE
module, which routes this surface water and calculates the resulting ponding head values that
are in turn used as boundary conditions in FLOW3D.

The mathematical model is described by the system of partial differential equations [Bizio et
al. 2000]

oS ge = VKK (S0) (V0 + )]+ au(h) (25)
0 0 0
8_6152 + Cka—cj = Dha—g + crqr(h, ¥) (26)

where 0(5,) = 9,95 + (b%, Sw(t) is water saturation, S is the aquifer specific storage
coeflicient, ¢ is porosity, 1 is pressure head, ¢ is time, V is the gradient operator, K is
the saturated hydraulic conductivity tensor, K,(5,) is the relative hydraulic conductivity
function, n, = (0,0,1)T, z is the vertical coordinate directed upward, and ¢, represents
distributed source (positive) or sink (negative) terms (volumetric flow rate per unit volume).
The surface water is routed using (26) along each single hillslope or channel link using a
one-dimensional coordinate system s defined on the drainage network. In this equation, ¢} is
the discharge along the channel link, ¢ is the kinematic wave celerity, Dy, is the hydraulic
diffusivity, and ¢, is the inflow (positive) or outflow (negative) rate from the subsurface into
the cell, i.e., the overland flow rate. We note that ¢, [L?/L3T] and ¢z, [L?/LT] are both
functions of the ponding head h, and that h can be easily derived from the discharge ¢} via
mass balance calculations.

This system of equations must be solved simultaneously for the unknown vector (Q,%) or
(h,%). Nonlinearities arise in the $,,(%) and K,(9,) characteristic curves in the Richards
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equation, in the nonlinear dependence of ¢, on the ponding head, and in the nonlinear de-
pendence of g7, on .

3.2 Subsurface flow module

FLOWS3D is a three-dimensional finite element model for flow in variably saturated porous
media, applicable to both the unsaturated and saturated zones. It handles temporally and
spatially variable boundary conditions, including seepage faces and atmospheric inputs. The
soil hydraulic properties are specified by K and by families of characteristic (constitutive)
relationships Sy, (%) and K, (¢) such as those of van Genuchten and Nielsen [1985] or Brooks
and Corey [1964]. Those of van Genuchten and Nielsen [1985] can be written as

(v) = 60, +(0,—6,)[1+ 5] P <0

0(v) = 0, >0 (27)
K (¢) = (14 8)772[(1+8) - p] b < 0 28)
K.(¢y) = 1 v >0

where 6 is the volumetric moisture content, 8, is the residual moisture content, €, is the
saturated moisture content (generally equal to the porosity ¢), 5 = (¢/15)", 15 is the capillary
or air entry pressure head value, n is a constant, and ¥ = 1 — 1/n for n approximately in the
range 1.25 < n < 6. The corresponding general storage term is

a5,

(29)

where 5, = /65 and S, is the specific storage.

For the treatment of the atmospheric boundary conditions, the input flux values are con-
sidered “potential” rainfall or evaporation rates, and the “actual” rates, which depend on
the prevailing flux and pressure head values at the surface, are dynamically calculated by
the code during the simulation. This automatic “switching” of surface boundary conditions
from a specified flux (Neumann) to a constant head (Dirichlet) condition, and vice versa, is
implemented to correctly reproduce the physical phenomena occurring at the surface.

For example, in the case of precipitation, if a surface node becomes saturated because of
infiltration excess, the fraction of precipitation that does not infiltrate and remains at the
surface (ponding head) becomes the overland flow to be routed via the surface module. The
boundary conditions in this case switch from Neumann (atmosphere-controlled) to Dirichlet
(soil-controlled) type. If precipitation intensity decreases, so that the magnitude of actual
(computed) flux across the soil surface exceeds the magnitude of the atmospheric flux, the
boundary condition switches back to a Neumann type. If a surface node becomes saturated
because of saturation excess (the water table reaches the surface), and there is an upward flux
across the soil surface (return flow), the overland flow is calculated as the sum of precipitation
and return flux. The entire amount of water that remains at the surface or exfiltrates from the
subsurface is then transferred for routing to the DEM-based surface runoff module (see next
section), which in turn returns, after surface propagation, the ponding head distribution to
FLOW3D. In essence overland flow, defined as the flow rate that is present at the surface and
that can be routed via the surface model, is calculated at every time step from the balance
between potential and actual fluxes.
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3.3 Surface routing module

The surface hydrologic response of a catchment is considered as determined by the two
processes of hillslope and channel transport, operating across all the hillslopes and stream
channels forming a watershed and including storage and retardation effects of pools or lakes
and infiltration /evapotranspiration and exfiltration effects from subsurface soils.

3.3.1 Hillslope and channel processes

It is assumed that hillslope flow concentrates in rills or rivulets that form because of topo-
graphic irregularities or differences in soil erodibility and that deepen and widen during the
runoff event as a function of slope, runoff characteristics and soil erodibility. To minimize the
computational effort and economize on the number of model parameters, the rill formations
are lumped at the DEM elemental scale into a single conceptual channel. Each elemental hills-
lope rill and network channel is assumed to have bed slope and length that depend on location
within the extracted transport network, and a rectangular cross section whose width varies
dynamically with discharge according to the scaling properties of stream geometry as de-
scribed by the “at-a-station” and “downstream” relationships first introduced by Leopold and
Maddock [1953]. The distinction between hillslope and channel flow is based on the “constant
critical support area” concept as described by Montgomery and Foufoula-Georgiou [1995].
Rill flow is assumed to occur for all those cells for which the upstream drainage area A does
not exceed the constant threshold value A*, while channel flow is assumed to occur for all
those cells for which A equals or exceeds A*.

A routing scheme developed on the basis of the Muskingum-Cunge method with variable
parameters is used to describe both hillslope rill and network channel flows, with different
distributions of the Gauckler-Strickler roughness coefficients to take into account the different
processes that characterize the two physical phenomena [Orlandini and Rosso 1998]. The
model sequentially routes surface runoff downstream, from the uppermost DEM cell in the
basin to the outlet, following the previously determined drainage network. A given grid cell
will receive water from its upslope neighbor and discharge it to its downslope neighbor, with
the inflow or outflow rate g, at any catchment cell given by

qr = qAzAy/As (30)

where ¢ is the local contribution to surface runoff, as calculated by FLOW3D, Az and Ay
are the cell sizes, and As is the channel length within the cell.

3.3.2 Topographic depressions

Isolated topographic depressions (“pits”) in the catchment DEM can be attributed to the
presence of pools or lakes, or can be interpreted as erroneous or missing data. Depressions
cannot be handled by automatic drainage network extraction procedures, and depitting tech-
niques are generally used to modify the elevation values and to regularize the DEM. When
depressions play an important role in the formation of surface and subsurface fluxes these pro-
cedures introduce inconsistent flow directions and do not correctly reproduce the storage and
retardation /attenuation effects of pools and lakes on the catchment response. This typically
happens in relatively flat areas where flow patterns are strongly influenced by small slope
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Figure 1: A catchment DEM with elevations (m a.s.l.) (left) and a schematized representation of the
catchment with flow paths as calculated by the “depitting” procedure (right). The interior area of the
depression is displayed in dark grey and the buffer cells with forced flow directions in light grey. The
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reservoir cell is identified by the letter “R”, while “O” is the outlet cell.

changes. The model therefore incorporates the “lake boundary-following” procedure [Mackay
and Band 1998] to isolate and correct for potential breakdown in drainage network extraction
when natural depressions are present in the DEM.

3.4 Surface — subsurface coupling

The explicit in time nature of the Muskingum-Cunge discretization scheme allows the con-
struction of the following noniterative algorithm for the solution of equations (25) and (26):

for t = 0 to t,,4, with step At do:

e solve (26) using ¢¥ as input to the SURF_ROUTE model, obtaining @**!
and from this the distribution of ponding heads h**1;

e use R*T! and precipitation/evaporation input at time

tk—l—l

to set up boundary

and initial conditions for FLOW3D, and solve (25) for ¢*+!

o calculate (again with FLOW3D) the overland flux qf"’l using ¥+ and the
balance between atmospheric inputs and actual fluxes.

The algorithm needs to be initialized, and this is done by setting an initial condition in terms
of ¢r, for equation (26). If this condition is not known a priori, it can be calculated from
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an initial run of FLOW3D that will evaluate a first guess for the overland flow based on the
actual atmospheric input. In this case an initial distribution of ¢ needs to be specified.

Different time stepping regimes can be used for the surface and subsurface modules, with
SURF_ROUTE normally taking several time steps within each FLOW3D step. This is reason-
able physically since the characteristic time scales of surface runoff and channel flow processes
are normally much shorter than those for infiltration, redistribution, and groundwater flow. It
is also necessary numerically because the explicit time discretization used in SURF_ROUTE
requires small time steps for stability.

The “bookkeeping” for the coupled model is done by the FLOW3D module, which determines
the current status of each surface node (ponded, saturated, below saturation, air dry) and,
knowing for each of these nodes whether the potential atmospheric forcing is positive (rainfall)
or negative (evaporation) and, in the case of a Dirichlet boundary condition whether the ac-
tual, back-calculated flux represents infiltration or exfiltration and also its magnitude relative
to the potential flux, it calculates the overland fluxes to be passed to SURF_ROUTE, parti-
tions the atmospheric and soil surface components of the hydrograph into its various contri-
butions (infiltration, actual evaporation, return flow, direct runoff), and flags any anomalous
events (e.g., infiltration at a saturated node with evaporative potential flux, surface runoff at
an air dry node). The ability to separate this bookkeeping in the CATHY model is convenient
in that it makes it possible to avoid complications due to fact that the FLOW3D module is
node-based whereas SURF_ROUTE is cell-based. This structural difference between the two
modules can also be exploited to perform simple grid upscaling when warranted by computa-
tional or physical considerations. More importantly, for implementation of data assimilation
in CATHY, the fact that the FLOW3D module handles the logistics implies that adding the
forcing term of the nudging technique (or, in future work, implementing other assimilation al-
gorithms) will not affect the structure of the SURF_ROUTE module. Thus in the next section
it suffices to describe in detail only the numerical discretization of the FLOW3D component,
which will need to be interfaced with the data assimilation module.

3.5 Numerical discretization of the subsurface flow module

We express equation (25) with a generic source/sink term g.

a%—f =V KK, (Vi +1.)] + ¢ (31)

Initial conditions and Dirichlet, Neumann, or Cauchy boundary conditions are added to
complete the mathematical formulation of the flow problem.

¥(x,0) = Po(x) (32)
zb(x t) = y(x,1) on I'y (33)
‘n = —q,(x,1) on I'y (34)

where x = (2,y,2)7 is the Cartesian spatial coordinate vector, superscript T is the transpose
operator, 1, is the pressure head at time 0, 1, is the prescribed pressure head (Dirichlet
condition) on boundary I'y, n is the outward normal unit vector, and ¢, is the prescribed flux
(Neumann condition) across boundary I';. We use the sign convention of ¢, positive for an
inward flux and negative for an outward flux, consistent with the convention used for ¢; in
equation (25).
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The finite element solution approximates the exact solution 1 by 1@ using linear basis functions
w(x) defined over a domain § discretized by E tetrahedral elements and N nodes:

N
b= Z_: b(Hwi(x) (35)

where QLj are the components of the nodal solution vector .

Recasting equation (31) in operator notation

¢+q:0 (36)

L($) = V- [K K, (Vo4 112)] = 05

the error, or residual, represented by the finite element approximation (35) is given as L(z@) -
L(%), or simply L(v). This error is minimized by imposing an orthogonality constraint
between the residual and the basis functions, which yields the Galerkin integral

/QL(QL)wZ'(X)dQ =0 i=1,...,N (37)

We assume that the coordinate directions are parallel to the principal directions of hydraulic
anisotropy, so that the off-diagonal components of the conductivity tensor K are zero. Ex-
panding equation (37) and applying Green’s lemma to the spatial derivative term we get, for

i=1,... N
- / K, [1(5 (VQL + 772) -Vwi] dQ + / K, [1(5 (VQL + 772) -n] w;dT
Q r
—/ Uajwidﬁ —I—/ qu;dQ =0 (38)
o Ot Q
Substituting equation (35), changing sign, and making use of boundary condition (34) to re-

place the boundary integral term above, we obtain the following system of ordinary differential
equations

.. A .
() + P9 1 q(8) = 0 (39)
where
E
hy = Y / K¢ (KSVus -Vt ) dv (40)
e=1 ©

E
pi = Z/ oS wtdV (41)
e=1 ¢

M &

0 = wewe gy / CuwcdV — / ¢ wedT (42)
Ve 0z Ve rs

e=1

In the above equations, H = {h;;} is the flow stiffness matrix, P = {p;;} is the flow mass
(or capacity) matrix, q* = {¢’} accounts for the prescribed boundary flux, the withdrawal or
injection rate, and the gravitational gradient term, and K, is the vertical component of the
saturated conductivity tensor. Model parameters that are spatially dependent are considered
constant for each element. Parameters that depend on pressure head are evaluated using v
values averaged over each element and are also elementwise constant. Dirichlet boundary
conditions are imposed after the discretized system has been completely assembled.
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Equation (39) is integrated in time by the weighted finite difference scheme
Pk-l—u R Pk-l—u R Kty
Hk-l—l/ - ‘Ilk-l—l - _ (1= Hk-l—l/ ‘Ilk % 43
Q -+A%) - (1-v) q (43)

where k and k£ + 1 denote the previous and current time levels, Aty is the time step size, and
H, P, and q* are evaluated at pressure head W*t” = pTF+l 4 (1- l/)‘I’k. For numerical
stability, parameter v must satisfy the condition 0.5 < v < 1.

Equation (25) is highly nonlinear due to the pressure head dependencies in the storage and
conductivity terms, and is linearized in the code using either Picard or Newton iteration [Pan-
iconi and Putti 1994]. Expressing the discretized flow equation (43) as

. (@Hl) L e Aitkpkﬂ (,i,k-l—l _ ,I,k) g™t — 0 (44)

Newton’s method can be written as
JEHHST = g (45)

where m is the iteration level, s = Whtlm+l _ Fk+lm a3 the Jacobian matrix is

1 QHZS Ak_l_y
Jij = vH;; + AL Pij + ES e Lo
1 8P’LS S k41 “k 8q*
R - — — 2 4
Atk - 8¢f+1 (¢s Qbs) + 8¢f+1 ( 6)

The Picard method is usually arrived at by evaluating all nonlinear terms in equation (43) at
the previous iteration level, m, and the linear terms at m + 1. This yields

(VHk—I—u,m n LPk—I—u,m) ‘i,k—l—l,m—l—l

Aty
1 el v, m
— (_Pk-l—u,m _ (1 _ V)Hk-l—u,m) ‘I’k _ q*k+ ) (47)
Aty
By simple algebraic manipulation, the above equation can be rearranged to give
1 .

(l/Hk-I—u,m n _Pk-l—u,m) s = _g(‘;[,k-l—l,m) (48)

Aty

Comparing (45) and (48), it is apparent that the Picard scheme can be viewed as an ap-
proximate Newton method. An important difference between the two schemes is that New-
ton linearization generates a nonsymmetric system matrix, whereas Picard preserves the
symmetry of the original discretization of the flow equation. Convergence of an iterative
scheme can be enhanced by introducing a relaxation (or damping) parameter w of the form
P+l — pm + ws™.

We now write the expressions for the finite element matrices of the flow equation, using linear
basis functions on tetrahedral elements. The basis function w{ for a generic tetrahedron e
with vertices ¢, 7, k, and m is w§ = (0;+ g2+ Gy+&2)/6VE where the volume of the element
is given by

€Ty Yi Zi

1
peolflewo ()
1

| =

Tk Yk 2k
Tm Ym ~m
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and

T Y Z Loy oz
0 = | Tk Yk 2k si=—| 1 g 2z
T Ym  Zm 1 Ym 2z2m
1 z; 2z 1 z; gy
G = |1 2 = E=—11 2w (50)
1 2, zn 1 2m Ym

We evaluate matrices I and P and vector q* of equations (40)—(42). The ijth element of
matrix H is given by hy; = Y2, h;; where

B, = /V K (KSVug - Vur) dv

e (e Si i e & G e & &)
— Kel K¢ J K¢ J K¢ J dVv
/e b ( YsegyeGye T gy gYe T GV gve
K

36| Ve |

(Kgusi6 + K, GG + K5,.66) (51)

where K;, K,y, and K, are the diagonal components of the saturated conductivity tensor,
and the superscript e indicates that the quantity is averaged over the element. The nonlinear
coefficient K¢ is evaluated using the average value of ¥ at the centroid of each tetrahedron.
This treatment of nonlinear coeflicients is also used for all the other integral terms.

The ij5th element of P is p;; = Zle p;; where

e e e e _ 6|ve| 21f7/:]
pij_/ea wiwidV = a 20 ) 1 it (52)

Finally, q* = g. + by + q; where the gravity vector gy, { = z,y, z is such that g, =g, =0

and g = {g.,} = Zf:l Gi, by ={bs} = Zf:l Feoar ={qg} = Zf:l L7. The components
of these three vectors are given by

€
ows

Vel

g — 176]76 d — 176]76 Z
GZ Ve XT xSZ 82 V 6V€ XT xSZ€= (53)
1%
Fro= / ¢ widV = q6—| 1 | (54)
A@
1= [ dhusar = 15 (59)
Ire 3

2

The quantity |A¢| denotes the area of the triangular face of the tetrahedron where the bound-
ary condition is imposed.

4 Data assimilation for the CATHY model

4.1 Selection of a data assimilation technique

Selection of an optimal data assimilation technique for a full 3D model such as CATHY
must be done taking into account various and in general conflicting aspects. On the one
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hand it would be desirable to use the more general and performing methods of 4D data
assimilation, while on the other hand numerical complexity and heavy computational burdens
to some extent prohibit implementation of these techniques, especially when using higher
resolution data sets. It is worth noting that even with currently available computational
power, implementation of a full 4D Kalman filter procedure has not yet been achieved in
operational meteorological models, a field where many advances have been made since the
1950s in the field of data assimilation. Even if implementation of an assimilation procedure
based on the KF method were feasible, serious operational limitations would arise for a
catchment scale hydrological model, since the only observations having the necessary spatial
resolution for assimilation are remote sensing data from radar instruments such as SAR. Use
of realistic observational errors corresponding to current SAR configurations, however, have
shown that no benefits could be expected applying a KF-based procedure to the retrieval of
vertical soil moisture profiles in a 1D formulation of the Richards equation model [Hoeben
and Troch 2000].

Although this particular problem could be partially overcome by reducing spatial resolution,
and consequently observation noise, the problem of inadequate sampling frequency remains
unsolved. A reasonable sampling frequency for a soil moisture assimilation would be daily
satellite images, or weekly images for drier climates. This level of sampling has yet to be
applied in hydrology, where at best tandem or single-pass monthly SAR data has been used.

From a comparative and extensive analysis between various data assimilation procedures ap-
plied to a simplified hydrological model at catchment scale Houser et al. [1998] have concluded
that as the complexity of the data assimilation model increases, the assimilated data sets must
necessarily be reduced to maintain computational feasibility. In practice less sophisticated
data assimilation methods (such as statistical interpolation) applied to dense data sets can
extract similar information.

In consideration of these aspects we selected the nudging technique as a first implementation
of data assimilation for the CATHY model, since it possesses some of the advantages of 4D
data assimilation while remaining relatively simple to implement numerically.

4.2 Nudging module

Implementation of the nudging term to be added to the tendency of CATHY model equa-
tions is quite simple and is made here following equation (11). First the observation points
are located within tetrahedral elements. The model estimates are then interpolated to the
observation points using the P1 (first-order polynomial) basis functions of the finite element
discretization of the CATHY model. This interpolation of model estimates, made within a
single elemental unit of the finite element grid, is clearly not influenced by the interpolation
properties of the weighting function.

Once G, W, and € have been specified the local contribution to the nudging term is evaluated
as specified in equation (9) for all the nodes of the mesh. In this way information can
be advected between adjacent tetrahedra and within the single tetrahedra by the specified
weighting functions.

To be used in a finite element formulation of the problem this term must be evaluated in
“weak form”. Multiplying it by the test function and integrating within single tetrahedras ¢;
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we obtain the contribution to be added to the model equations:

/t‘ N(r,t)yw(r)dr = L=t Nilry, 1) ]Zi(rk’ 2 (56)

where r; are the positions of the nodes of tetrahedra t;.

In the absence of detailed field studies on the spatio-temporal correlation structure of soil
moisture, as mentioned previously, we have implemented for the nudging module the time
and space weighting functions of Stauffer and Seaman [1990] as used by Houser et al. [1998].
It will be important to assess the sensitivity of the model to the weighting functions, and,
in conjunction with ongoing and future hydrological field campaigns, encourage the determi-
nation of weighting functions of a form that is as consistent as possible with soil moisture
dynamics.

We assume that the horizontal, vertical, and temporal dependence of the 4D weighting func-
tion can be separated: W(r,t) = W(z,y)W(2)W(t). Defining a horizontal radius of influence
R, the Cressman-type horizontal weighting function is

R2 D2
Wi(z,y)= )T <D<R (57)
Wi(z,y)=0 D>R (58)

while the vertical function is specified as

|2, — 2|

W(z)=1- 7

|ZO_Z| S Rz (59)

Wi(z)=0 |zo — 2| > R. (60)

where R is the vertical radius of influence and z, the vertical coordinate of the observation
point. If, for the linear temporal weighting function a centered time of influence is chosen,

we have
wi(t) = 1 |t—to|<% (61)
(=t =1t T
t UZR—%l Lot < 9
i) L T <l-tl<n (62
W) = 0 [t —t,| > 7 (63)

where 7 is the half period of a pre-defined time influence window (i.e., 7 = #,/2 when the
assimilation time ¢, is centered with respect to the time of observation).

5 Future work

The nudging algorithm developed above will be implemented in the next phase of the project,
and some first numerical aspects that will be investigated include:

o Whether there are any differences (and pros/cons) of formulating nudging (and the
Richards equation itself) in pressure head or moisture content form;
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e The handling of the weighting (interpolation) in time and the implications of this for
the dynamic time stepping that is an important feature of the model;

o Whether to evaluate the nudging term at time level k or k + v (see equation (43)).

Subsequent testing will be devoted to assessing various features of the algorithm and in
particular the many factors which can effect the numerical and physical performance of the
assimilation model:

¢ How does the nudging term impact mass conservation?;

o How does the nudging term (in particular the size of the G coefficient?) impact numer-
ical stability?;

e How does this term affect convergence of the linearization (Picard, Newton) scheme?
Does it behave as a relaxation term?;

o Is the surface boundary condition “switching” component of the model, already quite
sensitive to changes in potential fluxes and surface saturation events, made even more
so by inclusion of data assimilation?;

e Does assimilation of observation data such as surface soil moisture make it necessary to
alter in some way the handling (switching) of boundary conditions based on atmospheric
fluxes and surface pressure and ponding heads?;

e What is the influence of the soil hydraulic properties as represented in the #(1) and
K, (1) families of curves on the performance of data assimilation?;

o Are special considerations needed for the coupling between the surface and subsurface
modules?;

e CPU aspects (especially with a view to implementation of more sophisticated or optimal
data assimilation schemes).

Ultimately these tests will provide some feeling for how to proceed with extensions of the
nudging scheme or with more sophisticated data assimilation algorithms for the CATHY
model, such as Kalman filtering or a variational method. A simple approach might be to take
an existing one-dimensional (vertical) implementation of Kalman filtering, such as the one
presented by Hoeben and Troch[2000] based on a finite difference flow model, and apply it in an
“offline” mode at each time and spatial location where a new observation is available. The set
of “one-dimensional profiles” thus generated can then be spatially integrated or statistically
interpolated to generate an updated three-dimensional field for the CATHY model. Additional
issues relevant to future formulations and implementations for the CATHY model include:

e The differences, if any, in assimilating observation data at points corresponding to
surface vs internal observation nodes of the three-dimensional model domain;

e Similarly, differences in assimilation of remote sensing vs ground data (including con-
siderations regarding regularly-spaced vs irregular data);
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e For assimilation of soil moisture observation data, reliable estimation or mapping of
variables beyond soil moisture and water table distributions, such as surface satura-
tion, variable source areas (partial contributing areas), discharge and recharge zones,
soil parameters related to texture and permeability, and detection of conditions control-
ling the switching from atmosphere-controlled (stage-one) to soil-limited (stage-two)
evaporation [Salvucci 1997];

e lor soil moisture from active microwave synthetic aperture radar (SAR) satellites, the
possibility of using raw backscattering values directly rather than retrieved soil moisture
values in the data assimilation algorithms. That is, avoid the costly and complex soil
moisture “inversion” step in the SAR data processing of the observation data by using
instead the “forward” mode of the soil moisture-backscatter model on the CATHY-

stmulated soil moisture values instead;

o More generally, should hydrologic models evolve so that they are formulated using
parameters that can be directly measured or observed from remote sensing instruments?;

e Assimilation of observed state variables other than soil moisture.

As a means of conditioning model performance on available data, data assimilation has links
to methodologies currently being advanced for addressing problems of model calibration and
parameter estimation (or more generally inverse problems), and these links will also need to
be explored in more detail. One notable difference between inverse and assimilation problems
is that the former are generally used to provide an estimation of lumped or “effective” model
parameters, whereas data assimilation provides a spatial distribution of a state variable.
But this and other distinctions are becoming blurrier as more sophisticated, “automatic”
calibration algorithms are being introduced based on optimal control theory and estimation
and variational principles similar to those used in data assimilation techniques.

Future developments on the model front includes continued evolution of the CATHY model to
handle processes not yet accounted for (preferential flow, hysteresis, two-phase flow, vegeta-
tion, energy balance) as well as improved outputs, more accurate calculation of groundwater
velocities, and faster execution (including parallelization of the model based on subcatchment
or hillslope partitioning of a catchment).
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