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1 Introduction1.1 OverviewWater-related directives emanating from the European Union increasingly emphasize thehydrological catchment as the fundamental organizational unit for integrated planning andmanagement of surface and subsurface freshwater resources. Continued progress in our scien-ti�c understanding of hydrological processes at the catchment scale relies on making the bestpossible use of advanced simulation models and the large amounts of environmental data thatare increasingly being made available. Processes at the interface between the land surface andthe atmosphere, for instance, determine the partitioning of rainfall into in�ltration and runo�and the redistribution of water between the surface, soil, underlying aquifers, and streams.Understanding and predicting these exchanges is important to agriculture (irrigation plan-ning and vegetation and crop growth), climate studies (weather prediction and global change),natural hazards prevention and mitigation (oods, droughts, erosion, landslides), and waterquality management (point and nonpoint source pollutants in catchment and stream waters).Demographic and land use changes, in turn, can e�ect the rainfall-runo� response of a riverbasin, and these impacts, which can have grave socio-economic consequences, are di�cult toassess without reliable data and simulation models.A wide variety of distributed hydrological models has been developed over the past decades,ranging from simple empirical equations that can be solved analytically to complex systemsof partial di�erential equations that require sophisticated numerical algorithms and powerfulcomputers. The common feature of distributed models is that they can incorporate the spa-tial distribution of various inputs and boundary conditions, such as topography, vegetation,land use, soil characteristics, rainfall, and evaporation, and produce spatially detailed outputssuch as soil moisture �elds, water table positions, groundwater uxes, and surface saturationpatterns. A major factor contributing to the popularity of the distributed modeling approachis the availability of digital terrain data, and GIS-based algorithms for extraction of hydrolog-ically relevant information from this data. One of the major problems plaguing distributedmodeling is parameter identi�ability, owing to a mismatch between model complexity andthe level of data which is available to parameterize, initialize, and calibrate models, and touncertainty and error in both models and observation data. One outcome of this is that mostmodels have not yet been validated in all their detail.New data sources for observation of hydrological processes however can alleviate some of theproblems facing the validation and operational use of hydrological models. In situ or ground-based measurement has become more feasible with the advent of simpler and cheaper sensors,gauges, and loggers, while satellite and airborne remote sensing has begun to ful�ll some ofits potential for hydrological applications, allowing monitoring and measurement of rainfall,snow, soil moisture, vegetation, surface roughness, and land cover over large areas. In situand remote measurement techniques are complementary, the one o�ering high temporal detailand the other �ne spatial resolution.Modeling and observation of soil moisture will be a particular focus of the study undertakenhere as part of the EU-�nanced DAUFIN project (Data assimilation within a unifying mod-eling framework for improved river basin water resources management). The importance ofsurface soil moisture in hydrometeorology and agriculture is such that the study of its spatialand temporal variability continues to receive a lot of attention. One of the main developments3



to this end has been the deployment of active and passive microwave remote sensing instru-ments to measure soil moisture at basin and regional scales, although additional progress isneeded before accurate moisture mapping becomes a reality. As this goal is neared, however,the combined use of models and remotely sensed soil moisture data is being proposed toaddress the important problem of inferring soil moisture information for the deeper layers ofthe soil pro�le, beyond the 5-20 centimeters directly detectable by remote sensors.1.2 Objectives of the studyThe main objectives of the DAUFIN project are:� To develop a unifying modeling framework applicable at the catchment scale and basedon rigorous conservation equations for the study of hydrological processes in the streamchannel, land surface, soil, and groundwater components of a river basin;� To implement data assimilation methodologies within this modeling framework and forother control models to enable the optimal use of remote sensing, ground-based, andsimulation data;� To test and apply the models and the data assimilation methods at various catchmentscales, including hillslopes and subcatchments of the of the Ourthe watershed in Belgiumand the entire Meuse river basin, one of the major basins in Europe with a drainagearea of 33 000 km2 that comprises the Ourthe.In general terms, geophysical data assimilation is a quantitative, objective method to infer thestate of the earth-atmosphere-ocean system from heterogeneous, irregularly distributed, andtemporally inconsistent observational data with di�ering accuracies [U. S. National ResearchCouncil 1991]. It represents a formal methodology to integrate these data with simulationmodels to provide physically consistent estimates of spatially distributed environmental vari-ables, providing at the same time more reliable information about prediction uncertainty inmodel forecasts. In operational systems where observation data is available on a routinebasis at regular intervals, data assimilation is an important tool in assessing data quality,identifying for instance any biases or systematic errors in satellite-based sensors.In terms of the DAUFIN project, where some �rst attempts at adopting data assimilationtechniques for catchment scale hydrological applications are being undertaken, one aim isto show how these techniques are able to add value with respect to stand-alone data andmodel predictions, for instance as applied to the problem of soil moisture pro�le estimation.In particular in our study a physically-based catchment hydrologic model, CATHY [Bixioet al. 2000], will form the basis for the formulation and implementation of a simple dataassimilation scheme. In the longer term it is hoped that data assimilation will lead to, forthis restricted application and in more general cases, improved models and parameterizations(including initial and surface boundary conditions), a more e�ective framework for hypothesistesting and scenario analyses, better data sampling strategies as the characteristics of di�erentdata sources become incorporated into the modeling framework, and ultimately improvedpredictions and model predictability. 4



1.3 Data assimilation in hydrologyData assimilation is by now routinely used in research and operational meteorology, althoughmany scienti�c challenges remain for improving and extending existing methodologies [U. S.National Research Council 1991]. More recently, data assimilation is being introduced in theoceanographical and hydrological sciences, owing to the trend towards better and more regularobservation of a wide range of parameters of interest to the Earth sciences, beyond those tra-ditionally used in numerical weather prediction, and to the need, in addressing global changeand other environmental problems, for both longer-range and more local forecasting. Thisneed arises where ocean { land surface { atmosphere exchange processes play an importantrole and where there are inadequacies in the simple spatial integration or upscaling methodscurrently used to derive, from hydrological models representative of processes at the smallscale of a vertical soil column, �eld plot, or small watershed, land surface parameterizationsfor climate models operating at scales of several hundred kilometers.Although there are many spatially distributed models in hydrology which could provide a ba-sis for data assimilation [McLaughlin 1995], the most advanced domain of application, to theextent that global model-assimilated datasets are currently being generated, is atmospherichydrology, due to the important role this \fast component" of the global hydrological cycleplays in weather forecasting. In other domains, early applications of data assimilation inhydrology, reviewed in a later section, have concentrated on how to incorporate into mod-els information from some of the new remote sensors, often based on synthetic experiments,and on assessing available data assimilation methodologies. It is still premature to see \re-sults" (in terms of models being validated or observations being corrected) out of currentimplementations of data assimilation in hydrological models.One aspect that may hinder initial attempts at producing such results is incomplete knowledgeof the spatial and temporal variability of important hydrological processes and state variablessuch as soil moisture, rainfall, evapotranspiration, and hydraulic conductivity. Adequatecharacterization of this variability is needed in the measurement equations or interpolationand extrapolation formulas used in many data assimilation schemes. For soil moisture, forexample, widely varying correlation lengths have been reported in the literature, rangingfrom 1 to 1000 m, and it is questionable whether even at the hillslope scale one can speakof a unique and �xed (in space and time) correlation length, due to diurnal and seasonalcycles and topographic and geomorphologic factors that inuence the wetness of a soil. Onthe other hand, with improvements in model and data quality arising from data assimilationand other advances, progress can be expected in turn in our understanding of the dynamicsand interactions responsible for the spatial patterns we observe in runo�, water table levels,and other components of the catchment scale water balance and, at larger scales, for thegeneration and persistence of oods, droughts, etc on seasonal and interannual bases.1.4 Data assimilation in the CATHY modelThe CATHY (CATchment HYdrological) model, a coupled overland and subsurface owmodel, is physically-based (or process-based) in the sense that its underlying equations arederived from �rst principles and represent as complete a description as possible of the un-derlying physics of water ow, within the limits of the processes and observations of interest.The main processes not accounted for in the current version of the model are preferential5



(macropore) ow, a separate air phase in the unsaturated zone, hysteresis in the soil hy-draulic properties, and explicit modeling of vegetation (transpiration and root-water uptake).The model simulates the dynamics of catchment ow processes in a consistent manner basedon conservation principles, and so is a good candidate for data assimilation. Indeed dataassimilation is one means of addressing an oft-cited drawback of distributed, data-intensivemodels such as CATHY, that of requiring more data than is readily or accurately available.Until this data limitation, related to the high degree of heterogeneity found in catchmentproperties, is overcome, and the computational costs of running detailed three-dimensionalmodels for large basins become less prohibitive, a model such as CATHY will normally berestricted to hillslopes and small catchments.Other features that make the model appealing for data assimilation include its coupled nature,handling in a uni�ed manner all the mechanisms of rainfall-runo� partititioning and stream-ow generation where other models treat these processes as separate components and in amore ad hoc manner. This applies, for instance, to the distinction between in�ltration excessand saturation excess overland ow and to the dynamics of storm vs interstorm catchmentresponse. The model readily produces detailed primary (pressure head) and derived (mois-ture content, integrated measures of soil water, surface saturations, water table positions,groundwater velocities, surface water uxes) output �elds at selected times that can be usedfor comparison against, and integration with, observation data in an assimilation context. Inaddition, hydrograph output from the model (typically at the catchment outlet node) givesthe spatially integrated response of the basin to potential and actual atmospheric forcings;this is the time series traditionally used for calibration of hydrologic models. One consider-ation to bear in mind concerning the CATHY model is possible additional complexities inimplementing sophisticated data assimilation algorithms for a three-dimensional �nite ele-ment model such as this, as opposed to the one-dimensional �nite di�erence implementationsmost commonly found in the hydrological literature to date (see Section 2.4).The CATHY model is one of the control models to be used in the DAUFIN project for testingand validating the various algorithms and hypotheses within the uni�ed modeling and dataassimilation framework to be developed. Issues of consistency, accuracy, and computationale�ciency are especially important given the limited possibility there will be to conduct ex-tensive �eld tests in the pilot phase of the project. Outputs and implementation details tobe intercompared and assessed will concentrate on distributed water table and soil moistureresponse and the representation and handling of exchange terms (mass uxes) between soiland aquifer and between subsurface (saturated and unsaturated) and surface (overland andchannel ow).Some fairly simple data assimilation algorithms will be implemented as �rst trials for theCATHY model, with more advanced methods that allow incorporation of model and datauncertainty in an optimal sense reserved for future research. Given the data scarcity in hy-drology described earlier and the exibility of the CATHY model to generate various output�elds, the more immediate interest is for a data assimilation formulation that can systemati-cally combine information from di�erent observation sources, both satellite and ground-based,and is not restricted to a single data source by the measurement error models embedded inmore advanced assimilation methodologies. The primary focus, as already mentioned, willbe on soil moisture, soil pro�le estimation, and, given the three-dimensional nature of themodel, incorporation of oft-neglected lateral subsurface ow and other e�ects to yield reliableestimates of four-dimensional soil moisture distributions (in space and time).6



2 Review of data assimilation techniques and applicationsData assimilation in the geophysical sciences refers to a methodology to estimate in a physi-cally consistent way the state of a given physical system using observations. In general thisis accomplished, in a optimal way, using also some prior knowledge of the system such asclimatology and error covariance of the model and of the observations. With reference to theaims of the DAUFIN project we are interested in all those methodologies that are able toimprove the predictive skill of a hydrological model \including", in the physical state of thesimulation model, scattered measures of various kinds (satellite, in situ, indirect measures,etc.). Besides providing a better estimate of the initial condition of the system state, a gen-eral procedure of data assimilation should be able to assimilate measurements during modelsimulation every time new observations are available (four-dimensional data assimilation). Inthis section we will describe the more commonly used data assimilation techniques startingfrom the simplest one, and following a brief review of data assimilation in meteorology andhydrology we will describe applications to the problem of the estimation of soil moisture usinga catchment scale hydrological model.2.1 Sub-optimal data assimilation methods2.1.1 Direct insertionIf during the model integration some measure or indirect estimate of the state variable so isavailable at position ri, this estimate is simply substituted for the corresponding variable sof the model: s(ri) = so(ri) (1)Although of trivial implementation this procedure is of little, if any, utility. In fact, dueto dynamical inconsistency with the model solution, the introduction of observations intothe model generates as a side e�ect non-physical noise that quickly propagates from theinsertion point to the entire integration domain, usually rendering the solutions physicallyinconsistent and sometimes even producing model instabilities. Another major drawback isthat observations must be given at the same location as model nodes so the spreading ofinformation can be achieved only via model physics advection, and therefore slowly.2.1.2 Statistical correctionSince, in general, model estimates are a�ected by systematic and not negligible errors, priorknowledge of the system statistics obtained by observations can be used to adjust the meanvalue and standard deviation of the model (s; �) to that of the measures (so; �o).First the standard deviation is adjusted re-de�ning \a posteriori" the model state estimationon all the domain grid points ri: s0(ri) = �o� s(ri) (2)Mean values of the model estimates can be then adjusteds00(ri) = s0(ri)� (s0 � so) (3)7



where s0 is the mean value of the estimate (2). This technique, although simple to implement,makes use of an important concept common to all the more sophisticated data assimilationprocedures, that is, the use of the observation statistics to assimilate data in a more consistentand physical way. On the other hand the method implicitly assumes that the statistics havezero bias and that spatial patterns of model estimates are correct but biased. Also, as withdirect insertion, advection of information can be accomplished only via model physics.2.1.3 Statistical and optimal interpolation or analysisContemporaneous use of data and model statistics can be accomplished, and problems relatedto non-correspondence of model and observation points avoided, using the technique knownas statistical interpolation (SI).Suppose we want to assimilate the observations so to establish a better initial condition forour model, knowing an initial estimate of the same �eld sb (known also as �rst guess orbackground �eld). sb reects our prior and imperfect knowledge of the system and dependingon the problem at hand, can be identi�ed, for example, with the climatology or with a priorintegration of the model. The fundamental idea behind SI is the estimate of the \optimalstate" sa (generally known as \analysis") that is at a minimum distance both from observationand �rst guess. This can be done in a mathematical way minimizing a quadratic cost functionthat in matricial form reads asJ(sa) = 12 n(sa � so)TO�1(sa � so) + (sa � sb)TB�1(sa � so)o (4)where O and B are the covariance matrices of the observation and background error, super-script T denotes transposition, and the s are column vectors. Minimizing the �rst variationof this functional with respect to the analysis, we obtain0 = @J@sa = O�1(sa � so) + B�1(sa � sb) (5)In explicit matrix form, solutions of the previous problem are of the formsa(ri) = so(ri) + LXk=1Wik [so(rk)� sb(rk)] (6)where L is the number of measures and the weight matrixW is obtained by solving the systemof linear equations Wi = Bi(B + O)�1 (7)where Wi is the ith column of the matrix W .If the estimates of covariance matrices B and O are exact then the interpolation is said tobe optimal, meaning that in this case the variance of the analysis is really a minimum. Morereasonably we can think that only estimates of B and O are known and for this reason thistechnique is known as statistical interpolation.The minimization of the functional (4) has been performed here taking implicitly the numberand position of measures equal to that of the grid model nodes. If this is not the caseequation (6) remains formally identical but in this case Bi are the column vectors containingthe covariance between the background error at the ith analysis grid point and the backgrounderror estimate at every observation point. 8



Observations information is in this case propagated (advected) implicity through the covari-ances matrices B;O and bene�ts of the inizialitions, also where observations are not available,can be obtained from the beginning of the model integration.2.1.4 Newtonian relaxation or nudgingThe procedures of assimilation considered to this point do not have any explicit time depen-dence (for the SI procedure however if the background state is derived by a model simulationthis time dependence exists implicitly). Depending on the problem at hand, the analysis ofthe system obtained via these procedures is not suitable to be used as initial conditions of themodel (see for example the discussion on meteorology in Section 2.3). In these cases spaceand time dependence must be considered together and explicitly in the assimilation process(four-dimensional data assimilation).Nudging is the simplest 4D data assimilation procedure. In this procedure model variablesare driven toward observations adding to the forcing F of the model equation@s@t = F (s) (8)an additional term with the aim to relax the actual model state to the observed one. Thisrelaxation term is taken to be active for a certain period of time ta, called assimilation time,preceding the observation time to. After observation time is reached this term is relaxed(made zero) and the model equation is integrated in its original form1. The main objective isto obtain, at least partially, a dynamical consistency between measured data and numericalsolution of the model. This should avoid introduction of non-physical noise, typical of directinsertion, and assure at the same time an improvement of the variable estimate.In practice during the assimilation time the model equation is integrated adding a termproportional to the di�erence between the model solution and the observed state of thesystem (the so-called \nudging term") to the physical forcing term F (s). In general we canwrite @s@t = F (s) +GW (r; t)�(r)(s0o� s) (9)where s0o are the observation interpolated to the model grid, G determines the relative strengthof the nudging term with respect to the physical forcing term, W (r; t) are weights to bespeci�ed (see Section 4.2), and � � 1 is a factor measuring the accuracy of the observationthat if we assume perfect measures should be taken equal to 1.To understand some of the features of the nudging technique let us consider a limiting casethat can be solved analytically. We assume the physical forcing term of the system equationto be zero, � = 1, and the observed state so and the product of the nudging factor with theweighting function to be constant. In this case a general solution of equation (9) iss(t) = so + e�GWt(s(t0)� so) (10)with t0 = to� ta. This equation shows that even in the case where the analysis quality factor� is equal to 1 the \nudged" solution reaches the observed state only if the assimilation timeis in�nite.1Some authors argue that the assimilation time must be centered with respect to the time of observation,thus retaining the nudging term also after the observation time is reached. In this case ta can be interpretedas a time of inuence or correlation between the observations and the model state.9



Since measures are taken at discrete points, to be of practical use the continuum form of thenudging term in equation (9) must be discretized. This can be done in a general way allowingthe system equation to be relaxed to individual scattered observations. To do this we �rstinterpolate the model grid values to the observation points ri (forward interpolation), thenbackward to the model grid including this last step in the nudging term. A useful form thatis generally given to equation (9) is@s@t = F (s; r; t) +GWM(r; t)PLi=1W (ri; t)�(ri)(s0o(ri)� s(ri))PLi=1W (ri; t) (11)where WM(ri; t) is the maximum weight for any single observation. Factorization of this termprevents the nudging algorithm from giving too much relative weight to closely located obser-vations (not much new information is really added in this case) with respect to measures thatare farther apart. To further reduce this kind of problem backward and forward interpolationrequired by the algorithm should be performed taking steps similar to those used in the SIprocedure for trying to obtain an \optimal a posteriori estimate" of weight coe�cients. Inoperational practice however the weight matrix is generally set a priori. This considerationsuggests that particular care must be paid to the choice of weighting function in order for thenudging technique to be of real e�ectiveness.2.2 Optimal data assimilation methods2.2.1 4D variational data assimilationThe idea beyond these methods is that of minimizing, using the variational method, the di�er-ence between a temporal series of objective analysis of measured data and the correspondingtime series simulated by the model. The aim is to obtain a state of the system closest aspossible to observation but also dynamically consistent with the model equation over theassimilation time. Since the technique is quite general and can be implemented in many waysfor the same problem (imposing the model as a strong or weak constraint, for example) wewill introduce here the technique in its basic form without reference to any speci�c imple-mentation. A more general formulation that has been applied to a case study of hydrologicalproblems at large scale can be found in Reichle et al. [2000].To preserve generality and to show the applicability of the procedure also to nonlinear prob-lems we will use here explicit functional notation. Suppose M is a di�erentiable operator (ingeneral nonlinear) relating the state variable s to an observation oo(t) =M [s(t)] (12)M , known as the measurement prediction operator, will also provide, in general, interpolationfrom the model grid to that of the measures. De�ne Rt as the matrix of observation errorcovariance that can be thought of as the sum of the covariance of instrument errors (matrix Oof equation (4)) and the covariance of representiveness error due both to errors in interpolationand errors of the measurement prediction operator itself.We introduce the following functional sum of a least-squares performance measure plus a termintroducing the Lagrange multipliers:I(s) + J(s; �) = Z ta0 f[o(t)�M [s(t)]]TR�1t [o(t)�M [s(t)]] + 2�(@s@t � F )gdt (13)10



In this expression the �rst term is proportional to the di�erence between the time seriesof measurements and the prediction of the model during the entire assimilation time ta,normalized with the covariance of observation error, and the second term assures dynamicalconsistence of the solution.Minimizing the �rst variation of this functional we have�@�@t = STt �+MTt R�1[o�M(s)] �(ta); �(0) = 0 (14)@s@t = F (s) s(0) = sa (15)where St = [@F@s ] andMt = [@M@s ] are the Jacobian matrices of partial derivatives of the systemequation and of the measurement operator. The explicit time index for these linear operators(matrices) is mandatory because they are no longer independent of s and must be re-evaluatedafter each time step during integration.The algorithm de�ned by equations (14){(15) works as follows: �rst the system equation issolved starting from one reasonable, but arbitrary, initial condition s(0). The time series s(t)is then used to solve the \adjoint equation" for � using reverse time to obtain �(0) subjectto initial value �(ta) = 0. In general, this \�rst guess" value of � will not satisfy the naturalboundary condition �(0) = 0. Nevertheless, it can be used iteratively in a descent algorithmto �nd the initial condition s(0) = sa that satis�es the natural boundary condition �(0) = 0and minimizes the whole functional (13).2.2.2 Extended Kalman �lteringWith the development in the last two decades of various remote sensing techniques (fromsatellites but also from ground instruments), increasing amounts of data, inhomogenous inboth type and spatio-temporal resolution, are available to be assimilated in models relatedto enviromental sciences. To meet this challenge new approaches have been devised in whichdata can be assimilated continuously as they become available, and at any moment of theoperational chain an analysis usable as optimal initial conditions for the simulation can bereleased.One technique by means of which continuous data assimilation can be implemented in anelegant and powerful manner is the Kalman �lter (KF) procedure [Daley 1991]. KF has beenvariously applied to signal processing and other �elds and is used for example to determine,and continuously correct, orbital parameters of satellites. To present the methodology as sim-ply as possible we will suppose the model and measurement operators to be linear. It shouldbe stressed however that the procedure is powerful enough to be applied to the nonlinear casemaking considerations similar to those used in 4D variational assimilation.One fundamental assumption to derive the KF algorithm is to admit our model to be randomlyperturbed. We write then the stochastic version of the linearized system equation discretizedin time as: ŝt+1 = Stŝt + �mt (16)which evolves the true status ŝ of the system at time t to time t + 1 except for an unbiasedand uncorrelated error in time due to model imperfection. De�ning the error of the analysis11



(observation error) �at = sat � ŝt and because by de�nitionst+1 = Stsat (17)we have for the error of the model estimates�t+1 = St�at � �mt : (18)Multiplying on the right this last expression by �Tt+1 and applying the expectation operatorwe obtain Pt+1 = StP at STt +Qt (19)where Pt+1 is the covariance error matrix of the model, P at is the covariance of the analysiserror, and Qt is the covariance matrix of the model error. Equations (17) and (19) are thepredictive part of the algorithm. The other three equations needed to close the algorithmare obtained minimizing a cost function such as that used to obtain the SI equations. Inparticular we can introduce the functionalJ = 12f[ot �Mtsat ]TR�1[ot �Mtsat ] + [st � sat ]TP�1t [st � sat ]g (20)where, as before, R is the error covariance of the measurement operator. Minimizing withrespect to the analysis we getsat � st = Kt[o�Mtst] (21)Kt = PtMTt [Rt +MtPtMTt ]�1 (22)P at = [I �KtMt]Pt (23)where [ot �Mtst] is the observational increment or innovation vector, Kt is the gain matrix,[sat � st] is the analysis increment, Rt the covariance error matrix of observations, and theother symbols are as de�ned in a previous section.KF contains as particular cases direct insertion when only equation (17) is used, sat beingin this case the interpolated �eld, and statistical interpolation when P is estimated a prioriin some way and only the three equations (22), (21), and (17) are used. In this last caseequation (23) can be used to diagnose the covariance error of the analysis from that of theestimate.2.3 Meteorological perspectiveUntil the middle of the 20th century the state of the atmosphere was diagnosed using manualand subjective techniques. Drastic changes were introduced with the rapid increase of com-putational resources and with the complexity and the amount of atmospheric data collectedevery day all over the globe and from various and inhomogeneous sources (radiosoundings,satellites, radars, in situ measurements, etc). Since then, techniques of data assimilation havehad, in meteorology more than in other enviromental sciences, great developments. This isdue to the fact that meteorological forecasts are subject to a continuous validation by directcomparison with data from the global meteorological observation network, and by virtue ofthe fact that such forecasts have a great social and economic impact and thus national au-thorities have allocated substantial resources aimed at improving the accuracy and skill ofmeteorological forecasts. 12



Besides the great spatial and temporal variability of the observational network, to understanddata assimilation in meteorology and its peculiarities it is necessary to give some details aboutthe atmospheric system and the equations used to simulate it. Almost all of the numericalweather prediction centres in the world use, to solve the atmospheric problem, the so-calledprimitive equations which include the two-component (u; v) equations of the horizontal mo-tion, the hydrostatic law for the vertical component, the �rst law of thermodynamics for thepotential temperature (�), the gas equation state for density and pressure (�; p), and theconservation of mass and moisture equations for speci�c humidity (q). The solution of theseequations are characterized by two di�erent time scales:�1 = f�1 � 104 s < 3 h �2 = LHVH � 106m10m=s = 105 s > 1 day (24)where f is the Coriolis parameter and VH and LH are the charateristic horizontal velocity andlength scales. Motions of primary importance in meteorology are the midlatitude perturba-tions that have horizontal scales of order 106 m, last 1 day or more, and are clearly forced bythe diurnal cycle (Rossby wave scale). At the spatial scale of 104 m the motion �eld (u; v) andthe mass �eld (�; q; �) can be in not perfect balance. If this happens perturbations that lasta few hours, and propagate much faster than Rossby waves, can be excited. These motions,with time scale < O(�1), are known as inertial gravity waves. Power spectra analysis for me-teorological observation shows that the bulk of the energy in the atmosphere is con�ned to theRossby wave scale, indicating that most of the time the atmosphere is in a \balanced state".So, if initial conditions (analysis) used to forecast the future state of the atmosphere is notdynamically consistent with the model equations, spurious gravity waves are excited that canstrongly a�ect the quality of the simulation. To eliminate these non-physical high frequencywaves from the model integration two di�erent approaches were proposed by Charney [1947]:� Integrate a model that doesn't permit propagation of inertia-gravity waves. This so-lution is clearly the simplest and far less CPU-intensive, but gives forecasts of limitedpotential skill.� Integrate the primitive equations model but using as initial conditions a state thatdoesn't excite gravity waves.For the �rst numerical weather prediction (NWP) models, in the late 40s, the �rst solutionwas the only feasible one, and as initialization procedure the optimal analysis (OA) methodwas used. The old data assimilation cycle could be schematized with the following threecomponents:� collection and validation of observations;� short forecast to obtain background or �rst guess �elds;� analysis (OA).When computer power increased, in the mid 50s, and operational forecasts based on theprimitive equations were made possible, the problem of data assimilation gradually moved tothe more complex component cited in the second item above. With the use of the primitiveequations another step had to be added, known as initialization. Initialization is a numer-ical process by means of which high frequency noise in the analysis is �ltered out. Variousprocedures have been used for this purpose. 13



The simplest initialization procedure consists of disregarding the �rst few hours (typically6 hours) of time of forecast, during which non-physical noise is dissipated by the model dy-namics itself. This solution is generally adopted by national and regional meteorologicalservices to initialize limited area models (LAMs). To obtain optimal forecasts with generalcirculation models (GCMs), on the other hand, increasingly complex initialization proce-dures have been devised, such as QG initialization, linear and nonlinear balance equations,procedures based on the solution of some variational problem subject to various dynamicalconstraints, and the most widely used, normal model initialization.The explanation of these procedures is beyond the scope of this brief review although some ofthese are not very complex to understand. For example in the dynamic initialization procedurethe model itself is used for the initialization, executing alternatively forward and backwardtime stepping with high frequency damping properties. In this way an initial condition freeof gravity waves can be obtained that is fully consistent with model dynamics.All of these procedures, however, su�er in principle a serious limitation because are all basedon a static principle. When asynoptic satellite remote sensing data became available to beassimilated in a meteorological model, in the late 60s, a very di�erent approach to the problemof analysis and initialization became possible/necessary: continuos data assimilation. Sincethen, assimilation methods based on 3D or hopefully 4D variational procedures are used or aregoing to be used. The ideal technique for meteorological applications would be the Kalman�lter procedure but the great amount of computational e�ort needed to multiply and invertmatrices in equation (22) makes this technique currently not feasible.2.4 Recent applications of data assimilation to soil moisture and catchmenthydrologyAlthough relatively new to hydrology, a handful of papers related to data assimilation goback as far as 20 years. Newton et al. [1983] combined a hydrologic model and passivemicrowave soil moisture observations to derive deeper (root-zone) soil moisture estimatesfrom near-surface measurements but were only partially successful due to complications fromtemperature (diurnal variations), surface roughness, vegetation, and soil texture on the signalresponse. Active microwave soil moisture observations from a C band scatterometer wereused by Prevot et al. [1984] in another 1D model application, without data assimilation,using observed surface soil moisture data as an upper boundary condition for a Richardsequation soil water transfer model to improve the accuracy of simulated actual evaporationrates. Bruckler and Witono [1989] later applied similar techniques to soil water balanceestimation.Milly [1986] and Milly and Kabala [1986] introduced the extended Kalman �lter, and hencea data assimilation context, to some of these earlier e�orts to integrate remote sensing dataand hydrologic models for soil moisture pro�le estimation. Entekhabi et al. [1994] took thisapproach further, integrating passive microwave and infrared emitted radiation observationsinto a coupled heat transport and moisture ow model based on Kalman �lter data assimila-tion algorithms. A similar approach but with an application to active microwave soil moisturedata, and so simpler from a modeling point of view since there is no need for a heat transportmodel and a radiative transfer inversion scheme, has been recently presented by Hoeben andTroch [2000]. 14



Away from 1D soil moisture pro�le estimation, hydrologic applications of 3D and 4D data as-similation at the larger scales of catchments and river basins are only very recently appearing.Hostetler and Giorgi [1993] and Georgakakos and Baumer [1996] suggested some of the linkswith climate modeling and the potential bene�ts (as well as problems to be overcome) forhydrology. In coupling a regional climate model (RCM) to a lake model and to a streamowmodel, using the output from the RCM (surface temperature, evaporation, precipitation) todrive the landscape-scale hydrologic models (LSHMs), Hostetler and Giorgi [1993] reportedthat the RCM scale (60 km in this application) is still not �ne enough for hydrologic modeling,especially in complex mountainous terrain. This echoes the problems faced with assimilatingmany types of remote sensing data which are still too coarse-scale for most hydrologic needs.Georgakakos and Baumer [1996], in an overview of past regional and national U.S. soil mois-ture measurement campaigns, propose a data assimilation technique for ground-based soilmoisture and discharge data together with remotely sensed data for estimation of soil watercontent aggregated over large areas. They discuss at length aspects concerning the charac-terization of the spatial and temporal variability of soil water at these scales. The authorssuggest that using basin-average soil water, computed by integrating over drainage basins andover depth in several layers, is a viable approach for large scale hydrometeorologic studies. Atthe smaller SVATS scale (soil-vegetation-atmosphere transfer scheme) Wigneron et al. [1999]applied statistical interpolation and a radiative transfer model together with coupled moistureand heat di�usion equations to assimilate ground-measured surface soil moisture data in ane�ort to de�ne the requirements for the eventual use of passive remotely sensed microwaveobservation data.The 6 years since the publication of a review paper on nascent developments in hydrologicdata assimilation [McLaughlin 1995] have seen increasing research activity on various aspectsof the topic, investigating both appropriate methodologies and potential applications. Houseret al. [1998] provide an assessment of several sub-optimal sequential data assimilation algo-rithms for a distributed conceptual catchment scale water and energy balance model. Liand Islam [1999] present a simple \hard-update" (direct insertion) method for assimilationof passive microwave data using a 1D 4-layer land surface moisture and heat balance modelapplied to a 15� 15 km Kansas prairie �eld site. Perhaps the most ambitious e�ort so far atimplementing data assimilation for hydrologic models is the work of Reichle et al. [2000] andReichle [2000] where a weak constraint variational scheme is used in a Richards equation-basedcoupled moisture and heat transport model intended for passive microwave remote sensingsoil moisture and temperature data. The authors claim that their variational algorithm ismore e�cient than other optimal data assimilation techniques such as KF.A number of recent papers pertaining more to inverse problems for model calibration andparameter estimation suggest that there are strong similarities between this problem andthat of data assimilation, for a�nity of ends (improving the reliability or prediction accuracyof models) as well as means (methodologies that share a number of traits). Cahill et al. [1999]address the upscaling and inverse problem of estimating a large scale hydraulic conductivityfunction from measurements obtained on a small scale, applying an extended Kalman �lterto a 1D Richards equation. In particular the authors explore issues related to estimation ofthe covariance matrix, which is \the most di�cult parameter of the KF algorithm to supply",and other �ne points concerning practical implementation and performance of this algorithm.Senarath et al. [2000] move to a larger scale watershed application and employ the shu�edcomplex evolution method for calibration on a \continuous basis" of a simple hydrologic modelusing soil moisture data. 15



3 The CATHY model3.1 General descriptionPrecipitation uxes during storm events and potential evapotranspiration during interstormperiods are the driving forces of catchment dynamics. The catchment partitions this at-mospheric forcing into surface runo�, groundwater ow, actual evapotranspiration, and changesin storage. Surface runo� involves di�erent phenomena such as hillslope and channel ow andretardation and storage e�ects due to pools and lakes, while groundwater ow includes in�l-tration to and ex�ltration from the vadose zone. The CATHY model simulates these variousprocesses based on a coupling of the Richards equation for variably saturated porous me-dia and a di�usion wave approximation for surface water dynamics. It combines a three-dimensional �nite element subsurface ow module, FLOW3D [Paniconi and Wood 1993;Paniconi and Putti 1994], with a one-dimensional �nite di�erence surface routing module,SURF ROUTE [Orlandini and Rosso 1996]. Hillslope ow is assumed to concentrate in rillsor rivulets, allowing both channel and hillslope ow to be described by a one-dimensionalconvection-di�usion equation. Retardation and storage e�ects due to lakes or depressions arealso implemented, giving a complete description of the catchment ow dynamics.Starting from a DEM (digital elevation model) discretization of the catchment surface anda corresponding three-dimensional grid of the underlying aquifer, atmospheric input (precip-itation and evaporation data) is partitioned into surface and subsurface components by theFLOW3D module. The overland ux values calculated by FLOW3D at the grid nodes aretransferred to the DEM cells and implemented as sink or source terms in the SURF ROUTEmodule, which routes this surface water and calculates the resulting ponding head values thatare in turn used as boundary conditions in FLOW3D.The mathematical model is described by the system of partial di�erential equations [Bixio etal. 2000] �(Sw)@ @t = r � [KsKr(Sw) (r + �z)] + qs(h) (25)@Q@t + ck @Q@s = Dh@2Q@s2 + ckqL(h;  ) (26)where �(Sw) = SwSs + �@Sw@ , Sw( ) is water saturation, Ss is the aquifer speci�c storagecoe�cient, � is porosity,  is pressure head, t is time, r is the gradient operator, Ks isthe saturated hydraulic conductivity tensor, Kr(Sw) is the relative hydraulic conductivityfunction, �z = (0; 0; 1)T, z is the vertical coordinate directed upward, and qs representsdistributed source (positive) or sink (negative) terms (volumetric ow rate per unit volume).The surface water is routed using (26) along each single hillslope or channel link using aone-dimensional coordinate system s de�ned on the drainage network. In this equation, Q isthe discharge along the channel link, ck is the kinematic wave celerity, Dh is the hydraulicdi�usivity, and qL is the inow (positive) or outow (negative) rate from the subsurface intothe cell, i.e., the overland ow rate. We note that qs [L3/L3T] and qL [L3/LT] are bothfunctions of the ponding head h, and that h can be easily derived from the discharge Q viamass balance calculations.This system of equations must be solved simultaneously for the unknown vector (Q; ) or(h;  ). Nonlinearities arise in the Sw( ) and Kr(Sw) characteristic curves in the Richards16



equation, in the nonlinear dependence of qs on the ponding head, and in the nonlinear de-pendence of qL on  .3.2 Subsurface ow moduleFLOW3D is a three-dimensional �nite element model for ow in variably saturated porousmedia, applicable to both the unsaturated and saturated zones. It handles temporally andspatially variable boundary conditions, including seepage faces and atmospheric inputs. Thesoil hydraulic properties are speci�ed by Ks and by families of characteristic (constitutive)relationships Sw( ) and Kr( ) such as those of van Genuchten and Nielsen [1985] or Brooksand Corey [1964]. Those of van Genuchten and Nielsen [1985] can be written as�( ) = �r + (�s � �r)[1 + �]�  < 0�( ) = �s  � 0 (27)Kr( ) = (1 + �)�5=2 [(1 + �) � � ]2  < 0Kr( ) = 1  � 0 (28)where � is the volumetric moisture content, �r is the residual moisture content, �s is thesaturated moisture content (generally equal to the porosity �), � = ( = s)n,  s is the capillaryor air entry pressure head value, n is a constant, and  = 1� 1=n for n approximately in therange 1:25 < n < 6. The corresponding general storage term is� = SwSs + �dSwd (29)where Sw = �=�s and Ss is the speci�c storage.For the treatment of the atmospheric boundary conditions, the input ux values are con-sidered \potential" rainfall or evaporation rates, and the \actual" rates, which depend onthe prevailing ux and pressure head values at the surface, are dynamically calculated bythe code during the simulation. This automatic \switching" of surface boundary conditionsfrom a speci�ed ux (Neumann) to a constant head (Dirichlet) condition, and vice versa, isimplemented to correctly reproduce the physical phenomena occurring at the surface.For example, in the case of precipitation, if a surface node becomes saturated because ofin�ltration excess, the fraction of precipitation that does not in�ltrate and remains at thesurface (ponding head) becomes the overland ow to be routed via the surface module. Theboundary conditions in this case switch from Neumann (atmosphere-controlled) to Dirichlet(soil-controlled) type. If precipitation intensity decreases, so that the magnitude of actual(computed) ux across the soil surface exceeds the magnitude of the atmospheric ux, theboundary condition switches back to a Neumann type. If a surface node becomes saturatedbecause of saturation excess (the water table reaches the surface), and there is an upward uxacross the soil surface (return ow), the overland ow is calculated as the sum of precipitationand return ux. The entire amount of water that remains at the surface or ex�ltrates from thesubsurface is then transferred for routing to the DEM-based surface runo� module (see nextsection), which in turn returns, after surface propagation, the ponding head distribution toFLOW3D. In essence overland ow, de�ned as the ow rate that is present at the surface andthat can be routed via the surface model, is calculated at every time step from the balancebetween potential and actual uxes. 17



3.3 Surface routing moduleThe surface hydrologic response of a catchment is considered as determined by the twoprocesses of hillslope and channel transport, operating across all the hillslopes and streamchannels forming a watershed and including storage and retardation e�ects of pools or lakesand in�ltration/evapotranspiration and ex�ltration e�ects from subsurface soils.3.3.1 Hillslope and channel processesIt is assumed that hillslope ow concentrates in rills or rivulets that form because of topo-graphic irregularities or di�erences in soil erodibility and that deepen and widen during theruno� event as a function of slope, runo� characteristics and soil erodibility. To minimize thecomputational e�ort and economize on the number of model parameters, the rill formationsare lumped at the DEM elemental scale into a single conceptual channel. Each elemental hills-lope rill and network channel is assumed to have bed slope and length that depend on locationwithin the extracted transport network, and a rectangular cross section whose width variesdynamically with discharge according to the scaling properties of stream geometry as de-scribed by the \at-a-station" and \downstream" relationships �rst introduced by Leopold andMaddock [1953]. The distinction between hillslope and channel ow is based on the \constantcritical support area" concept as described by Montgomery and Foufoula-Georgiou [1993].Rill ow is assumed to occur for all those cells for which the upstream drainage area A doesnot exceed the constant threshold value A�, while channel ow is assumed to occur for allthose cells for which A equals or exceeds A�.A routing scheme developed on the basis of the Muskingum-Cunge method with variableparameters is used to describe both hillslope rill and network channel ows, with di�erentdistributions of the Gauckler-Strickler roughness coe�cients to take into account the di�erentprocesses that characterize the two physical phenomena [Orlandini and Rosso 1998]. Themodel sequentially routes surface runo� downstream, from the uppermost DEM cell in thebasin to the outlet, following the previously determined drainage network. A given grid cellwill receive water from its upslope neighbor and discharge it to its downslope neighbor, withthe inow or outow rate qL at any catchment cell given byqL = q�x�y=�s (30)where q is the local contribution to surface runo�, as calculated by FLOW3D, �x and �yare the cell sizes, and �s is the channel length within the cell.3.3.2 Topographic depressionsIsolated topographic depressions (\pits") in the catchment DEM can be attributed to thepresence of pools or lakes, or can be interpreted as erroneous or missing data. Depressionscannot be handled by automatic drainage network extraction procedures, and depitting tech-niques are generally used to modify the elevation values and to regularize the DEM. Whendepressions play an important role in the formation of surface and subsurface uxes these pro-cedures introduce inconsistent ow directions and do not correctly reproduce the storage andretardation/attenuation e�ects of pools and lakes on the catchment response. This typicallyhappens in relatively at areas where ow patterns are strongly inuenced by small slope18
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13 13 13Figure 1: A catchment DEM with elevations (m a.s.l.) (left) and a schematized representation of thecatchment with ow paths as calculated by the \depitting" procedure (right). The interior area of thedepression is displayed in dark grey and the bu�er cells with forced ow directions in light grey. Thereservoir cell is identi�ed by the letter \R", while \O" is the outlet cell.changes. The model therefore incorporates the \lake boundary-following" procedure [Mackayand Band 1998] to isolate and correct for potential breakdown in drainage network extractionwhen natural depressions are present in the DEM.3.4 Surface { subsurface couplingThe explicit in time nature of the Muskingum-Cunge discretization scheme allows the con-struction of the following noniterative algorithm for the solution of equations (25) and (26):for tk = 0 to tmax with step �t do:� solve (26) using qkL as input to the SURF ROUTE model, obtaining Qk+1and from this the distribution of ponding heads hk+1;� use hk+1 and precipitation/evaporation input at time tk+1 to set up boundaryand initial conditions for FLOW3D, and solve (25) for  k+1� calculate (again with FLOW3D) the overland ux qk+1L using  k+1 and thebalance between atmospheric inputs and actual uxes.The algorithm needs to be initialized, and this is done by setting an initial condition in termsof qL for equation (26). If this condition is not known a priori, it can be calculated from19



an initial run of FLOW3D that will evaluate a �rst guess for the overland ow based on theactual atmospheric input. In this case an initial distribution of  needs to be speci�ed.Di�erent time stepping regimes can be used for the surface and subsurface modules, withSURF ROUTE normally taking several time steps within each FLOW3D step. This is reason-able physically since the characteristic time scales of surface runo� and channel ow processesare normally much shorter than those for in�ltration, redistribution, and groundwater ow. Itis also necessary numerically because the explicit time discretization used in SURF ROUTErequires small time steps for stability.The \bookkeeping" for the coupled model is done by the FLOW3D module, which determinesthe current status of each surface node (ponded, saturated, below saturation, air dry) and,knowing for each of these nodes whether the potential atmospheric forcing is positive (rainfall)or negative (evaporation) and, in the case of a Dirichlet boundary condition whether the ac-tual, back-calculated ux represents in�ltration or ex�ltration and also its magnitude relativeto the potential ux, it calculates the overland uxes to be passed to SURF ROUTE, parti-tions the atmospheric and soil surface components of the hydrograph into its various contri-butions (in�ltration, actual evaporation, return ow, direct runo�), and ags any anomalousevents (e.g., in�ltration at a saturated node with evaporative potential ux, surface runo� atan air dry node). The ability to separate this bookkeeping in the CATHY model is convenientin that it makes it possible to avoid complications due to fact that the FLOW3D module isnode-based whereas SURF ROUTE is cell-based. This structural di�erence between the twomodules can also be exploited to perform simple grid upscaling when warranted by computa-tional or physical considerations. More importantly, for implementation of data assimilationin CATHY, the fact that the FLOW3D module handles the logistics implies that adding theforcing term of the nudging technique (or, in future work, implementing other assimilation al-gorithms) will not a�ect the structure of the SURF ROUTE module. Thus in the next sectionit su�ces to describe in detail only the numerical discretization of the FLOW3D component,which will need to be interfaced with the data assimilation module.3.5 Numerical discretization of the subsurface ow moduleWe express equation (25) with a generic source/sink term q.�@ @t = r � [KsKr (r + �z)] + q (31)Initial conditions and Dirichlet, Neumann, or Cauchy boundary conditions are added tocomplete the mathematical formulation of the ow problem. (x; 0) =  o(x) (32) (x; t) =  p(x; t) on �1 (33)v � n = �qn(x; t) on �2 (34)where x = (x; y; z)T is the Cartesian spatial coordinate vector, superscript T is the transposeoperator,  o is the pressure head at time 0,  p is the prescribed pressure head (Dirichletcondition) on boundary �1, n is the outward normal unit vector, and qn is the prescribed ux(Neumann condition) across boundary �2. We use the sign convention of qn positive for aninward ux and negative for an outward ux, consistent with the convention used for qs inequation (25). 20



The �nite element solution approximates the exact solution  by  ̂ using linear basis functionsw(x) de�ned over a domain 
 discretized by E tetrahedral elements and N nodes: �  ̂ = NXj=1  ̂j(t)wj(x) (35)where  ̂j are the components of the nodal solution vector 	̂.Recasting equation (31) in operator notationL( ) = r � [KsKr (r + �z)]� �@ @t + q = 0 (36)the error, or residual, represented by the �nite element approximation (35) is given as L( ̂)�L( ), or simply L( ̂). This error is minimized by imposing an orthogonality constraintbetween the residual and the basis functions, which yields the Galerkin integralZ
 L( ̂)wi(x)d
 = 0 i = 1; : : : ; N (37)We assume that the coordinate directions are parallel to the principal directions of hydraulicanisotropy, so that the o�-diagonal components of the conductivity tensor K are zero. Ex-panding equation (37) and applying Green's lemma to the spatial derivative term we get, fori = 1; : : : ; N � Z
Kr hKs �r ̂ + �z� � rwiid
+ Z�Kr hKs �r ̂ + �z� � niwid�� Z
 �@ ̂@t wid
+ Z
 qwid
 = 0 (38)Substituting equation (35), changing sign, and making use of boundary condition (34) to re-place the boundary integral term above, we obtain the following system of ordinary di�erentialequations H(	̂)	̂+ P (	̂)d	̂dt + q�(	̂) = 0 (39)where hij = EXe=1 ZV eKer �Kesrwej � rwei�dV (40)pij = EXe=1 ZV e �ewejwei dV (41)q�i = EXe=1 "ZV eKerKesz @wei@z dV � ZV e qeweidV � Z�e2 qenweid�# (42)In the above equations, H = fhijg is the ow sti�ness matrix, P = fpijg is the ow mass(or capacity) matrix, q� = fq�i g accounts for the prescribed boundary ux, the withdrawal orinjection rate, and the gravitational gradient term, and Ksz is the vertical component of thesaturated conductivity tensor. Model parameters that are spatially dependent are consideredconstant for each element. Parameters that depend on pressure head are evaluated using  values averaged over each element and are also elementwise constant. Dirichlet boundaryconditions are imposed after the discretized system has been completely assembled.21



Equation (39) is integrated in time by the weighted �nite di�erence scheme �Hk+� + P k+��tk ! 	̂k+1 =  P k+��tk � (1� �)Hk+�! 	̂k � q�k+� (43)where k and k+1 denote the previous and current time levels, �tk is the time step size, andH , P , and q� are evaluated at pressure head 	̂k+� = �	̂k+1 + (1 � �)	̂k. For numericalstability, parameter � must satisfy the condition 0:5 � � � 1.Equation (25) is highly nonlinear due to the pressure head dependencies in the storage andconductivity terms, and is linearized in the code using either Picard or Newton iteration [Pan-iconi and Putti 1994]. Expressing the discretized ow equation (43) asg �	̂k+1� = Hk+�	̂k+� + 1�tk P k+� �	̂k+1 � 	̂k�+ q�k+� = 0 (44)Newton's method can be written asJ(	̂k+1;m)sm = �g(	̂k+1;m) (45)where m is the iteration level, sm = 	̂k+1;m+1 � 	̂k+1;m, and the Jacobian matrix isJij = �Hij + 1�tk Pij +Xs @His@ ̂k+1j  ̂k+�s+ 1�tk Xs @Pis@ ̂k+1j ( ̂k+1s �  ̂ks ) + @q�i@ ̂k+1j (46)The Picard method is usually arrived at by evaluating all nonlinear terms in equation (43) atthe previous iteration level, m, and the linear terms at m+ 1. This yields��Hk+�;m + 1�tk P k+�;m� 	̂k+1;m+1= � 1�tk P k+�;m � (1� �)Hk+�;m� 	̂k � q�k+�;m (47)By simple algebraic manipulation, the above equation can be rearranged to give��Hk+�;m + 1�tk P k+�;m� sm = �g(	̂k+1;m) (48)Comparing (45) and (48), it is apparent that the Picard scheme can be viewed as an ap-proximate Newton method. An important di�erence between the two schemes is that New-ton linearization generates a nonsymmetric system matrix, whereas Picard preserves thesymmetry of the original discretization of the ow equation. Convergence of an iterativescheme can be enhanced by introducing a relaxation (or damping) parameter ! of the form	̂m+1 = 	̂m + !sm.We now write the expressions for the �nite element matrices of the ow equation, using linearbasis functions on tetrahedral elements. The basis function wei for a generic tetrahedron ewith vertices i, j, k, and m is wei = (%i+ &ix+�iy+�iz)=6V e where the volume of the elementis given by V e = 16 ��������� 1 xi yi zi1 xj yj zj1 xk yk zk1 xm ym zm ��������� (49)22



and %i = ������� xj yj zjxk yk zkxm ym zm ������� &i = � ������� 1 yj zj1 yk zk1 ym zm ��������i = ������� 1 xj zj1 xk zk1 xm zm ������� �i = � ������� 1 xj yj1 xk yk1 xm ym ������� (50)We evaluate matrices H and P and vector q� of equations (40){(42). The ijth element ofmatrix H is given by hij =PEe=1 heij whereheij = ZV e Ker �Kesrwej � rwei�dV= ZV e Ker �Kesx &j6V e &i6V e +Kesy �j6V e �i6V e +Kesz �j6V e �i6V e�dV= Ker36 j V e j(Kesx&j &i +Kesy�j�i +Kesz�j�i) (51)where Ksx, Ksy , and Ksz are the diagonal components of the saturated conductivity tensor,and the superscript e indicates that the quantity is averaged over the element. The nonlinearcoe�cient Ker is evaluated using the average value of 	̂ at the centroid of each tetrahedron.This treatment of nonlinear coe�cients is also used for all the other integral terms.The ijth element of P is pij =PEe=1 peij wherepeij = ZV e �ewejweidV = �e j V e j20 � ( 2 if i = j1 if i 6= j (52)Finally, q� = gz + bf + qf where the gravity vector g`, ` = x; y; z is such that gx = gy = 0and gz = fgzig = PEe=1Gei , bf = fbfig = PEe=1 F ei , qf = fqfig = PEe=1 Lei . The componentsof these three vectors are given byGei = ZV e KerKesz @wei@z dV = j V e j6V e KerKesz�i (53)F ei = ZV e qeweidV = qe j V j4 (54)Lei = � Z�e2 qenweid� = �qen j �e j3 (55)The quantity j�ej denotes the area of the triangular face of the tetrahedron where the bound-ary condition is imposed.4 Data assimilation for the CATHY model4.1 Selection of a data assimilation techniqueSelection of an optimal data assimilation technique for a full 3D model such as CATHYmust be done taking into account various and in general conicting aspects. On the one23



hand it would be desirable to use the more general and performing methods of 4D dataassimilation, while on the other hand numerical complexity and heavy computational burdensto some extent prohibit implementation of these techniques, especially when using higherresolution data sets. It is worth noting that even with currently available computationalpower, implementation of a full 4D Kalman �lter procedure has not yet been achieved inoperational meteorological models, a �eld where many advances have been made since the1950s in the �eld of data assimilation. Even if implementation of an assimilation procedurebased on the KF method were feasible, serious operational limitations would arise for acatchment scale hydrological model, since the only observations having the necessary spatialresolution for assimilation are remote sensing data from radar instruments such as SAR. Useof realistic observational errors corresponding to current SAR con�gurations, however, haveshown that no bene�ts could be expected applying a KF-based procedure to the retrieval ofvertical soil moisture pro�les in a 1D formulation of the Richards equation model [Hoebenand Troch 2000].Although this particular problem could be partially overcome by reducing spatial resolution,and consequently observation noise, the problem of inadequate sampling frequency remainsunsolved. A reasonable sampling frequency for a soil moisture assimilation would be dailysatellite images, or weekly images for drier climates. This level of sampling has yet to beapplied in hydrology, where at best tandem or single-pass monthly SAR data has been used.From a comparative and extensive analysis between various data assimilation procedures ap-plied to a simpli�ed hydrological model at catchment scale Houser et al. [1998] have concludedthat as the complexity of the data assimilation model increases, the assimilated data sets mustnecessarily be reduced to maintain computational feasibility. In practice less sophisticateddata assimilation methods (such as statistical interpolation) applied to dense data sets canextract similar information.In consideration of these aspects we selected the nudging technique as a �rst implementationof data assimilation for the CATHY model, since it possesses some of the advantages of 4Ddata assimilation while remaining relatively simple to implement numerically.4.2 Nudging moduleImplementation of the nudging term to be added to the tendency of CATHY model equa-tions is quite simple and is made here following equation (11). First the observation pointsare located within tetrahedral elements. The model estimates are then interpolated to theobservation points using the P1 (�rst-order polynomial) basis functions of the �nite elementdiscretization of the CATHY model. This interpolation of model estimates, made within asingle elemental unit of the �nite element grid, is clearly not inuenced by the interpolationproperties of the weighting function.Once G, W , and � have been speci�ed the local contribution to the nudging term is evaluatedas speci�ed in equation (9) for all the nodes of the mesh. In this way information canbe advected between adjacent tetrahedra and within the single tetrahedra by the speci�edweighting functions.To be used in a �nite element formulation of the problem this term must be evaluated in\weak form". Multiplying it by the test function and integrating within single tetrahedras ti24



we obtain the contribution to be added to the model equations:Zti N(r; t)w(r)dr= P4k=1Ni(rk; t)4 (56)where rk are the positions of the nodes of tetrahedra ti.In the absence of detailed �eld studies on the spatio-temporal correlation structure of soilmoisture, as mentioned previously, we have implemented for the nudging module the timeand space weighting functions of Stau�er and Seaman [1990] as used by Houser et al. [1998].It will be important to assess the sensitivity of the model to the weighting functions, and,in conjunction with ongoing and future hydrological �eld campaigns, encourage the determi-nation of weighting functions of a form that is as consistent as possible with soil moisturedynamics.We assume that the horizontal, vertical, and temporal dependence of the 4D weighting func-tion can be separated: W (r; t) = W (x; y)W (z)W (t). De�ning a horizontal radius of inuenceR, the Cressman-type horizontal weighting function isW (x; y) = R2 �D2R2 +D2 0 � D � R (57)W (x; y) = 0 D > R (58)while the vertical function is speci�ed asW (z) = 1� jzo � zjRz jzo � zj � Rz (59)W (z) = 0 jzo � zj > Rz (60)where Rz is the vertical radius of inuence and zo the vertical coordinate of the observationpoint. If, for the linear temporal weighting function a centered time of inuence is chosen,we have W (t) = 1 jt� toj < �2 (61)W (t) = (� � jt � toj)�=2 �2 � jt� toj � � (62)W (t) = 0 jt� toj > � (63)where � is the half period of a pre-de�ned time inuence window (i.e., � = ta=2 when theassimilation time ta is centered with respect to the time of observation).5 Future workThe nudging algorithm developed above will be implemented in the next phase of the project,and some �rst numerical aspects that will be investigated include:� Whether there are any di�erences (and pros/cons) of formulating nudging (and theRichards equation itself) in pressure head or moisture content form;25



� The handling of the weighting (interpolation) in time and the implications of this forthe dynamic time stepping that is an important feature of the model;� Whether to evaluate the nudging term at time level k or k + � (see equation (43)).Subsequent testing will be devoted to assessing various features of the algorithm and inparticular the many factors which can e�ect the numerical and physical performance of theassimilation model:� How does the nudging term impact mass conservation?;� How does the nudging term (in particular the size of the G coe�cient?) impact numer-ical stability?;� How does this term a�ect convergence of the linearization (Picard, Newton) scheme?Does it behave as a relaxation term?;� Is the surface boundary condition \switching" component of the model, already quitesensitive to changes in potential uxes and surface saturation events, made even moreso by inclusion of data assimilation?;� Does assimilation of observation data such as surface soil moisture make it necessary toalter in some way the handling (switching) of boundary conditions based on atmosphericuxes and surface pressure and ponding heads?;� What is the inuence of the soil hydraulic properties as represented in the �( ) andKr( ) families of curves on the performance of data assimilation?;� Are special considerations needed for the coupling between the surface and subsurfacemodules?;� CPU aspects (especially with a view to implementation of more sophisticated or optimaldata assimilation schemes).Ultimately these tests will provide some feeling for how to proceed with extensions of thenudging scheme or with more sophisticated data assimilation algorithms for the CATHYmodel, such as Kalman �ltering or a variational method. A simple approach might be to takean existing one-dimensional (vertical) implementation of Kalman �ltering, such as the onepresented byHoeben and Troch [2000] based on a �nite di�erence owmodel, and apply it in an\o�ine" mode at each time and spatial location where a new observation is available. The setof \one-dimensional pro�les" thus generated can then be spatially integrated or statisticallyinterpolated to generate an updated three-dimensional �eld for the CATHYmodel. Additionalissues relevant to future formulations and implementations for the CATHY model include:� The di�erences, if any, in assimilating observation data at points corresponding tosurface vs internal observation nodes of the three-dimensional model domain;� Similarly, di�erences in assimilation of remote sensing vs ground data (including con-siderations regarding regularly-spaced vs irregular data);26



� For assimilation of soil moisture observation data, reliable estimation or mapping ofvariables beyond soil moisture and water table distributions, such as surface satura-tion, variable source areas (partial contributing areas), discharge and recharge zones,soil parameters related to texture and permeability, and detection of conditions control-ling the switching from atmosphere-controlled (stage-one) to soil-limited (stage-two)evaporation [Salvucci 1997];� For soil moisture from active microwave synthetic aperture radar (SAR) satellites, thepossibility of using raw backscattering values directly rather than retrieved soil moisturevalues in the data assimilation algorithms. That is, avoid the costly and complex soilmoisture \inversion" step in the SAR data processing of the observation data by usinginstead the \forward" mode of the soil moisture{backscatter model on the CATHY-simulated soil moisture values instead;� More generally, should hydrologic models evolve so that they are formulated usingparameters that can be directly measured or observed from remote sensing instruments?;� Assimilation of observed state variables other than soil moisture.As a means of conditioning model performance on available data, data assimilation has linksto methodologies currently being advanced for addressing problems of model calibration andparameter estimation (or more generally inverse problems), and these links will also need tobe explored in more detail. One notable di�erence between inverse and assimilation problemsis that the former are generally used to provide an estimation of lumped or \e�ective" modelparameters, whereas data assimilation provides a spatial distribution of a state variable.But this and other distinctions are becoming blurrier as more sophisticated, \automatic"calibration algorithms are being introduced based on optimal control theory and estimationand variational principles similar to those used in data assimilation techniques.Future developments on the model front includes continued evolution of the CATHY model tohandle processes not yet accounted for (preferential ow, hysteresis, two-phase ow, vegeta-tion, energy balance) as well as improved outputs, more accurate calculation of groundwatervelocities, and faster execution (including parallelization of the model based on subcatchmentor hillslope partitioning of a catchment).Acknowledgements This work has been funded by the Energy, Environment, and Sustain-able Development Programme of the European Commission (contract EVK1-CT-1999-00022)and by the Sardinia Regional Authorities.ReferencesBixio, A. C., S. Orlandini, C. Paniconi and M. Putti, Physically-based distributed model forcoupled surface runo� and subsurface ow simulation at the catchment scale. In: Bentley,L. R. (ed.) Computational Methods in Water Resources, Vol. 2. Balkema, Rotterdam,The Netherlands, pp 1115{1122, 2000.Brooks, R. H. and A. T. Corey, Hydraulic properties of porous media. Hydrology Paper 3,Colorado State University, Fort Collins, CO, 1964.27
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