-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by P-arch

Newtonian nudging for a Richards
equation-based distributed model

M.Verbunt* and C. Paniconi

Technical Report

Center for Advanced Studies, Research and Development in Sardinia (CRS4)
Cagliari, Italy

* SOCRATES student visiting from Wageningen University
Wageningen, The Netherlands

November, 2001


https://core.ac.uk/display/51249235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Summary

2 Introduction

3 The CATHY model
3.1 Overview . ..ol o e
3.2 The subsurface flow module . . . . ... ... oo oo oo
3.3 The surface routing module . . . . ... .. L oo oo
3.4 Topographic depressions . . . . . . . .. L L e

3.5 Coupling of the surface and subsurface flow module . . . . . ... ... . ...

4 Data assimilation
4.1 OVerview . . . . e e e e e e
4.2 The Newtonian relaxation method . . . . . . . . . . . ... ... ... ....

4.3 Nudging in the CATHY model . . . . . .. .. .. ... .. ... ...

5 Application of the CATHY model
5.1 Imtroduction . . . . . . . .. L
5.2 The atmospheric perturbation run . . . . . . ... o o o000
5.2.1 The influence of the nudging technique on the timestep size . . . . . .
5.2.2  The influence of the nudging technique on the hydrological results
5.3 The initial conditions perturbation run . . . . . . . ... ... o Lo,
5.3.1 The influence of the nudging technique on the timestep size . . . . . .

5.3.2  The influence of the nudging technique on the hydrological results

6 The influence of the nudging parameters
6.1 Introduction . . . . . . . .. L
6.2 The influence of G . . . . . . .. L o

6.3 Theinfluence of Ry, . . . . . . . . . oo oo Lo

10

12

13

13

14

14

15

16

19

19

20

20

21

27

27

28

32

32

32

37



6.4 The influence of 7 . . . . . . . e 41

Conclusions and recommendations 44
7.1 Conclusions . . . . . . . o o e e e e 44
7.2 Recommendations . . . . . . . . . . e e 46
References 46



List of Figures

10

11

12

Atmospheric forcing, boundary conditions and runoff generation in the CATHY model
(after Putti and Paniconi [2001 in preparation]). . . . . . . . . . . ... ...

The test case used in this study representing a small catchment with an internal lake.
50 x 50 meter DEM surface cell elevations (left) and surface flow paths (right). . . .

The horizontal, vertical, and temporal dependency of the 4-dimensional weight-
ing functions. . . . . .. oL L e e

The temporal variation of the timestep size of the nudging and no nudging run
for the atmospheric perturbation run. . . . . .. ... ... ... .. ... ..

The histogram of timestep size for the nudging (left) and no nudging (right)
run for the atmospheric perturbation run . . . . . .. ... .. L.

The water table depths for the base run (top four plots), the nudging run (cen-
tral four plots) and the no nudging run (bottom four plots) for the atmospheric
perturbation run at four different times: t = 0, t = 3600, t = 10800 and t =
14400 seconds (from left to right). . .. ... .. ... ... ... ...

The difference in water saturation at the surface nodes between the base run
and the no nudging run (top three graphs) and between the base run and the
nudging run (bottom three graphs) at three different times (3600, 10800 and
14400 seconds) for the atmospheric conditions perturbation run . . . . . . . .

The temporal variation of soil moisture at the five observation points for the
base run (dotted line), no nudge run (dashed line) and the nudge run (solid
line) performed by the atmospheric perturbation run with the two observation
times at 3600 s and 10800 s. The nudging parameter values used are: G=0.1,
e =1, 7 = 1800s, R;, = 100 m, and R, = 2 m. Note that 7 in the figures
should have been 27 . . . . . . . Lo

The temporal variation of the timestep size for the initial conditions perturba-
FION TUN. . o v v o o e e e e e e e e e e e e e e e

The histogram of timestep size for the nudging (left) and no nudging (right)
run for the initial conditions perturbation run . . . . . ... ... ... ....

The water table depths for the base run (top four plots), the nudging run (cen-
tral four plots) and the no nudging run (bottom four) for the initial conditions
perturbation run at 4 different times: t = 0, t = 3600, t = 10800 and t = 14400
seconds (from left toright). . . . . ... ... o Lo

The difference in water saturation at the surface nodes between the base run
and the no nudging run (top four graphs) and between the base run and the
nudging run (bottom four plots) for the initial conditions perturbation run at
four different times: t = 0, t = 3600, t = 10800 and t = 14400 seconds (from
left toright). . . . . .

11

13

18

21

22

23

24

26

27

28

29

30



13

14

15

16

17

The temporal variation of soil moisture at the five observation points for the
base run (dotted line), no nudge run (dashed line) and the nudge run (solid line)
performed by the initial condition perturbation run with the two observation
times at 3600 s and 10800 s. The nudging parameter values used are: G=0.1,
e=1,7=1800s, Rpy = 100m,and R, =2m . ... ... ..........

The influence of G on the temporal behavior of the soil moisture content at the
five nudging points together with the base run (thick line) and the no nudging
run (dotted line). 1: G = 107%,2: G = 1073, 3: G = 0.0054: G = 0.01,5: G
=0.1,6: G=0.0. . . . e

The influence of high G-values on the temporal behavior of the soil moisture
content at two nudging points 1: G =0.1,2:. G=1,3: G=10 . . ... ...

The influence of R, on the spatial distribution of the difference between the
base and nudging run. The upper three graphs show the results at the times
(from left to right) 3600, 10800 and 14400 for R,, = 50 m, the three plots in
the center for R;, = 150 m and the bottom three graphs for R,, = 250 m.

The influence of 7 on the temporal behavior of the soil moisture content at the
five nudging points together with the base run (thick line) and the no nudging
run (dotted line). 1: 7 = 900s, 2: 7 = 1350s, 3: 7 = 1800s, 4: 7 = 2250s, 5:
T=27008 . . . .. e

31

36

37

39



List of Tables

10

Model parameter values for the test case. . . . . ... ... ... .. .....

The effect of the different G-values on the numerical and computational results.
Note that “Total timesteps” does not include back-stepping occurrences. . . .

The influence of G on the mean spatial difference of the soil moisture at the
surface nodes between the base run and the nudging run at three different
times for the atmospheric perturbation run. . . . . . . ... ... ... .. ..

The influence of G on the variance (o) of the differences between the base- and
nudging run of the spatial soil moisture values at the surface nodes averaged
over the whole similation time. . . . . ... ... ... . oo L.

The effect of the different R,,-values on the numerical and computational results.

The influence of R;, on the mean spatial difference of the soil moisture at
the surface nodes between the base run and the nudging run at three different
times for the atmospheric perturbation run. . . . . . . ... ... ... .. ..

The influence of R, on the variance (o) of the differences between the base- and
nudging run of the spatial soil moisture values at the surface nodes averaged
over the whole simulation time. . . . . . ... .. ... . o 0oL

The effect of the different 7-values on the numerical and computational results.

The influence of 7 on the mean spatial difference of the soil moisture at the
surface nodes between the base run and the nudging run at three different
times (4200 s, 7200 s, 14400 s) for the atmospheric perturbation run. . . . . .

The influence of 7 on the variance (o) of the differences between the base- and
nudging run of the spatial soil moisture values at the surface nodes averaged
over the whole similation time. . . . . ... ... ... . oo L.

20

33

34

35

38

38

40

42

42



1 Summary

This report describes a series of simulations conducted with a hydrological model, CATHY,
to test a recently implemented data assimilation technique, Newtonian nudging.

The data assimilation technique has been implemented in the spatially distributed CATHY
(CATchment HYdrology) model to improve the hydrological results. The nudging data assim-
ilation technique implemented is a relatively simple 4-D data assimilation technique in which
the variables are driven (nudged) toward observation data by adding a physical forcing term
(F), which is proportional to the difference between the actual solutions and the observations
to be assimilated, to the model equation. In the CATHY model these terms have been added
to the Richards equation.

The CATHY model has been applied to a test area of 300 by 550 meters, in order to test
the nudging technique. This area is divided into 6 by 11 grid cells of 50 by 50 meters and
contains a lake. In this application a four-hour evaporation perturbated and a four hour
initial conditions perturbated run are made in order to investigate the effect of the nudging
technique.

To obtain observation data a base run has been made, which is perturbated to differentiate
the base run from the nudging and no nudging run. Both an atmospheric perturbation as well
as an initial conditions perturbation run are made. From five different nodes (the nudging
points), the obtained values of the base run are extracted and used as observation data
during the defined assimilation times. In this four-hour simulation two assimilation periods
are defined with observation times at respectively 1 and 3 hours and a nudging influence
which lasts from half an hour before till half an hour after these observation times.

The results of the atmospheric perturbation run show that the nudging run is more efficient
by requiring less timesteps for the simulation. The hydrological results for the nudging run
are in better agreement with the observation data compared to the no nudging run. The water
table depths around the nudging points are corrected toward the observed values and also the
difference in soil moisture values at the surface nodes between the observed and computed
data is much smaller for the nudging run than for the no nudging run. These improvements
can especially be seen at and around the five nudging points. The mean areal decrease in
computed error in surface soil moisture for the nudging run compared to the no nudging run
is 35 percent at the two observation times and 29 percent at the end of the simulation.

Also the temporal distribution of the soil moistue at the five nudging points shows for the
nudging run during the assimilation times a much better agreement with the observed values.
The initial conditions perturbation run shows the same effect of the nudging technique on
the hydrological results, however for this run the nudging run is less computationally efficient
than the no nudging run.

For the atmospheric perturbation run the influence of some nudging parameters on the nudg-
ing effect has been investigated in order to get a better understanding of the nudging tech-
nique. The influence of three nudging parameters has been investigated; (i) the G-term, which
determines the the relative strength of the nudging term with respect to the physical forcing
term, (ii) Ry, which is the horizontal radius of influence of the nudging technique and (iii)
7, which is the half period of the defined time of nudging influence.



The results show that the convergence of the soil moisture values towards the observed values
at the nudging points strongly varies for different values of G and 7, however for G values
of 0.3 and higher no difference in convergence can be noticed. The computed mean areal
error in surface soil moisture values generally decreases with increasing values of R, and G,
however this decrease stabilizes for G-values larger than 0.1. The influence of 7 on this mean
areal error depends on whether the time, at which the error is determined, is located close
or far away from the observation time. The influence of these three nudging parameters on
the numerical and computational results has also been investigated. These results show for
increasing G values an increasing number of back-stepping occurrences and therefore a larger
CPU, while this CPU remains constant for increasing R values.

2 Introduction

Spatially distributed hydrological models are becoming more and more a necessity to get a
complete understanding of the hydrological behavior at the catchment scale. The requested
information for authorities needs to be more complete and detailed nowadays and for this a
continued progress in the understanding of the hydrological catchment response is required.
Distributed hydrological models are able to include the spatial distribution of boundary con-
ditions and various input data such as rainfall, precipitation, land cover, soil characteristics
and topography. Further they produce spatially distributed detailed outputs of hydrological
properties and processes. The availability of remote sensing data, from which useful hydro-
logical data can be extracted, makes the use of spatially distributed hydrological models more
popular and more effective.

However one of the major problems facing spatially distributed modelling is the adjustment
of spatial distributed model parameters. The data which are available to initialize, parame-
terize and calibrate the models often mismatch the model complexity and both models and
observation data contain errors and uncertainties. With the availabilty of new data sources
for hydrological process observations some of these problems can be alleviated. More avail-
ability and accessability of detailed spatially distributed data makes it possible to introduce
data assimilation techniques into the hydrological models [Marrocu and Paniconi 2001]. Data
assimilation can be described as a generalization of objective analyses and the objective of
data assimilation is to provide physically consistent estimates of spatially distributed envi-
ronmental variables [McLaughlin 1995]. This is done, in the case of the Newtonian relaxation
(or nudging) algorithm used in this study, by adding an additional forcing term to the model
equation, which corrects the model results towards the observation data.

A problem applying data assimilation to hydrological models may be the incomplete knowl-
edge of the spatial and temporal variability of hydrological variables and processes. Therefore
it is required to have an adequate characterization of the temporal and spatial variability in the
measurement equations and or interpolation and extrapolation formulas which are commonly
used in data assimilation techniques. However due to parameterization and computational
time most models using data assimilation techniques are not yet applicable at large catch-
ment scales at this moment. On the other hand with the improvements in model and data
quality arising from data assimilation and other advances, progress can be expected in turn
in the understanding of the dynamics and interactions responsible for the spatial patterns
we observe in runoff, water table levels and other components of the catchment scale water
balance and, at larger scales, for the generation and persistence of floods, droughts, etc on



seasonal and interannual bases [Paniconi et al. 2001 in preparation].

Chapter 3 of this report will describe the CATHY model and its modules. Data assimilation,
the Newtonian relaxation method and the nudging in the CATHY model are described in
Chapter 4. The results of the application of the model including the nudging technique to a
test case can be found in Chapter 5. The effect of the nudging parameters on the results is
decribed in Chapter 6 and the last chapter summarizes the conclusions of this research and
and some recommendations for future research.

3 The CATHY model

3.1 Overview

The CATHY (CATchment HYdrological) model is a physically-based distributed model for
overland and subsurface flow simulation at the catchment scale [Putti and Paniconi 2001 in
preparation|. The model couples a three-dimensional Richard’s equation-based finite element
subsurface flow module with a one-dimensional DEM-based finite difference surface routing
module. The surface routing module, SURF-ROUTE [Orlandini and Rosso 1996] uses a
diffusion-wave formulation for describing both the hillslope and channel flow. To account for
the retardation and storage effects, the accumulation of water in depressions and lakes has
been implemented. The subsurface module, FLOW3D [Paniconi and Wood 1993], is based
on the solution of the Richard’s equation for variably saturated porous media and describes
the infiltration to and exfiltration from the vadose zone. The FLOW3D module partitiones
the atmospheric input (precipitation and evapotranspiration) into subsurface and surface
flow. Starting from a digital elevation model discretization of the catchment surface and a
corresponding three-dimensional grid of the underlying aquifer, the physical conditions at the
surface and the soil properties are determined for each grid cell. Based on these properties,
FLOW3D calculates then at each grid node the overland flux values, which are transferred to
the DEM-cells and are implemented as sink or source terms in the SURF-ROUTE module.
The SURF-ROUTE module routes these overland flux values and calculates the resulting
ponding head values that will be used as a boundary condition in FLOW3D.

The mathematical model describing the subsurface and surface flow is based on the following
partial differential equations [Bizio et al. 2000]:

A5G0 = VK E(S) (V4 )] + () 1)
J J 0?
8_6152 + Cka—cj = Dha—g + cxqr(hy ) (2)

where 0(5,) = 9,55 + (b%, Sw(t) is the water saturation, S5 is the aquifer specific storage
coeflicient, ¢ is the porosity, i is the pressure head, ¢ is the time, V is the gradient operator,
K is the saturated hydraulic conductivity tensor, K,(9,) is the relative hydraulic conduc-
tivity function, 7, = (0,0, 1)T, z is the vertical coordinate directed upward and g5 represents

distributed source (positive) or sink (negative) terms (volumetric flow rate per unit volume).



3.2 The subsurface flow module

The FLOW3D-module is a three-dimensional tetrahedral finite element model for flow in
variably saturated porous media. It is based on the Richards equation and is applicable in both
the saturated and the unsaturated zone and is able to handle temporally and spatially variable
boundary conditions, including seepage faces and atmospheric inputs. The soil hydraulic
properties are specified by K and by different characteristic relationships of 5, () and
K., (1) such as those of van Genuchten and Nielsen [1985], Huyakorn et al. [1984], or Brooks
and Corey [1964]. The ones of van Genuchten can be written as:

0(v) =6, + (0, — 6,)[1+ 37", <0 (3)
O(Qb) = 057 ¢ >0 (4)

K ()= L+ )72 [(1+8) -8, <0 (5)
K,(4)=1, >0 (6)

where 6 is the volumetric moisture content, 8, is the residual moisture content, €, is the
saturated moisture content (generally equal to the porosity ¢), 5 = (¢/15)", 15 is the capillary
or air entry pressure head value, n is a constant, and ¥ = 1 — 1/n for n approximately in the
range 1.25 < n < 6.

The corresponding general storage term is

o= 8,5 + qb% (7)

where 5, = /65 and S, is the specific storage.

The soil hydraulic characteristic equations used by Huyakorn et al. [1984] express the water
saturation in terms of effective saturation S., in the form S, (¢) = (1 — Sy )Se(¥) + Swrs
where 5, is the residual water saturation. The effective saturation-pressure head relation is
then written as

Se() = [1+e(ta —4)"]77 b <t (8)
Se(v) = 1 V2> 1y
while two possible expressions for the relative conductivity-pressure head relationship are
krw(90) = krw() (Se(4)) = SE (9)
and
Erul16) = 10965:9) (10)

where G(S.) = aS?+ (b—2a)S. +a—b. In the above expressions 1, is the air entry pressure
and €, n, v, i, @, and b are constants.

The input flux values are considered as potential rainfall or evapotranspiration rates for the
treatment of atmospheric boundary conditions while the actual rates, which depend on the

10
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Figure 1: Atmospheric forcing, boundary conditions and runoff generation in the CATHY model
(after Putti and Paniconi [2001 in preparation]).

prevailing pressure head and flux values at the surface, are calculated by the model during the
simulation. Figure 1 shows the process of automatic switching of surface boundary conditions
from a specified flux (Neumann) to a constant head (Dirichlet) condition, and vice versa,
which has been implemented to correctly reproduce the physical phenomena occurring at the
surface. A surface node can be in one of four states at any time:

e “air dry”,

unsaturated,

e saturated (but not ponded)

ponded.

Physically, the model input threshold pressure head parameter, pond-head-min, determines
the distinction between a surface node being ”saturated” or "ponded”. By introducing the
boundary condition switching, which is performed by the subsurface module into the surface
routing model, this module is extended to allow excess water to accumulate at the surface as
ponding. This ponded water, converted to a flux qr, constitutes a forcing term input to the
routing model at each new time step. The treatment of the ponding case is schematized in
Figure 1, which we subdivide into four scenarios of positive or negative potential and actual
fluxes. For each scenario the figure explains what is the result (in terms of ponding, saturation
status, runoff generation, boundary condition, and actual flux into or out of the soil) at the
end of a time step if at the beginning of the time step the potential, actual, and ponding
fluxes acting on a surface node during subsurface module execution are as indicated.

11



3.3 The surface routing module

In the CATHY model the catchment surface runoff is considered to be determined by the
two processes of channel and hillslope transport operating across all the hillslope and stream
channels forming a watershed and including storage and retardation effects of depressions and
infiltration and exfiltration effects from subsurface soils. It is assumed that flow on hillslopes
concentrates in rills caused by differences in soil erodibility or topographic irregularities. The
rill formations are lumped at the DEM elemental scale into a single conceptual channel to
reach a minimal computational effort and to economize on the number of model parameters.
The drainage system network, consisting of these rills is extracted from the catchment DEM.
The distinction between hillslope and channel flow is based on the “constant critical suppport
area” concept as described by Montgomery and Foufoula-Georgiou [1993]. Channel flow is
assumed to occur at all cells for which the upstream drainage area D equals or exceeds the
threshold value D*, while rill flow is assumed to occur at all those cells for which D does not
exceeds the threshold value D*.

A routing scheme developed on the basis of the Muskingum-Cunge method with variable
parameters is used to describe both hillslope rill and network channel flows, with different
distribution of the Gauckler-Strickler roughness coefficients to take into account the different
processes that characterize the two physical phenomena [Orlandini and Rosso 1996]. Overland
runoff is routed by the model from the uppermost catchment DEM cell downstream to the
outlet, following the previously determined drainage network. The inflow or outflow rate ¢y,
which a grid cell will receive from an upslope neighbor cell and discharge to the downslope
neighbor cell is given by:

AzA

where

g = the local contribution of surface runoff, as calculated by FLOW3D,
Az and Ay are the cell sizes and

As = the channel lenght within the cell.

The convection diffusion flow equation, discretized by the Muskingum-Cunge method, is used
to route the inflow hydrographs and the overland fluxes, ¢y, into each individual channel.
This equation is given by:

ij__ll = C1QF + CQF + C3Qf+1 + C4QL§€+1 (12)

where ij’ll is the discharge at the network location (i+1As) and time (k+1)At, gz%, is the
overland flow rate at the (¢41)st space interval and time kAt and C; is the routing coefficient
which depends on ¢g, on the channel lenght As, on the temporal interval At and on the
numerical scheme. After the discharge in and out is determined, the water depth or ponding
head h can be calculated for each cell from simple mass balance considerations.

12
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Figure 2: The test case used in this study representing a small catchment with an internal lake. 50
x 50 meter DEM surface cell elevations (left) and surface flow paths (right).

3.4 Topographic depressions

Isolated topographic depressions in the catchment DEM influence the formation of surface
and subsurface flow fluxes and introduce inconsistent flow directions and when they represent
actual lakes or ponds, they need to be properly handled in order to reproduce the storage and
retardation effects on the catchment response. Figure 2 shows an example how topographic
depressions are treated in the CATHY model.

Figure 2 shows the catchment DEM, used for the test case, on the left and on the right its
schematized representation of the flow paths as calculated by the “depitting procedure”. The
dark grey area in the middle represents the interior area of the depression and the buffer cells
that force flow patterns are given in light grey. The output cell is marked with “O” while the
reservoir cell is identified with “R”.

3.5 Coupling of the surface and subsurface flow module

The subsurface flow module, FLOW3D, and the surface flow module, SURF-ROUTE have
been coupled to create a better representation of the hydrological catchment behavior. The
coupling between the two modules is such that information regarding subsurface flow fluxes,
ponding head values and nodal pressure head values can be exchanged between the two
modules.

Equations (1) and (2) are solved using the assumption that the explicit in time nature of
the Muskingum-Cunge discretization scheme allows the construction of the noniterative al-

13



gorithm:
for ¢t = 0 to t,,4» with step At do:

e solve equation (2) using q}j as input to the SURF-ROUTE model, obtaining Q**! and
from this the distribution of ponding heads R**1:

e use K1 and precipitation /evapotranspiration input values at time t*+1 to set up bound-
ary and initial conditions for FLOW3D, and solve equation (1) for a

o calculate, again with FLOW3D, the overland flux qf"’l using ¥**' and the balance
between the atmospheric inputs and actual fluxes.

In this way the coupled modules determine for each time step and for each surface node
whether it is ponded, saturated, below saturation or air dry, knowing for each of the surface
nodes whether the potential atmospheric forcing is positive or negative. In the case of Dirichlet
boundary condition the model knows whether the actual, back-calculated flux represents
exfiltration or infiltration and its contributions to many hydrological components and it flags
any anomalous events.

4 Data assimilation

4.1 Overview

Data assimilation can be described as a generalisation of objective analyses, whose main
objective is to provide time dependent spatially distributed estimates that can be updated
whenever new data become available. These estimates are derived from scattered observa-
tions at different times and locations supplemented by additional data that is available to
force the estimation to the observed value. Data assimilation is most closely associated with
and applied in the meteorological science since the early 1950’s [Daley 1991]. However in the
field of hydrology, data assimilation is still a relatively new phenomena and is not yet well es-
tablished. In the last years data assimilation has been more and more introduced and applied
to hydrological models. Some important data assimilation problems involve characterization
of the spatial and temporal distribution of:

e Precipitation
¢ Fvaporation
¢ Soil Moisture

Water table elevation

e Solute concentration

In this study a relatively simple data assimilation method has been implemented in the com-
plex spatially distributed CATHY model. The data assimilation technique used is Newtonian
relaxation or nudging, in which model variables are driven (nudged) towards observations by
an additional “forcing term” to the model equations [Houser et al. 1998]. This assimilation
method will be explained in the next section.

14



4.2 The Newtonian relaxation method

The Newtonian relaxation method is a 4D data assimilation technique in which variables are
driven toward observations by adding a forcing term to the model equation:

3

0 = F(s) (13
This forcing term is proportional to the difference between the actual solutions and the
observations to be assimilated. This term is added to the model equations for a certain
period of time, the assimilation time (¢,), which contains in the center the observation time
(to). After assimilation time is ended, the forcing term is relaxed and is not taken active
anymore, causing that the model equations return to their original form. By adding the
forcing term to the model equations this results in:

Js /
5 = F(s)+ GW(r,t)e(r)(s, — s) (14)

/

where: s/ are the observations interpolated to the model grid, G determines the relative

strength of the nudging term with respect to the physical forcing term, W(r,t) are weights to
be specified and € < 1 is a factor measuring the accuracy of the observation that if we assume
perfect measures should be taken equal to 1.

To get a better understanding of the Newtonian relaxation technique, consider a limited exam-
ple which can be solved analytically and in which the following assumptions are made [ Marrocu
and Paniconi 2001]:

o the forcing terms of the system equations are zero,
e the product of the nudging factor and and weighting function (GW) is a constant and

e c=1

In this case a a general solution of equation (14) is:

ta
(1) = s(to)e™ M 4 GWe T [y (15)

If in this case s, is also assumed to be constant the solution of equation (14) is:

s(t) = 5o + e~ MWi(s(t0) — 5,) (16)

with tg = ¢, — t, This equation shows that in the case of analyses factor ¢ = 1, "nudged”
solution reaches the observation state if assimilation time is infinite.

Because most measurements are taken at discrete points, the continuum form of the nudging
equation needs to be discretized to be able to use these measurements. This can be done

15



by relaxing the system equation to individual scattered observations, which is done by in-
terpolating the model grid values to the observation points r;, then back to the model grid
including this last step in the nudging term. In this case equation (14) becomes:

0s S W Delr)(s(r1) — s(r)
o = FerG S Wirat)

(17)

4.3 Nudging in the CATHY model

The coupled distributed CATHY model is based on the Richards, the diffusion wave and
the Darcy equations, which are widely known and accepted mathematical representations of
verifiable conservation principles and therefore this model is a good candidate for implement-
ing data assimilation. Due to computational complexity the model has only been applied to
sub-catchment scale. Therefore is also chosen to implement this relatively simple data as-
similation method because complicated and extended data assimilation techniques will only
compound this problem. Another reason for choosing the nudging method is that this tech-
nique is able to conduct some initial investigations into the applicability and effectiviness of
data assimilation for Richards equation-based 3D hydrological models.

The nudging term has been introduced into the Richard’s equation which results in [Paniconi
et al. 2001 in preparation]:

o oo Nr s~Nx W2(X, )6 — 6:(1))
o = V[ASAT(VQb + 772)] +q+ G k=1 £ei=1 ¢ (18)
" S Wia(X, 1)

where N7 is the number of observation times, Nxis the number of observation points, €;
are the soil moisture observations, G determines the relative strength of the nudging term
with respect to the model forcing term, ¢ < 1 is a quality factor for the observation data
and W(X,t) are the 4-dimensional weighting functions which are assumed to be horizontally,
vertically and temporally dependent and can be written as (Figure 3):

W(X, 1) = W(d)W(2)W(t) (19)

The horizontal dependency is described by the Cresman-type horizontal weighting functions
with a defined horizontal radius of influence, R;,, which can be written as:

R2 — d?
W(d) = m d* < R, (20)
Ty
W(dy=0 d*> R}, (21)
(22)

where
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d* = (x = w0)* + (y — y0)* (23)

The vertical weighting function is specified after Seaman and is written as:

Wi(z)=1 . |z — 20| < R, (24)
W(z)=0 |z — 20| > R (25)
(26)

where R, is the vertical radius of influence and zy the vertical coordinate of the observation
point. If a centered time of influence is chosen, the temporal dependency of the weighting
functions can be written as:

Wt)=1 |t—to| < % (27)

W(t) = % %g t—to| < 7 (28)
W(t)=0 |t—to] >7 (29)

(30)

where Tis the half period of the predefined time of influence.

The finite element solution approximates the exact solution 1 by 1@ using linear basis functions
W(X) defined over a domain Q discretized by [ tetrahedral elements and N nodes which
can be written as:

N
b= Z:lﬁj(t)wj(fﬁ) (31)

If this approximation is substituted into equation (18) by applying the Galerkin method
and by introducing boundary conditions, yields the following system of ordinary differential
equations:

N A~ dU R R
H(U)Y + PY) -+ (V) +77(¥) = 0 (32)
where:
hij = > E/ K (K{VW§ - Vwi)dV (33)
e=1 ©

E
pi = % / oewidV (34)
e=1 ©
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Figure 3: The horizontal, vertical, and temporal dependency of the 4-dimensional weighting
functions.
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(36)
ve WM WX )

e=1

where 0g;-0;(1) is evaluated at the observation points and is assumed to be constant over
the whole element. Equation (32) is integrated in time using a v-weighted finite difference
scheme resulting in:

l/Hk-I—y + Pk—l_y \i]k-l_l _ Pk+y _ (1 _ V)Hk-l—y \ilk o xktr T*k-l—u (37)
Aty N Aty 1

where k& and k + 1 define the previous and current time levels, At is the time step size, and
H. P, ¢g* and r*are evaluated at pressure head

Uktv = p Pkt 4 (1 — )Pk (38)

with 0 < v < 1. If the Picard iteration is used to linearize equation (37) the final expression
is produced, which can be written as:
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1 N
(l/ Hk—l—l/,m tk Pk—l—u,m) \I;k+1~m+1 (39)
1

(_Pk-l—u,m _ (1 _ V)Hk-l—u,m)@k _ q*k-l—u,m _ T*k-l—u,m (40)
Aty

where m is the iteration level. This equation can now be solved by standard preconditioned
conjugate gradient methods for sparse linear systems.

5 Application of the CATHY model

5.1 Introduction

After the nudging technique had been inserted, the CATHY model has been applied to a
testcase. This is a 6 by 11 grid area of 50 by 50 m cells containing a lake in the middle (see
Figure 2). Table 1 shows some of the parameter values used for the test case. The location
of the five observation points, which are all located at the surface, are indicated as black dots
in the figures of the spatially distributed results. For these runs we used mass lumping and
Crank-Nicolsen time discretization. For the iterations a Picard scheme has been used, and
for the soil hydraulic properties the Huyakorn relationship was used with parameter values «
=0.02,8 =2, =2, ¢ = 0, residual saturation = 0.333 and n =1. The 10 meter soil profile
was discretized into 10 layers, with thicknesses, from top layer to bottom layer, of 1 %, 1%,
1%, 5 %, 5 %, 10 %, 10 %, 22 %, 22 %, 23 %. Four different model runs are made:

initial condition-run

e base-run

no nudging-run

¢ nudging-run

The initial condition run is made to achieve initial conditions for the other three runs. The
base run represents the “observation data”, which are required for the nudging technique. To
separate the base-run from the nudging and no nudging run two different perturbations are
made:

e atmospheric perturbation

e initial condition perturbation

In the case of atmospheric perturbation the difference between the base run and the (no)nudging
run are the atmospheric conditions, while the initial conditions are the same. In the case of
initial condition perturbation the atmospheric conditions are the same but the initial condi-
tions differ.
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Table 1: Model parameter values for the test case.

K 10=* m/s
S 10-7
0, 0.35
number of 3D nodes 924
number of 3D elements 3960
number of soil layers 10
soil depth 10 m

For testing the nudging technique with these two perturbation runs, the nudging parameters
are set to the following base case values: G = 0.1, ¢ = 1, 7 = 1800 s, R = 100 m and R,
= 2 m. The effect of varying these base case parameters on the hydrological and numerical
results will be described in the next chapter. The results of the application of the CATHY
model with the atmospheric perturbation will be discussed in section 5.2 and the results of
the application with initial conditions perturbation in section 5.3.

5.2 The atmospheric perturbation run
5.2.1 The influence of the nudging technique on the timestep size

After the implementation of the nudging technique it is also important to analyse the effect
of the nudging technique on the computational performance of the model. If after its im-
plementation the model run requires much more time, its applicability should be questioned.
An indication for the time required for the model run is the number of timesteps, which are
required for the simulation. The model needs about the same time to produce results for
small timesteps as for large timesteps. Therefore the number of timesteps can be directly
linked to the computation time. The number and size of the timesteps have been analysed
for the nudging run as well as for the no-nudging run. The results are shown in Figure 4.

From Figure 4 can be seen that the nudging run is more efficient than the no-nudging run by
requiring 24 percent less timesteps for the 4-hour simulation run. This also results in a larger
mean timestep for the nudging run compared to the no-nudging run. The maximum time
step is limited by a value set by the user and is in the case of the atmospheric perturbation
equal to 30 seconds. From this figure it can further be seen that during the assimilation
times the timestep size for the nudging run decreases significantly because during these time
periods the model results have to be “nudged” towards the observation data, which requires
the use of smaller time steps. However the no-nudging run performs really well from about
7000 seconds till the end of the simulation run, using the maximum allowed timestep for the
calculation while the nudging run requires much smaller timesteps in this time period. This
seems to be in contrast with the larger number of time steps which the no-nudging run uses
for the whole simulation period.

To further explore this a histogram has been plotted of the different time step sizes in Figure 5
for the nudging run (left) and the no nudging run (right). From this figure it can be seen that
the portion of the smallest timesteps (< 0.8) is much larger in the no-nudging run than in the
nudging run. In the histogram of the no-nudging run are there besides the smallest timestep
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Figure 4: The temporal variation of the timestep size of the nudging and no nudging run for

the atmospheric perturbation run.

class only two other classes with a reasonable count (the one of 29.2 - 30.0 sec and the one
from 8.4 - 9.2 sec). In the histogram of the nudging run also the largest portion consists of the
smallest timestep class but there are also considerable occurrences of timesteps between 0 and
10 seconds, which causes the total number of required time steps to be smaller. Therefore the
nudging run is more efficient, despite the fact that the number of maximum allowed timesteps

used is significantly smaller compared to the no nudging run.

5.2.2 The influence of the nudging technique on the hydrological results

The primary aim of the implementation of the nudging technique was to improve the hydro-
logical results. To show whether the nudging technique has any influence on the results the
computed water table depths for the base run (observed data), the nudging run and the no

nudging run are shown in figure 6.

The upper four plots of figure 6 show the water table depths for the base run at different
times; The initial time (0 seconds), the first observation time (3600 seconds), which is used
for the nudging technique and the second observation time (10800 seconds). The fourth plot
at 14400 seconds shows the situation at the end of the simulation.

At time 0 the lake in the middle of the catchment can clearly be distinguished with waterta-
bles at the surface. At this time the minimum water table is not below 5 meters below surface.
After one hour the water tables depths are totally different. The water level decreases dra-
maticly to -10 meters below surface and only at the depression in the middle the water table
remains at the surface. This situation is maintained till the end of the simulation time for
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Figure 5: The histogram of timestep size for the nudging (left) and no nudging (right) run
for the atmospheric perturbation run

the base run.

In the atmospheric-perturbation run the no nudging run (bottom four graphs of figure 6) has
the same initial conditions and therefore shows for time 0 the same water table depths as the
base run. At time 3600 seconds the water tables in the depression are still at surface, however
at the borders of the depression the water table has decreased compared to the base run due
to the high evaporation rates used for the atmospheric pertubaton. At time 10800 all water
has disappeared from the surface and the water table remains only at 10 meters below surface
and lower. This is also the case after four hours.

The nudging run (central four plots) shows the same results for time 0. However at time
3600, the nudge run shows significantly different results compared to the no nudge run. At
the borders of the lake the water table is computed much higher which is in a better agreement
to the observed values (the base run). Also around the three nudging points located south-east
of the depression a correction, in this case an increase of the height of the watertable, towards
the base run can be noticed. For the last two timesteps a correction has been made around
the two nudging points which are located north-east of the depression. Figure 6 shows that
the implementation of the nudging technique leads to a better agreement with the observed
values.

Figure 6 shows the effect of the nudging technique on the spatial distribution of the water
tables. To investigate the influence of the nudging technique on the spatial distributed com-
puted error in surface soil moisture values, the difference in these surface soil moisture values
between the observed data (base run) and the computed data have been plotted for both the
nudging and the no nudging run in Figure 7.

This figure shows the difference in water saturation at the surface nodes between the base run
and the no nudging run (top four graphs) and the difference between the base run and the
nudging run (bottom four graphs) at four different times for the atmospheric perturbation
run. Because the initial conditions are the same for all three runs the difference at time 0
between the base run and the (no) nudging run is by definition 0. For the no nudging run at
time 3600 seconds an increase in the difference between the base run and the no nudging run
can be noticed, especially outside the depression to reach an mean areal difference of 0.2997.
At time 10800 seconds the largest differences can be seen in the boundaries of the depression
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Figure 6: The water table depths for the base run (top four plots), the nudging run (central
four plots) and the no nudging run (bottom four plots) for the atmospheric perturbation run
at four different times: t = 0, t = 3600, t = 10800 and t = 14400 seconds (from left to right).
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three graphs) at three different times (3600, 10800 and 14400 seconds) for the atmospheric
conditions perturbation run
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and at this time the mean spatial difference is 0.2861. At time 14400 this mean difference
has decreased to 0.2646. From these four graphs can also be seen that the results of the no

nudging run are always less than or equal to the base run (with the exception of the lake cells
at t = 3600).

Figure 7 shows for the nudging run a different spatial distribution of the difference in soil
moisture at the surface nodes. At time 0 the difference is 0 as a result of the same initial
conditions. At time 3600 seconds an increase in the difference can be noticed. However at and
around the nudging points, especially the three located south-east of the lake, this increase
is much smaller. For some grid cells the nudge run even overshootes the results of the base
run, which explains that the difference between the two is sometimes negative. The mean
difference between the base run and the nudging run at the first observation time is 0.2036,
which is a decrease of 32 percent compared to the no-nudging run at the same time. After
10800 seconds a bigger influence of the two nudging points located north of the lake can be
noticed, resulting in a further decrease of the mean difference to a value of 0.1785. Compared
to the difference at the same time between the base run and the no-nudging run this is an
improvement of almost 38 percent. At time 14400 the influence of the five nudging points
can still be seen, however the mean difference has again increased, due to this time is located
outside the assimilation period, to a value of 0.1888, which is still an improvement of 29
percent compared to the no nudging run.

From Figure 7 it can clearly be concluded that the implementation of the nudging technique
leads to an improvement in the mean error of soil moisture values at the surface nodes using
the atmospheric perturbation run. This improvement is not only made during the assimilation
times but also outside the periods of nudging influence.

After having seen the effect of the nudging technique on the spatial behavior of the water
table depths and the surface soil moisture values, its influence on the temporal distribution
of soil moisture values has also been investigated at the five nudging points and the results
have been plotted in Figure 8.

Figure 8 shows the results of the four-hour evaporation test case showing the temporal varia-
tion of the soil moisture content at the five nudging points. The base run represents the “soil
moisture observation data” at these nodes during the assimilation times. These assimilation
times are indicated between the black lines with 7/2 of half an hour before and after T} = and
T?2.. In this case of atmospheric perturbation the evaporation input, which has been used for
the base run is perturbated and a nudging run and a no nudging-run is made. The increase
in evaporation between 2 and 3 hours can be explained by discharge flowing out of the “lake”
into cells located downstream of the lake. From Figure 8 it can clearly be seen that until
the start of the assimilation time the nudging run is exactly the same as the no nudging run.
After time equals 1800 seconds the nudging technique is activated and differences between
the nudging and no nudging technique can be seen. In the upper two graphs the effect of
this technique can only be seen at about 1 hour because before the nudging and no nudging
runs both equal the observation data. Clearly it can be seen that the soil moisture values
of the nudging run are driven towards those of the base run during the assimilation time to
reach a better agreement between these two. After the assimilation period, when the nudging
technique is inactive again, generally an immediate increase in the difference between the
nudging run and the observation data can be seen.

A small time lag of the increase in soil moisture values between the two ”assimilation periods”
can be noticed as well as a difference in amount of increase between the nudging and the no
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Figure 8: The temporal variation of soil moisture at the five observation points for the base
run (dotted line), no nudge run (dashed line) and the nudge run (solid line) performed by
the atmospheric perturbation run with the two observation times at 3600 s and 10800 s. The
nudging parameter values used are: G=0.1, ¢ = 1, 7 = 1800s, R;, = 100 m, and R, = 2 m.
Note that 7 in the figures should have been 27
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Figure 9: The temporal variation of the timestep size for the initial conditions perturbation
run.

nudging run. In the upper two graphs the increase in soil moisture is largest for the no
nudging run while for the bottom three graphs the increase is larger in the nudging run.
These differences however take place outside the time period in which the nudging technique
is active and are caused by different soil moisture contents and not by the nudging technique.

5.3 The initial conditions perturbation run
5.3.1 The influence of the nudging technique on the timestep size

Besides the atmospheric perturbation run also a run with different initial conditions for the
base run compared to the nudging and no nudging run has been made. For the initial condi-
tions perturbation run a totally different behavior of the temporal variation of the timestep
size can be seen compared to the atmospheric perturbation run. First of all the value of the
maximum allowed timestep is 15 seconds and further this run required much fewer time steps
than the atmospheric perturbation run. A reason for this is probably the “unforced” input
values of evaporation.

The no-nudging run contains the maximum timestep size for almost the whole simulation
period with an exception at the end, while the timestep size for the nudging run decreases
significantly during the assimilation times. The decrease in time step during the assimilation
times is the reason why the nudging run uses more timesteps than the no-nudging run.
Around time 12500 sec the value of At suddenly decreases dramatically for the no-nudging
run followed in delay by the nudging run, which shows exactly the same behavior in decrease.
These decreases in time step size are caused by numerical instability at these times. A reason
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for the initial conditions perturbation run

for this numerical instability has not be found.

Figure 10 shows the histograms of the timestep size for the nudging run (left) and the no
nudging run (right) for the initial conditions perturbation run. From Figure 10 it can be
seen that for the no nudging run almost all timesteps are the maximum allowed 15 seconds
with the exception of a few very small time steps causes by the numerical instaility at time
12500 seconds. The histogram of the nudging run also contains a lot of the maximum allowed
timestep, however the most occurred timestep size is around 7 seconds. Also a timestep size
of eight seconds occurs quite often. This is due to the effect of the nudging technique which
decreases the used time step to about 7.5 during the assimilation time (see Figure 9). Further
there is also for the nudging run a considerable amount of the small timestep sizes caused by
the numerical instability at around 12800 seconds.

Compared to the atmospheric perturbation run, the smaller time steps play a less important
role in the initial condition perturbation run. Therefore also the required number of timesteps
is much smaller for the initial condition run than for the atmospheric perturbation.

5.3.2 The influence of the nudging technique on the hydrological results

For the initial perturbation run the effect of the nudging has been analysed for the same
hydrological variables as was done for the atmospheric perturbation run. Figure 11 shows the
influence of the nudging technique on the spatial distribution of the water table depths at four
different times (from left to right; t= 0 s, t = 3600 s, t = 10800 s and t = 14400 s). The top
four plots are the values as computed with the base run, the central four as computed with the
nudging run and the bottom four as computed with the no nudging run. The base run shows
a completely different distribution at time is 0 as a result of different initial conditions. The
effect of the nudging technique can only be seen at t = 14400 s, which shows for the nudging
run at the borders of the topographic depression higher computed water tables compared to
the no nudging run, which is in better agreement with the observed values as generated by
the base run.

The spatial distributed error between the computed and observed values has been plotted
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Figure 11: The water table depths for the base run (top four plots), the nudging run (central
four plots) and the no nudging run (bottom four) for the initial conditions perturbation run
at 4 different times: t = 0, t = 3600, t = 10800 and t = 14400 seconds (from left to right).
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Figure 12: The difference in water saturation at the surface nodes between the base run and
the no nudging run (top four graphs) and between the base run and the nudging run (bottom
four plots) for the initial conditions perturbation run at four different times: t = 0, t = 3600,
t = 10800 and t = 14400 seconds (from left to right).

for the no nudging run (top four plots) and the nudging run (bottom four plots) in Figure
12. This figure shows a same behavior as Figure 7 with decreasing computed errors for the
nudging run at and around the five nudging points. The initial mean areal difference is for
both runs 0.1695. At the first observation time this error has decreased for the nudging run
till 0.0509, while the error of the no nudging run only decreases till 0.0748. At the second
observation time the error for the nudging run has further decreased to 0.0365 and for the no
nudging run this error reaches a value of 0.0551. At the end of the simulation these errors have
again increased because the nudging technique is not active anymore to become respectively
0.0448 and 0.0660. From these values and the plots can be concluded that also for the initial
perturbation run the computed surface soil moisture values improve when using the nudging
technique.

To see the effect of the nudging technique on the temporal variation of the soil moisture at
the nudging nodes, also for the initial conditions perturbation run this temporal variation of
the soil moisture at these five nodes has been investigated. Figure 13 shows the temporal
variation of the soil moisture at the five nudging points for the base run, the no nudging run
and the nudging run as calculated by the initial condition perturbation run. The top two
plots show a saturated soil for all of the runs for almost the whole simulation period. Only a
small decrease in soil moisture can be noticed after around 12000 seconds. But even here a
difference between the nudging and the no nudging run can be seen. During the end of the
assimilation time when the no nudging run already decreases, the nudge run stays saturated
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Figure 13: The temporal variation of soil moisture at the five observation points for the base
run (dotted line), no nudge run (dashed line) and the nudge run (solid line) performed by the
initial condition perturbation run with the two observation times at 3600 s and 10800 s. The
nudging parameter values used are: G=0.1, ¢ =1, 7 = 1800s, R, = 100 m, and R, =2 m
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for these two nodes. Even after the assimilation time has ended it takes a while before the
nudging run starts to decrease.

The other three nodes show a more interesting behavior. At time 0 the base run differs
significantly from the nudging and no nudging run as a result of different initial conditions.
Until the beginning of the first asimilation time the nudge run and the no nudge run are (by
definition) exactly the same. However at the beginning of the assimilation time it can be
seen that the nudging run is immediately corrected upward, towards the base run, while the
no nudging run remains decreasing. Also after the first assimilation time the results of the
nudging run remain close to those of the base run as a result of the same atmospheric inputs.
Therfore the correction which has to be made at the second observation point is much smaller
compared to the first assimilation point or the corrections at the atmospheric perturbation
run. Also after the second assimilation time has ended the nudging run remains till the end of
the simulation very close to the observation data. Therefore it can be concluded from Figure
13 that also for the initial condition perturbation runs, the implementation of the nudging
technique considerably decreases the error between the computed values and the observed
values.

6 The influence of the nudging parameters

6.1 Introduction

After having seen the influence of the nudging technique on the hydrological results in the
previous chapter, this chapter describes the influence of some nudging parameters on the
nudging effect. The influence of different values for the nudging parameters has been inves-
tigated in terms of hydrological as well as computational bahavior, using the atmospheric
perturbation scenario . Section 6.2 describes the influence of G, section 6.3 the influence of
R, and section 6.4 the influence of 7 on the hydrological and computational results.

6.2 The influence of (¢

Table 2 shows the effect of different G values on some numerical and computational results.
From this table it can be concluded that for small values of G' (till G = 0.1) the cumulative
absolute mass balance error is generally smaller compared to the no nudge run while larger
G-values show a small increase in the cumulative absolute mass balance error. However the
cumulative relative mass balance error is smallest for the no nudging run. The total number of
required back-stepping occurences is for G-values till 0.3 relatively small. For G-values of 0.5
and higher this number increases rapidly due to numerical instability. The total CPU reaches
a minumum for G=0.005 of 837 seconds, which is almost 44 percent less than required for
the no nudging run. However for GG-values of 0.5 and higher this total CPU increases rapidly.
The number of total timesteps shows a similar behavior and also reaches a minimum for G =
0.005 of 6827 timesteps, which is a decrease of 29 percent compared to the no nudging run.

The minum timestep size is large for the no nudging run and for the run with G = 10~3. For
(G-values higher than 1072 the minimum timestep size decreases and even reaches the minimal
allowed timestep size twice (for G = 0.005 and ¢ = 0.1). For G-values of 0.3 and higher there
are a lot of back-stepping occurences but the minimal allowed timestep size is never reached for
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Table 2: The effect of the different G-values on the numerical and computational results.
Note that “Total timesteps” does not include back-stepping occurrences.

G-values no-nudge 0.001 0.005 0.01
Cum. abs. mass bal. error | 1.64784 -10* | 1.58407 -10* | 1.37183 -10* | 1.35106 -10*
Cum. rel. mass bal. error -5.70785 -6.18765 -7.05843 -7.41774
Total back-stepping occur. 1 1 12 2
Total CPU for the simul. 1408 1315 837 1393
Total timesteps 9655 11173 6827 10593
Smallest timestep 0.125 0.25 0.0001221 0.03125
Largest timestep 32 32 32 32
Average timestep 1.491 1.289 2.109 1.359
Avg NL iter. per timestep 4.20 4.02 4.30 4.04
G-values 0.05 0.1 0.3 0.5
Cum. abs. mass bal. error | 1.64016 -10* | 1.57571-10* | 1.66649 -10* | 1.62116 -10*
Cum. rel. mass bal. error -9.43828 -9.10268 -9.61364 -9.36321
Total back-stepping occur. 4 10 5 452
Total CPU for the simul. 1165 1040 1612 1901
Total timesteps 6959 7196 12535 9656
Smallest timestep 0.007813 0.0001221 0.0004883 0.0004883
Largest timestep 32 32 32 32
Average timestep 2.069 2.001 1.149 1.491
Avg NL iter. per timestep 4.25 4.34 4.27 6.64
G-values 0.8 1.0 10.0

Cum. abs. mass bal. error | 1.65944 -10% | 1.65472 -10% | 1.71729 -10*

Cum. rel. mass bal. error -9.58681 -9.53248 -9.83784

Total back-stepping occur. 1631 2121 31299

Total CPU for the simul. 5564 5137 81385

Total timesteps 14624 16104 54157

Smallest timestep 0.0004883 0.0004883 0.0002441

Largest timestep 32 32 32

Average timestep 0.9847 0.8942 0.2659

Avg NL iter. per timestep 9.82 10.70 32.12
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Table 3: The influence of G on the mean spatial difference of the soil moisture at the surface
nodes between the base run and the nudging run at three different times for the atmospheric
perturbation run.

| time (seconds) | 3600 | 10800 | 14400

no nudging run | 0.2997 | 0.2861 | 0.2646
G=10"" 0.2992 | 0.2832 | 0.2638
G=10"3 0.2934 | 0.2484 | 0.2521
G = 0.005 0.2622 | 0.1867 | 0.2036
G =0.01 0.2364 | 0.1777 | 0.1928
G =0.05 0.2063 | 0.1775 | 0.1888
G=01 0.2036 | 0.1785 | 0.1888
G=03 0.2020 | 0.1795 | 0.1887
G=05 0.2018 | 0.1802 | 0.1887
G=08 0.2016 | 0.1804 | 0.1886
G=1.0 0.2017 | 0.1805 | 0.1885
G - 10.0 0.2015 | 0.1813 | 0.1883

these runs. For all runs the largest time step reaches the maximal allowed timestep which is in
this case 32 seconds. The average time step is largest for the run with G' = 0.005 but also the
runs with G-values of 0.05 and 0.1 have an average timestep size which is larger than 2 seconds.
For the nudging runs with G-values of 0.8 and 1.0 the average timestep becomes smaller than
1 second. The average nonlinear iterations per timestep generally remains between 4.0 and

4.3 for G-values till 0.3 while for higher (G-values this number increases to reach a value of
32.12 when G = 10.

Table 3 shows the effect of the G term on the mean spatial error of the soil moisture at the
surface nodes for the nudging runs compared to the base run at three different times. For the
no nudging run the mean difference is largest at time 3600 and smallest for time 14400. For
the nudging runs however the smallest mean difference can be seen at the second observation
time due to the nudging technique and shows an increase in the error for t is 14400.

For a G-value of 107* the mean difference is close to those values of the no nudging run.
However for increasing G-values an decreasing mean difference can be seen. For the first
observation time this decrease goes on till G = 0.8 after which it slightly increases for G =
1. However after G = 0.05 the increase of the improvement decreases. For the run with G
= 0.05 the improvement compared to the no nudge run is 31.2 percent while for G = 0.8
this improvement is 32.7 percent. The same behavior can be seen at time 14400 s, at which
however the improvement stabilizes after G = 0.05.

The results for the second observation time show a slightly different behavior in the decrease
of the difference. For this time it reaches a minimum for the run with G = 0.05 and shows
increasing values for higher G-values. Therefore and, taking into account the higher required
CPU for the larger G-values (see table 2), in this case for the spatial distribution of soil
moisture content at the surface nodes the optimal G-value is around 0.05.

From Table 4 can be seen that the variance of the difference between the observed and the
computed values of surface soil moisture decrease with increasing values of G to reach a
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Table 4: The influence of G on the variance (o) of the differences between the base- and
nudging run of the spatial soil moisture values at the surface nodes averaged over the whole
similation time.

‘ G-value ‘ o ‘ G-value ‘ o ‘
G = 0.0001 | 0.0281 | G =0.3 | 0.0233
G =0.001 | 0.0260 | G =0.5 |0.0233
G =0.005 [0.0233 | G=0.8 |0.0233
G =0.01 0.0226 | G = 1.0 | 0.0233
G =0.05 0.0231 | G = 10.0 | 0.0233
G =0.1 0.0232

minimum value of 0.0226 at G = 0.01. For a G value of 0.1 ¢ has increased to 0.232 and for
G -values 0.3 till 1.0 the variance remains the same.

Figure 14 shows the effect of the value of G on the temporal variation of soil moisture values
at the five nudging points. Figure 14 shows the results of seven nudging runs, all with different
values of G together with the base run and the no nudging run. The thick line represents
the observation data and the dotted line the no nudging run. The nudging runs are labeled 1
to 6 representing the G values respectively of 107, 1072, 0.005, 0.01, 0.1 and 0.5. From the
bottom three graphs of Figure 14 it can be seen that the higher the value of G, the stronger
the computed data are driven towards the observation data. Compared to the run with G =
0.1, which has been used in all previous runs, the run with G = 0.5 converges better to the
base run and for G-values below 0.1 the opposite can be seen. For G = 1072 almost no effect
can be seen during the first assimilation time, however during the second assimilation time a
clear difference between the nudging and no nudging run can still be seen. For a G-value of
10~*also this difference at the second assimilation time has mostly disappeared. Between the
results of the nudging runs with G-values from 0.3 to 1 almost no distinction in the temporal
variation of soil moisture values at the nudging points can be seen. Therefore this category
is in this figure only represented by G = 0.5.

Besides this difference in stronger or less strong convergence to the observation data a second
difference between the several nudge runs can be noticed from this figure. The higher the
values of G the quicker the response of the nudge run. For the run with the G-value of 0.5
the increase at the first assimilation time and the decrease at the second assimilation time are
much “steeper” compared to the runs with lower G-values. From the top two plots a same
effect of the different G-values can be concluded; the higher the values of G, the stronger and
sooner is the convergence towards the observation data. Also for these nodes it is shown that
for a G-value of 10™* the influence of the nudging is nil.

Figure 15 shows the difference in temporal variation of the soil moisture values at two of the
five nudging points for G-values of 0.1, 1 and 10. From this figure it can be concluded that
despite the very strong effect of G = 10 on the numerical results , its effect on the hydrological
results is relatively small.
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Figure 14: The influence of G on the temporal behavior of the soil moisture content at the
five nudging points together with the base run (thick line) and the no nudging run (dotted
line). 1: G =107 2: G=10"23: G = 0.0054: G = 0.01,5: G =0.1,6: G = 0.5
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Figure 15: The influence of high G-values on the temporal behavior of the soil moisture
content at two nudging points 1: G =0.1,2: G =1,3: G =10

6.3 The influence of R,

After the influence of G on the nudging effect had been investigated, the effect of the horizontal
radius of influence of the nudging technique (R,,) on the same variables was investigated.

Table 5 shows the influence of R,,on the numerical and computational results. The cumulative
absolute mass balance error generally increases with increasing R,,-value. and stabilizes for
R, values of 150 m and higher. The total back-stepping occurences are low for the no-nudge
run and the run with R,,=50. For the runs with higher R,,-values the total back-stepping
occurences are about 11 with the exception for R;, = 200, which only has 4 back-stepping
occurences. This run also has a very low CPU of only 622 seconds, which is a decrease of
56 percent compared to the no nudge run. Also the number of required timesteps reaches a
minimum of 4565 for this run, which is a decrease of 53 percent compared to the no nudging
run. For the total CPU and the number of timesteps the nudging run with R, = 50 performs
worst. However for this run the minimum required timestep size is relatively high, while for
the runs with R, =100,150 and 250 meter the minumum allowed timestep size is reached.
For all runs the timestep size reaches the maximum allowed size of 32 seconds. The average
timestep over the simulation exceeds 2.0 for all runs with R,,-values of 100 m and larger
and reaches a maximum for R,, = 200 with an average timestep which is even larger than 3
seconds. The average nonlinear iterations per timestep is for all runs between 4.1 and 4.5.

Figure 16 shows the influence of R, on the spatial distribution of the nudging effect for the
difference in the water saturation at the surface nodes between the base run and the nudging
run. The results have been plotted for three different times: 3600 s (left column), 10800 s
(central column) and for t = 14400 s (right column) for three nudging runs with different
R,,-values. The three plots at the top show the results for the nudging run with R., = 50
m, the three plots in the middle those for R,, = 150 m and the three plots at the bottom the
results for R,,= 250 m.

From the results for the run with R,;,= 50 m can clearly be seen that the nudging effect is
restricted to an area close to the nudging points. Only the grid cells in which the nudging
points are located show a clear decrease in the difference between the computed and observed
data. This behavior changes when R,, increases. Irom the run with R,,-values equal to
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Table 5:

The effect of the different R,,-values on the numerical and computational results.

‘ R-values (G = 0.1, 7 = 1800) ‘ no-nudge 50 100
Cum. abs. mass bal. error 1.64784 -10% | 1.65996 -10* | 1.57571 -10*
Cum. rel. mass bal. error -5.70785 -7.06258 -9.10268
Total back-stepping occur. 1 2 10
Total CPU for the simul. 1408 1486 1040
Total timesteps 9655 12079 7196
Smallest timestep 0.125 0.0312 0.0001221
Largest timestep 32 32 32
Average timestep 1.491 1.192 2.001
Avg NL iter. per timestep 4.20 4.13 4.34
R-values (G = 0.1, 7 = 1800) 150 200 250
Cum. abs. mass bal. error 1.62903 -10* | 1.57991 -10* | 1.47116 -10*
Cum. rel. mass bal. error -10.8507 -11.0386 -10.8640
Total back-stepping occur. 11 4 11
Total CPU for the simul. 910 622 954
Total timesteps 7076 4565 6771
Smallest timestep 0.0001221 0.003906 0.0001221
Largest timestep 32 32 32
Average timestep 2.035 3.154 2.127
Avg NL iter. per timestep 4.26 4.46 4.32

Table 6: The influence of R, on the mean spatial difference of the soil moisture at the surface
nodes between the base run and the nudging run at three different times for the atmospheric
perturbation run.

| time | 3600 | 10800 | 14400 |
no nudging run | 0.2997 | 0.2861 | 0.2646
R = 50 0.2580 | 0.2424 | 0.2361
R = 100 0.2036 | 0.1785 | 0.1888
R = 150 0.1913 | 0.1614 | 0.1754
R = 200 0.1891 | 0.1577 | 0.1731
R = 250 0.1718 | 0.1454 | 0.1630
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Figure 16: The influence of R, on the spatial distribution of the difference between the base
and nudging run. The upper three graphs show the results at the times (from left to right)
3600, 10800 and 14400 for R,, = 50 m, the three plots in the center for R,, = 150 m and
the bottom three graphs for R,, = 250 m.
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Table 7: The influence of R, on the variance (o) of the differences between the base- and
nudging run of the spatial soil moisture values at the surface nodes averaged over the whole
simulation time.

‘ R-value ‘ o

R =50m | 0.0258
R =100 m | 0.0232
R =150 m | 0.0226
R =200 m | 0.0219
R =250 m | 0.0206

150 m it can be seen that the area of influence has increased. Not only the grid cells in which
the nudging points are located show a better agreement of the nudging run with the base run
but also the surrounding cells show a clear improvement. At time 3600 this is only the case
for the three bottom nudging points. However at the second observation time and at the end
of the simulation this wider spatial influence of the nudging technique can be seen for all the
nudging points.

This increase in the spatial influence of the nudging technique leads to a significant im-
provement of these results. The mean difference between the base- and nudging run clearly
decreases with increasing R,,-values (Table 6). From this table it can be seen that for all
times the error in the spatially calculated surface soil moisture decreases with increasing
R,,-values. But even the results for the run with R, -value equals to 50 m an average im-
provement of 13.3 percent in the results compared to the no nudging run can be noticed. For
R, = 250 this improvement has increased to 43.4 percent. Further it can be seen from Table
6 that the influence of larger R, -values is biggest at the two observation times but also at
time 14400, which is one hour after the second observation time and half an hour after the
nudging technique has ended, a considerable improvement of the results compared to the no
nudging run can still be seen.

Figure 16 also shows that for the run with R, = 250 m the decrease in the error compared to
the run with R,, = 150 m can be seen for most cells. However for some grid cells (for example
(300,100), (300,150) and (250,150) ) the run with R;, = 250 m shows an increased difference
between the base and nudging run. However the mean difference of the run with R,, = 250 m
shows an improvement of more than 9 percent compared to the run with R,,= 150m. From
Figure 16 and Table 6 it can therefore be concluded that increasing values of R, lead to a
better spatial agreement of the computed data with the observation data. From these results
together with Table 5, which shows that the total CPU and the number of timesteps do not
show an increase for larger R,,-values we can conclude that the use of bigger R,,-values is
better compared to smaller values.

From Table 7 it can be seen that the variance of the error in surface soil moisture decreases for
increasing values of R;,. This means that the error, which also itself decreases with increasing
R;,-values (table 6), is more smoothed over the grid cells. The decrease in variance between
R,, = 50 m and R;, = 250 m is more than 20 percent.
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Table 8: The effect of the different 7-values on the numerical and computational results.

| 7-values (G = 0.1, R = 100) | no-nudge | 900 ‘ 1350 |
Cum. abs. mass bal. error 1.64784 -10* | 1.46045 -10* | 1.56898 -10%
Cum. rel. mass bal. error -5.70785 -7.77830 -8.83323
Total back-stepping occur. 1 3 0
Total CPU for the simul. 1408 1173 816
Total timesteps 9655 11294 7099
Smallest timestep 0.125 0.003906 0.0625
Largest timestep 32 32 32
Average timestep 1.491 1.275 2.028
Avg NL iter. per timestep 4.20 4.07 4.27
T-values (G = 0.1, R = 100) 1800 2250 2700
Cum. abs. mass bal. error | 1.57571 -10* | 1.53507 -10* | 1.52101 -10*
Cum. rel. mass bal. error -9.10268 -9.00813 -9.04928
Total back-stepping occur. 10 11 0
Total CPU for the simul. 1040 1529 1564
Total timesteps 7196 11248 11284
Smallest timestep 0.0001221 0.0001221 0.0625
Largest timestep 32 32 32
Average timestep 2.001 1.280 1.276
Avg NL iter. per timestep 4.34 4.17 4.16

6.4 The influence of 7

The influence of the time during which the nudging technique is active (7) has also been
investigated. Table 8 shows the effect of the 7 value on the numerical and computational
results. From this table it can be seen that the cumulative relative mass balance error increases
with increasing 7 values and stabilizes for 7 values of 1800 and higher around -9.05 percent.
The number of back-stepping occurences is generally small and even 0 for the runs with 7
values equal to 1350 and 2700 s. The total CPU for the simulation reaches a minimum for 7
equals 1350 of 816 seconds. For the runs with 7 values of 2250 and 2700 this total CPU is
almost twice as much compared to this minimum CPU. The total number of required timesteps
shows a similar behavior with the exception of the high number of required timesteps for the
run with 7 equals 900 s. The smallest time step is relatively large for the nudge runs with 7
values of 1350 and 2700 seconds but reaches the minimum allowed timestep for the runs with
7 values 1800 and 2250 seconds. For all runs the timestep size reaches the maximum allowed
32 seconds. The largest average timestep size is reached for the two runs with 7 values of 1350
and 1800 seconds, both with a value of over two seconds. The average nonlinear iterations is
for all runs between 4.0 and 4.35.

Table 9 shows the influence of 7 on the spatial error between the observed and computed
soil moisture values at the surface nodes at three different times. At t = 4200 s, which is
only 10 minutes after the first observation time, the mean difference increases with increasing
T-values. From this it seems that the spatial effect of the nudging technique close to the
observation time is better for small values of 7. However the results for the two other times,
which are both one hour away from the observation times, show the opposite behavior. The
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Table 9: The influence of 7 on the mean spatial difference of the soil moisture at the surface
nodes between the base run and the nudging run at three different times (4200 s, 7200 s,
14400 s) for the atmospheric perturbation run.

| time | 4200 | 7200 | 14400 |
7=900 [0.2387 [ 0.2172 | 0.1944
7=1350 | 0.2403 | 0.2038 | 0.1891
7=1800 | 0.2424 | 0.1975 | 0.1887
7 =2250 | 0.2432 | 0.1919 | 0.1880
7 =2700 | 0.2435 | 0.1874 | 0.1861

Table 10: The influence of 7 on the variance (o) of the differences between the base- and
nudging run of the spatial soil moisture values at the surface nodes averaged over the whole
similation time.

7-value ‘ o ‘
T=900s | 0.0244
7 = 1350 s | 0.0241
= 1800 s | 0.0238
= 2250 s | 0.0235
T = 2700 s | 0.0235

Sl

difference between observed and computed data decreases with increasing 7-values. This is
because the nudging technique is active longer for runs with higher 7-values than with small
T-values causing that at times not close to the observation times the error is smaller compared
to the runs with small 7-values.

Table 10 shows the influence of 7 on the variance of the spatial error of the surface soil
moisture values and from this table it can be seen that the variance slightly linearly decreases
with increasing 7 till 7 reaches the value of 2250 s. For higher values o remains constant at
a value of 0.0235, which is only 3.7 percent less than for 7 of 900 s.

The influence of 7 on the temporal variation of soil moisture values has also been investigated.
Figure 17 shows the influence of 7 on the temporal behavior of the soil moisture at the five
nudging points. The thick line represents the observation data, and the dotted line the no
nudging run. The nudging runs are labeled 1 to 5 representing the 7 values ranging from
900 s to 2700 s. From the bottom three graphs it can clearly be seen that the shorter 7, the
longer the nudging run follows the no nudging run. For the run with 7 = 2700 the results
of the nudging run already differ from the no nudging run after 900 s, while the nudging
effect for the run with 7 = 900 s can only be seen after 2700 seconds. Also after the first
observation time at first the 7 = 900 run converges to the no nudging run, while the other
runs remain longer close to the observed data. This convergence towards the no nudge run
is much stronger for the runs with low 7-values compared to the runs with higher 7 values
as a results of the smaller influence time of the nudging technique. This same behavior can
also be seen for the second observation time but the differences between the nudging runs are
much smaller at this time.
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Figure 17: The influence of 7 on the temporal behavior of the soil moisture content at the
five nudging points together with the base run (thick line) and the no nudging run (dotted
line). 1: 7 =900s, 2: 7 = 1350s, 3: 7 = 1800s, 4: 7 = 22505, 5: 7 = 2700s
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From these three plots the influence of the weighting functions can clearly be seen. The
temporal dependency of the weighting functions has been defined as a head function (see
Figure 3). This weighting function increases over a time perod of 7/2 linearly from 0 to 1
and remains 1 for a period of 7 after which it decreases linearly to 0 over a time period of
7/2. The period when the weighting function remains 1 can be recognized in the convergence
of the nudging runs to the base run. From these three plots it can be seen that the nudge
run does not converge to the actual value of the base run at the start of the assimilation time
but converges until it reaches the value observed at the first observation time and remains
constant, as a result of the defined temporal dependency of the weighting function for a period
of 7.

From the upper two graphs it can be seen that the defined time of nudging influence implies
that the nudge runs with larger 7 values remain close to the observed saturated soil moisture
values for a longer time, while the runs with lower 7 values converge quicker, longer and
therefore further toward the no nudging run for both assimilation times.

From the three bottom plots it can be concluded that higher 7 values do not neccesarily lead
to better results in the temporal behavior of soil moisture values. The run with 7 value equal
to 2700 overestimates the base run much more compared to the runs with 7 = 1800 and 7 =
2250, which seem to have a better agreement with the base run between the two assimilation
times.

For the upper two graphs however higher 7 values do lead to a better agreement with the base
run, because overestimating is in this particular case (saturated observed data) not possible.
Generally however it can be concluded that a longer time of influence does not for all cases
lead to better results in the temporal behavior of soil moisture. However for very small values
of 7 the results are worse than for very high values from which can be concluded that it is
preferable to take higher 7 values.

7 Conclusions and recommendations

7.1 Conclusions

From the application of the CATHY model to the testcase it can be concluded that the
implementation of the nudging technique has a positive influence on the hydrological results.
Especially for the grid cells in which the five defined nudging points are located and the
surrounding cells, the computed results of the nudging run show a better agreement with the
observed values than the run without the nudging technique. This improvement is strongest
during the assimilation times, but also at the end of the similation, which is one hour after
the last observation time and half an hour after the last assimilation time has ended, a clear
improvement compared to the run without the nudging technique can still be seen.

This improvement is made because during the assimilation times the computed hydrological
variables at and around the nudging points are driven towards the observed data to reach
a better agreement with these values. However for the atmospheric perturbation run an
immediate increase in difference between the observed and computed data is noticed after the
assimilation time has ended, while for the initial condition perturbation run the computed
values remain close to the observed values, also after the assimilation time has ended.
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From these two perturbation runs it is difficult to draw general conclusions regarding the
effect of the nudging technique on the computation time. In this case the run including
the nudging technique is more efficient for the atmospheric perturbation run, while for the
initial conditions perturbation run the run without the nudging technique shows a better
computational efficiency.

Besides this general effect of the nudging technique on the results also the influence of three
separate nudging parameters has been determined. The influence of G on the nudging effect is
that generally for increasing G values a decrease in the mean areal difference between observed
and computed data is reached. This improvement is not only made during the assimilation
times but also after the nudging technique is not active anymore. The improvement in the
spatially computed data is reached because for larger G values the computed data converge
stronger towards the observation data during assimilation times and reach therefore a better
agreement with these values. However for G values larger than 0.1 almost no difference in
convergence can be noticed. This is also the reason why the decrease in mean spatial error
stabilizes for G values larger than 0.1.

From this stabilization in improvement of the hydrological results, together with the fact
that for higher G values, especially for those of 0.5 and higher, the number of back-stepping
occurrences and therefore the total number of required time steps increase rapidly causing
a much higher total CPU compared to smaller G values, it can be concluded that it is not
recommendable to take high G-values. In this case an optimal value of G is between 0.05 and
0.1.

In contrast to increasing G values, increasing values of R, do not lead to an increase in back-
stepping occurrences and total number of timesteps and therefore do not show an increase
in total CPU. The minima for these variables are even reached for a run with a relative
high value of R;,. Increasing R,, values lead to considerable decreases in the mean spatial
differences between the observed and computed values. This is because a larger area around
the observation points is influenced by the nudging technique when using higher R, values.
Also the variance of the spatially distributed error decreases with increasing R, values,
showing that for a larger radius of influence not only the mean error is smaller but also
that the error is more smoothed over the grid cells. In contrast to increasing G values, the
improvements in the mean spatial error do not stabilize for high R,, values. The influence
of R, on the convergence towards the observed data at the nudging points is much smaller
compared to the influence of G and 7 on this convergence.

From these improvements for higher R, values without requiring more CPU it can therefore
be concluded that it is better to take high values for the horizontal radius of nudging influence.

From the investigations of the influence of the time of the nudging technique being active it
can be concluded the mean spatial error decreases with increasing 7 values at times outside
the assimilation period, while the spatial error increases with increasing 7 values at times
close to the observation times. It seems that the smaller 7, the stronger the influence of the
nudging technique is during the assimilation time, while due to the small time of nudging
influence, its influence further away from the observation times decreases. Further it can be
concluded that for higher 7 values the convergence toward the observation values is stronger
and lasts longer. However higher 7 values do not neccessary lead to better results, because for
high 7 values the computed results between the two assimilation times could remain too long
at the value of the first observed value while the actual observed values change. Therefore
it can be concluded that a higher time of nudging influence does not automatically lead to
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better results.

7.2 Recommendations

This study was a first testing of a data assimilation technique (Newtonian relaxation), imple-
mented in a complex spatially distributed hydrological model, to one particular testcase. This
study provides a first impression of the influence of the nudging technique on the hydrologi-
cal and numerical results. However to get a better understanding of the the exact influence
of the nudging technique and its parameters, further research is required. Therefore a few
recommendations for further research are summarized in this paragraph.

The influence of the number of observation times and therefore assimilation periods needs still
to be investigated. Because small 7 values seen to have a better agreement with the observed
data close to the observation times but perform worse further away from these observation
times it would be interesting to to see the effect of more assimilation times with smaller 7
values on the results.

Because the influence of the nudging parameters has only been investigated for one particular
test case it would also be good to see the effect of these parameters in other testcases in
order to draw general conclusions. For example, is the same optimal value of G are reached?
Does the improvement of the hydrological results always stabilize for high G values? Does
increasing the radius of influence always lead to better results without requiring a higher

CcpPU?

Finally, to get a better understanding of the nudging technique more research has to be done
on the influence of the weighting functions (W). Are the defined functions for the horizontal,
vertical and temporal dependency the optimal ones? What would be the effect on the influence
of the nudging technique if the defined “head function” for the temporal influence is replaced
by one similar to that used for the horizontal influence?
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