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1 SummaryThis report describes a series of simulations conducted with a hydrological model, CATHY,to test a recently implemented data assimilation technique, Newtonian nudging.The data assimilation technique has been implemented in the spatially distributed CATHY(CATchment HYdrology) model to improve the hydrological results. The nudging data assim-ilation technique implemented is a relatively simple 4-D data assimilation technique in whichthe variables are driven (nudged) toward observation data by adding a physical forcing term(F), which is proportional to the di�erence between the actual solutions and the observationsto be assimilated, to the model equation. In the CATHY model these terms have been addedto the Richards equation.The CATHY model has been applied to a test area of 300 by 550 meters, in order to testthe nudging technique. This area is divided into 6 by 11 grid cells of 50 by 50 meters andcontains a lake. In this application a four-hour evaporation perturbated and a four hourinitial conditions perturbated run are made in order to investigate the e�ect of the nudgingtechnique.To obtain observation data a base run has been made, which is perturbated to di�erentiatethe base run from the nudging and no nudging run. Both an atmospheric perturbation as wellas an initial conditions perturbation run are made. From �ve di�erent nodes (the nudgingpoints), the obtained values of the base run are extracted and used as observation dataduring the de�ned assimilation times. In this four-hour simulation two assimilation periodsare de�ned with observation times at respectively 1 and 3 hours and a nudging inuencewhich lasts from half an hour before till half an hour after these observation times.The results of the atmospheric perturbation run show that the nudging run is more e�cientby requiring less timesteps for the simulation. The hydrological results for the nudging runare in better agreement with the observation data compared to the no nudging run. The watertable depths around the nudging points are corrected toward the observed values and also thedi�erence in soil moisture values at the surface nodes between the observed and computeddata is much smaller for the nudging run than for the no nudging run. These improvementscan especially be seen at and around the �ve nudging points. The mean areal decrease incomputed error in surface soil moisture for the nudging run compared to the no nudging runis 35 percent at the two observation times and 29 percent at the end of the simulation.Also the temporal distribution of the soil moistue at the �ve nudging points shows for thenudging run during the assimilation times a much better agreement with the observed values.The initial conditions perturbation run shows the same e�ect of the nudging technique onthe hydrological results, however for this run the nudging run is less computationally e�cientthan the no nudging run.For the atmospheric perturbation run the inuence of some nudging parameters on the nudg-ing e�ect has been investigated in order to get a better understanding of the nudging tech-nique. The inuence of three nudging parameters has been investigated; (i) the G-term, whichdetermines the the relative strength of the nudging term with respect to the physical forcingterm, (ii) Rxy, which is the horizontal radius of inuence of the nudging technique and (iii)� , which is the half period of the de�ned time of nudging inuence.7



The results show that the convergence of the soil moisture values towards the observed valuesat the nudging points strongly varies for di�erent values of G and � , however for G valuesof 0.3 and higher no di�erence in convergence can be noticed. The computed mean arealerror in surface soil moisture values generally decreases with increasing values of Rxy and G,however this decrease stabilizes for G-values larger than 0.1. The inuence of � on this meanareal error depends on whether the time, at which the error is determined, is located closeor far away from the observation time. The inuence of these three nudging parameters onthe numerical and computational results has also been investigated. These results show forincreasing G values an increasing number of back-stepping occurrences and therefore a largerCPU, while this CPU remains constant for increasing R values.2 IntroductionSpatially distributed hydrological models are becoming more and more a necessity to get acomplete understanding of the hydrological behavior at the catchment scale. The requestedinformation for authorities needs to be more complete and detailed nowadays and for this acontinued progress in the understanding of the hydrological catchment response is required.Distributed hydrological models are able to include the spatial distribution of boundary con-ditions and various input data such as rainfall, precipitation, land cover, soil characteristicsand topography. Further they produce spatially distributed detailed outputs of hydrologicalproperties and processes. The availability of remote sensing data, from which useful hydro-logical data can be extracted, makes the use of spatially distributed hydrological models morepopular and more e�ective.However one of the major problems facing spatially distributed modelling is the adjustmentof spatial distributed model parameters. The data which are available to initialize, parame-terize and calibrate the models often mismatch the model complexity and both models andobservation data contain errors and uncertainties. With the availabilty of new data sourcesfor hydrological process observations some of these problems can be alleviated. More avail-ability and accessability of detailed spatially distributed data makes it possible to introducedata assimilation techniques into the hydrological models [Marrocu and Paniconi 2001]. Dataassimilation can be described as a generalization of objective analyses and the objective ofdata assimilation is to provide physically consistent estimates of spatially distributed envi-ronmental variables [McLaughlin 1995]. This is done, in the case of the Newtonian relaxation(or nudging) algorithm used in this study, by adding an additional forcing term to the modelequation, which corrects the model results towards the observation data.A problem applying data assimilation to hydrological models may be the incomplete knowl-edge of the spatial and temporal variability of hydrological variables and processes. Thereforeit is required to have an adequate characterization of the temporal and spatial variability in themeasurement equations and or interpolation and extrapolation formulas which are commonlyused in data assimilation techniques. However due to parameterization and computationaltime most models using data assimilation techniques are not yet applicable at large catch-ment scales at this moment. On the other hand with the improvements in model and dataquality arising from data assimilation and other advances, progress can be expected in turnin the understanding of the dynamics and interactions responsible for the spatial patternswe observe in runo�, water table levels and other components of the catchment scale waterbalance and, at larger scales, for the generation and persistence of oods, droughts, etc on8



seasonal and interannual bases [Paniconi et al. 2001 in preparation].Chapter 3 of this report will describe the CATHY model and its modules. Data assimilation,the Newtonian relaxation method and the nudging in the CATHY model are described inChapter 4. The results of the application of the model including the nudging technique to atest case can be found in Chapter 5. The e�ect of the nudging parameters on the results isdecribed in Chapter 6 and the last chapter summarizes the conclusions of this research andand some recommendations for future research.3 The CATHY model3.1 OverviewThe CATHY (CATchment HYdrological) model is a physically-based distributed model foroverland and subsurface ow simulation at the catchment scale [Putti and Paniconi 2001 inpreparation]. The model couples a three-dimensional Richard's equation-based �nite elementsubsurface ow module with a one-dimensional DEM-based �nite di�erence surface routingmodule. The surface routing module, SURF-ROUTE [Orlandini and Rosso 1996] uses adi�usion-wave formulation for describing both the hillslope and channel ow. To account forthe retardation and storage e�ects, the accumulation of water in depressions and lakes hasbeen implemented. The subsurface module, FLOW3D [Paniconi and Wood 1993], is basedon the solution of the Richard's equation for variably saturated porous media and describesthe in�ltration to and ex�ltration from the vadose zone. The FLOW3D module partitionesthe atmospheric input (precipitation and evapotranspiration) into subsurface and surfaceow. Starting from a digital elevation model discretization of the catchment surface and acorresponding three-dimensional grid of the underlying aquifer, the physical conditions at thesurface and the soil properties are determined for each grid cell. Based on these properties,FLOW3D calculates then at each grid node the overland ux values, which are transferred tothe DEM-cells and are implemented as sink or source terms in the SURF-ROUTE module.The SURF-ROUTE module routes these overland ux values and calculates the resultingponding head values that will be used as a boundary condition in FLOW3D.The mathematical model describing the subsurface and surface ow is based on the followingpartial di�erential equations [Bixio et al. 2000]:�(Sw)@ @t = r � [KsKr(Sw) (r + �z)] + qs(h) (1)@Q@t + ck @Q@s = Dh@2Q@s2 + ckqL(h;  ) (2)where �(Sw) = SwSs+�@Sw@ , Sw( ) is the water saturation, Ss is the aquifer speci�c storagecoe�cient, � is the porosity,  is the pressure head, t is the time, r is the gradient operator,Ks is the saturated hydraulic conductivity tensor, Kr(Sw) is the relative hydraulic conduc-tivity function, �z = (0; 0; 1)T , z is the vertical coordinate directed upward and qs representsdistributed source (positive) or sink (negative) terms (volumetric ow rate per unit volume).9



3.2 The subsurface ow moduleThe FLOW3D-module is a three-dimensional tetrahedral �nite element model for ow invariably saturated porous media. It is based on the Richards equation and is applicable in boththe saturated and the unsaturated zone and is able to handle temporally and spatially variableboundary conditions, including seepage faces and atmospheric inputs. The soil hydraulicproperties are speci�ed by Ks and by di�erent characteristic relationships of Sw( ) andKrw( ) such as those of van Genuchten and Nielsen [1985], Huyakorn et al. [1984], or Brooksand Corey [1964]. The ones of van Genuchten can be written as:�( ) = �r + (�s � �r)[1 + �]� ;  < 0 (3)�( ) = �s;  � 0 (4)Kr( ) = (1 + �)�5=2 [(1 + �) � � ]2 ;  < 0 (5)Kr( ) = 1;  � 0 (6)where � is the volumetric moisture content, �r is the residual moisture content, �s is thesaturated moisture content (generally equal to the porosity �), � = ( = s)n,  s is the capillaryor air entry pressure head value, n is a constant, and  = 1� 1=n for n approximately in therange 1:25 < n < 6.The corresponding general storage term is� = SwSs + �dSwd (7)where Sw = �=�s and Ss is the speci�c storage.The soil hydraulic characteristic equations used by Huyakorn et al. [1984] express the watersaturation in terms of e�ective saturation Se, in the form Sw( ) = (1 � Swr)Se( ) + Swr,where Swr is the residual water saturation. The e�ective saturation-pressure head relation isthen written as Se( ) = [1 + ��( a �  )�]�  <  aSe( ) = 1  �  a (8)while two possible expressions for the relative conductivity-pressure head relationship arekrw( ) = krw( ) (Se( )) = S�e (9)and krw( ) = 10G(Se( )) (10)where G(Se) � aS2e + (b� 2a)Se+ a� b. In the above expressions  a is the air entry pressureand �, �, , �, a, and b are constants.The input ux values are considered as potential rainfall or evapotranspiration rates for thetreatment of atmospheric boundary conditions while the actual rates, which depend on the10
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potentialFigure 1: Atmospheric forcing, boundary conditions and runo� generation in the CATHY model(after Putti and Paniconi [2001 in preparation]).prevailing pressure head and ux values at the surface, are calculated by the model during thesimulation. Figure 1 shows the process of automatic switching of surface boundary conditionsfrom a speci�ed ux (Neumann) to a constant head (Dirichlet) condition, and vice versa,which has been implemented to correctly reproduce the physical phenomena occurring at thesurface. A surface node can be in one of four states at any time:� \air dry",� unsaturated,� saturated (but not ponded)� ponded.Physically, the model input threshold pressure head parameter, pond-head-min, determinesthe distinction between a surface node being "saturated" or "ponded". By introducing theboundary condition switching, which is performed by the subsurface module into the surfacerouting model, this module is extended to allow excess water to accumulate at the surface asponding. This ponded water, converted to a ux qL, constitutes a forcing term input to therouting model at each new time step. The treatment of the ponding case is schematized inFigure 1, which we subdivide into four scenarios of positive or negative potential and actualuxes. For each scenario the �gure explains what is the result (in terms of ponding, saturationstatus, runo� generation, boundary condition, and actual ux into or out of the soil) at theend of a time step if at the beginning of the time step the potential, actual, and pondinguxes acting on a surface node during subsurface module execution are as indicated.11



3.3 The surface routing moduleIn the CATHY model the catchment surface runo� is considered to be determined by thetwo processes of channel and hillslope transport operating across all the hillslope and streamchannels forming a watershed and including storage and retardation e�ects of depressions andin�ltration and ex�ltration e�ects from subsurface soils. It is assumed that ow on hillslopesconcentrates in rills caused by di�erences in soil erodibility or topographic irregularities. Therill formations are lumped at the DEM elemental scale into a single conceptual channel toreach a minimal computational e�ort and to economize on the number of model parameters.The drainage system network, consisting of these rills is extracted from the catchment DEM.The distinction between hillslope and channel ow is based on the \constant critical suppportarea" concept as described by Montgomery and Foufoula-Georgiou [1993]. Channel ow isassumed to occur at all cells for which the upstream drainage area D equals or exceeds thethreshold value D�, while rill ow is assumed to occur at all those cells for which D does notexceeds the threshold value D�.A routing scheme developed on the basis of the Muskingum-Cunge method with variableparameters is used to describe both hillslope rill and network channel ows, with di�erentdistribution of the Gauckler-Strickler roughness coe�cients to take into account the di�erentprocesses that characterize the two physical phenomena [Orlandini and Rosso 1996]. Overlandruno� is routed by the model from the uppermost catchment DEM cell downstream to theoutlet, following the previously determined drainage network. The inow or outow rate qL,which a grid cell will receive from an upslope neighbor cell and discharge to the downslopeneighbor cell is given by: ql = q�x�y�s (11)whereq = the local contribution of surface runo�, as calculated by FLOW3D,�x and �y are the cell sizes and�s = the channel lenght within the cell.The convection di�usion ow equation, discretized by the Muskingum-Cunge method, is usedto route the inow hydrographs and the overland uxes, qL, into each individual channel.This equation is given by:Qk+1i+1 = C1Qk+1i + C2Qki + C3Qki+1 + C4qLki+1 (12)where Qk+1i+1 is the discharge at the network location (i+1�s) and time (k+1)�t, qLki+1 is theoverland ow rate at the (i+1)st space interval and time k�t and Ci is the routing coe�cientwhich depends on ck, on the channel lenght �s, on the temporal interval �t and on thenumerical scheme. After the discharge in and out is determined, the water depth or pondinghead h can be calculated for each cell from simple mass balance considerations.12
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gorithm:for tk = 0 to tmax with step �t do:� solve equation (2) using qkL as input to the SURF-ROUTE model, obtaining Qk+1 andfrom this the distribution of ponding heads hk+1;� use hk+1 and precipitation/evapotranspiration input values at time tk+1 to set up bound-ary and initial conditions for FLOW3D, and solve equation (1) for  k+1� calculate, again with FLOW3D, the overland ux qk+1L using  k+1 and the balancebetween the atmospheric inputs and actual uxes.In this way the coupled modules determine for each time step and for each surface nodewhether it is ponded, saturated, below saturation or air dry, knowing for each of the surfacenodes whether the potential atmospheric forcing is positive or negative. In the case of Dirichletboundary condition the model knows whether the actual, back-calculated ux representsex�ltration or in�ltration and its contributions to many hydrological components and it agsany anomalous events.4 Data assimilation4.1 OverviewData assimilation can be described as a generalisation of objective analyses, whose mainobjective is to provide time dependent spatially distributed estimates that can be updatedwhenever new data become available. These estimates are derived from scattered observa-tions at di�erent times and locations supplemented by additional data that is available toforce the estimation to the observed value. Data assimilation is most closely associated withand applied in the meteorological science since the early 1950's [Daley 1991]. However in the�eld of hydrology, data assimilation is still a relatively new phenomena and is not yet well es-tablished. In the last years data assimilation has been more and more introduced and appliedto hydrological models. Some important data assimilation problems involve characterizationof the spatial and temporal distribution of:� Precipitation� Evaporation� Soil Moisture� Water table elevation� Solute concentrationIn this study a relatively simple data assimilation method has been implemented in the com-plex spatially distributed CATHY model. The data assimilation technique used is Newtonianrelaxation or nudging, in which model variables are driven (nudged) towards observations byan additional \forcing term" to the model equations [Houser et al. 1998]. This assimilationmethod will be explained in the next section.14



4.2 The Newtonian relaxation methodThe Newtonian relaxation method is a 4D data assimilation technique in which variables aredriven toward observations by adding a forcing term to the model equation:@s@t = F (s) (13)This forcing term is proportional to the di�erence between the actual solutions and theobservations to be assimilated. This term is added to the model equations for a certainperiod of time, the assimilation time (ta), which contains in the center the observation time(t0). After assimilation time is ended, the forcing term is relaxed and is not taken activeanymore, causing that the model equations return to their original form. By adding theforcing term to the model equations this results in:@s@t = F (s) +GW (r; t)�(r)(s0o� s) (14)where: s0o are the observations interpolated to the model grid, G determines the relativestrength of the nudging term with respect to the physical forcing term, W (r; t) are weights tobe speci�ed and � � 1 is a factor measuring the accuracy of the observation that if we assumeperfect measures should be taken equal to 1.To get a better understanding of the Newtonian relaxation technique, consider a limited exam-ple which can be solved analytically and in which the following assumptions are made [Marrocuand Paniconi 2001]:� the forcing terms of the system equations are zero,� the product of the nudging factor and and weighting function (GW ) is a constant and� � = 1In this case a a general solution of equation (14) is:s(t) = s(t0)e�GWt + GWe�GWt Z ta0 eGWts0@t (15)If in this case so is also assumed to be constant the solution of equation (14) is:s(t) = so + e�GWt(s(t0)� so) (16)with t0 = to � ta This equation shows that in the case of analyses factor � = 1, "nudged"solution reaches the observation state if assimilation time is in�nite.Because most measurements are taken at discrete points, the continuum form of the nudgingequation needs to be discretized to be able to use these measurements. This can be done15



by relaxing the system equation to individual scattered observations, which is done by in-terpolating the model grid values to the observation points ri, then back to the model gridincluding this last step in the nudging term. In this case equation (14) becomes:@s@t = F (s) + GPLi=1W (ri; t)�(ri)(s0o(ri)� s(ri))PLi=1W (ri; t) (17)4.3 Nudging in the CATHY modelThe coupled distributed CATHY model is based on the Richards, the di�usion wave andthe Darcy equations, which are widely known and accepted mathematical representations ofveri�able conservation principles and therefore this model is a good candidate for implement-ing data assimilation. Due to computational complexity the model has only been applied tosub-catchment scale. Therefore is also chosen to implement this relatively simple data as-similation method because complicated and extended data assimilation techniques will onlycompound this problem. Another reason for choosing the nudging method is that this tech-nique is able to conduct some initial investigations into the applicability and e�ectiviness ofdata assimilation for Richards equation-based 3D hydrological models.The nudging term has been introduced into the Richard's equation which results in [Paniconiet al. 2001 in preparation]:�@ @t = r[KsKr(r + �z)] + q + GPNTk=1PNXi=1W 2ki(X; t)�i(�0 � �i(t))PNTk=1PNXi=1Wki(X; t) (18)where NT is the number of observation times, NX is the number of observation points, �0are the soil moisture observations, G determines the relative strength of the nudging termwith respect to the model forcing term, � � 1 is a quality factor for the observation dataand W (X; t) are the 4-dimensional weighting functions which are assumed to be horizontally,vertically and temporally dependent and can be written as (Figure 3):W (X; t) = W (d)W (z)W (t) (19)The horizontal dependency is described by the Cresman-type horizontal weighting functionswith a de�ned horizontal radius of inuence, Rxy, which can be written as:W (d) = R2xy � d2R2xy + d2 d2 � R2xy (20)W (d) = 0 d2 � R2xy (21)(22)where 16



d2 = (x� x0)2 + (y � y0)2 (23)The vertical weighting function is speci�ed after Seaman and is written as:W (z) = 1� jz � z0jRz jz � z0j � Rz (24)W (z) = 0 jz � z0j > Rz (25)(26)where Rz is the vertical radius of inuence and z0 the vertical coordinate of the observationpoint. If a centered time of inuence is chosen, the temporal dependency of the weightingfunctions can be written as: W (t) = 1 jt� t0j < �2 (27)W (t) = � � jt � t0j�=2 �2 � jt� t0j � � (28)W (t) = 0 jt� t0j > � (29)(30)where � is the half period of the prede�ned time of inuence.The �nite element solution approximates the exact solution  by  ̂ using linear basis functionsW (X) de�ned over a domain 
 discretized by E tetrahedral elements and N nodes whichcan be written as:  �  ̂ = NXj=1  ̂j(t)!j(x) (31)If this approximation is substituted into equation (18) by applying the Galerkin methodand by introducing boundary conditions, yields the following system of ordinary di�erentialequations: H(	̂)	̂ + P (	̂)d	̂dt + q�(	̂) + r�(	̂) = 0 (32)where: hij = Xe=1E ZV eKer (Kesr!ej � r!ei )dV (33)pij = EXe=1 ZV e �e!ejdV (34)17
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Figure 3: The horizontal, vertical, and temporal dependency of the 4-dimensional weightingfunctions. q�i = EXe=1 � ZV eKerKzze@!ei@z dV � ZV e qe!ei dV � Z�e2 qen!ei d�� (35)r�i = EXe=1 ZV e GePNTk=1PNXi=1W e2ki (X; t)�ei (�0ki � �i(t))PNTk=1PNXi=1W eki(X; t) (36)where �0ki-�i(t) is evaluated at the observation points and is assumed to be constant overthe whole element. Equation (32) is integrated in time using a �-weighted �nite di�erencescheme resulting in:��Hk+� + P k+��tk 	̂k+1� = �P k+��tk � (1� �)Hk+��	̂k � q�k+� � r�k+� (37)where k and k + 1 de�ne the previous and current time levels, �tk is the time step size, andH . P , q� and r�are evaluated at pressure head	̂k+� = �	̂k+1 + (1� �)	̂k (38)with 0 � � � 1. If the Picard iteration is used to linearize equation (37) the �nal expressionis produced, which can be written as: 18



��Hk+�;m + 1�tk P k+�;m�	̂k+1:m+1 = (39)� 1�tk P k+�;m � (1� �)Hk+�;m�	̂k � q�k+�;m � r�k+�;m (40)where m is the iteration level. This equation can now be solved by standard preconditionedconjugate gradient methods for sparse linear systems.5 Application of the CATHY model5.1 IntroductionAfter the nudging technique had been inserted, the CATHY model has been applied to atestcase. This is a 6 by 11 grid area of 50 by 50 m cells containing a lake in the middle (seeFigure 2). Table 1 shows some of the parameter values used for the test case. The locationof the �ve observation points, which are all located at the surface, are indicated as black dotsin the �gures of the spatially distributed results. For these runs we used mass lumping andCrank-Nicolsen time discretization. For the iterations a Picard scheme has been used, andfor the soil hydraulic properties the Huyakorn relationship was used with parameter values �= 0.02, � = 2,  = 2,  = 0, residual saturation = 0.333 and n =1. The 10 meter soil pro�lewas discretized into 10 layers, with thicknesses, from top layer to bottom layer, of 1 %, 1%,1%, 5 %, 5 %, 10 %, 10 %, 22 %, 22 %, 23 %. Four di�erent model runs are made:� initial condition-run� base-run� no nudging-run� nudging-runThe initial condition run is made to achieve initial conditions for the other three runs. Thebase run represents the \observation data", which are required for the nudging technique. Toseparate the base-run from the nudging and no nudging run two di�erent perturbations aremade:� atmospheric perturbation� initial condition perturbationIn the case of atmospheric perturbation the di�erence between the base run and the (no)nudgingrun are the atmospheric conditions, while the initial conditions are the same. In the case ofinitial condition perturbation the atmospheric conditions are the same but the initial condi-tions di�er. 19



Table 1: Model parameter values for the test case.Ks 10�4 m/sSs 10�7�s 0.35number of 3D nodes 924number of 3D elements 3960number of soil layers 10soil depth 10 mFor testing the nudging technique with these two perturbation runs, the nudging parametersare set to the following base case values: G = 0.1, � = 1, � = 1800 s, R = 100 m and Rz= 2 m. The e�ect of varying these base case parameters on the hydrological and numericalresults will be described in the next chapter. The results of the application of the CATHYmodel with the atmospheric perturbation will be discussed in section 5.2 and the results ofthe application with initial conditions perturbation in section 5.3.5.2 The atmospheric perturbation run5.2.1 The inuence of the nudging technique on the timestep sizeAfter the implementation of the nudging technique it is also important to analyse the e�ectof the nudging technique on the computational performance of the model. If after its im-plementation the model run requires much more time, its applicability should be questioned.An indication for the time required for the model run is the number of timesteps, which arerequired for the simulation. The model needs about the same time to produce results forsmall timesteps as for large timesteps. Therefore the number of timesteps can be directlylinked to the computation time. The number and size of the timesteps have been analysedfor the nudging run as well as for the no-nudging run. The results are shown in Figure 4.From Figure 4 can be seen that the nudging run is more e�cient than the no-nudging run byrequiring 24 percent less timesteps for the 4-hour simulation run. This also results in a largermean timestep for the nudging run compared to the no-nudging run. The maximum timestep is limited by a value set by the user and is in the case of the atmospheric perturbationequal to 30 seconds. From this �gure it can further be seen that during the assimilationtimes the timestep size for the nudging run decreases signi�cantly because during these timeperiods the model results have to be \nudged" towards the observation data, which requiresthe use of smaller time steps. However the no-nudging run performs really well from about7000 seconds till the end of the simulation run, using the maximum allowed timestep for thecalculation while the nudging run requires much smaller timesteps in this time period. Thisseems to be in contrast with the larger number of time steps which the no-nudging run usesfor the whole simulation period.To further explore this a histogram has been plotted of the di�erent time step sizes in Figure 5for the nudging run (left) and the no nudging run (right). From this �gure it can be seen thatthe portion of the smallest timesteps (< 0:8) is much larger in the no-nudging run than in thenudging run. In the histogram of the no-nudging run are there besides the smallest timestep20
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Figure 6: The water table depths for the base run (top four plots), the nudging run (centralfour plots) and the no nudging run (bottom four plots) for the atmospheric perturbation runat four di�erent times: t = 0, t = 3600, t = 10800 and t = 14400 seconds (from left to right).
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and at this time the mean spatial di�erence is 0.2861. At time 14400 this mean di�erencehas decreased to 0.2646. From these four graphs can also be seen that the results of the nonudging run are always less than or equal to the base run (with the exception of the lake cellsat t = 3600).Figure 7 shows for the nudging run a di�erent spatial distribution of the di�erence in soilmoisture at the surface nodes. At time 0 the di�erence is 0 as a result of the same initialconditions. At time 3600 seconds an increase in the di�erence can be noticed. However at andaround the nudging points, especially the three located south-east of the lake, this increaseis much smaller. For some grid cells the nudge run even overshootes the results of the baserun, which explains that the di�erence between the two is sometimes negative. The meandi�erence between the base run and the nudging run at the �rst observation time is 0.2036,which is a decrease of 32 percent compared to the no-nudging run at the same time. After10800 seconds a bigger inuence of the two nudging points located north of the lake can benoticed, resulting in a further decrease of the mean di�erence to a value of 0.1785. Comparedto the di�erence at the same time between the base run and the no-nudging run this is animprovement of almost 38 percent. At time 14400 the inuence of the �ve nudging pointscan still be seen, however the mean di�erence has again increased, due to this time is locatedoutside the assimilation period, to a value of 0.1888, which is still an improvement of 29percent compared to the no nudging run.From Figure 7 it can clearly be concluded that the implementation of the nudging techniqueleads to an improvement in the mean error of soil moisture values at the surface nodes usingthe atmospheric perturbation run. This improvement is not only made during the assimilationtimes but also outside the periods of nudging inuence.After having seen the e�ect of the nudging technique on the spatial behavior of the watertable depths and the surface soil moisture values, its inuence on the temporal distributionof soil moisture values has also been investigated at the �ve nudging points and the resultshave been plotted in Figure 8.Figure 8 shows the results of the four-hour evaporation test case showing the temporal varia-tion of the soil moisture content at the �ve nudging points. The base run represents the \soilmoisture observation data" at these nodes during the assimilation times. These assimilationtimes are indicated between the black lines with �=2 of half an hour before and after T 1obs andT 2obs. In this case of atmospheric perturbation the evaporation input, which has been used forthe base run is perturbated and a nudging run and a no nudging-run is made. The increasein evaporation between 2 and 3 hours can be explained by discharge owing out of the \lake"into cells located downstream of the lake. From Figure 8 it can clearly be seen that untilthe start of the assimilation time the nudging run is exactly the same as the no nudging run.After time equals 1800 seconds the nudging technique is activated and di�erences betweenthe nudging and no nudging technique can be seen. In the upper two graphs the e�ect ofthis technique can only be seen at about 1 hour because before the nudging and no nudgingruns both equal the observation data. Clearly it can be seen that the soil moisture valuesof the nudging run are driven towards those of the base run during the assimilation time toreach a better agreement between these two. After the assimilation period, when the nudgingtechnique is inactive again, generally an immediate increase in the di�erence between thenudging run and the observation data can be seen.A small time lag of the increase in soil moisture values between the two "assimilation periods"can be noticed as well as a di�erence in amount of increase between the nudging and the no25
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the nudging runFigure 9: The temporal variation of the timestep size for the initial conditions perturbationrun.nudging run. In the upper two graphs the increase in soil moisture is largest for the nonudging run while for the bottom three graphs the increase is larger in the nudging run.These di�erences however take place outside the time period in which the nudging techniqueis active and are caused by di�erent soil moisture contents and not by the nudging technique.5.3 The initial conditions perturbation run5.3.1 The inuence of the nudging technique on the timestep sizeBesides the atmospheric perturbation run also a run with di�erent initial conditions for thebase run compared to the nudging and no nudging run has been made. For the initial condi-tions perturbation run a totally di�erent behavior of the temporal variation of the timestepsize can be seen compared to the atmospheric perturbation run. First of all the value of themaximum allowed timestep is 15 seconds and further this run required much fewer time stepsthan the atmospheric perturbation run. A reason for this is probably the \unforced" inputvalues of evaporation.The no-nudging run contains the maximum timestep size for almost the whole simulationperiod with an exception at the end, while the timestep size for the nudging run decreasessigni�cantly during the assimilation times. The decrease in time step during the assimilationtimes is the reason why the nudging run uses more timesteps than the no-nudging run.Around time 12500 sec the value of �t suddenly decreases dramatically for the no-nudgingrun followed in delay by the nudging run, which shows exactly the same behavior in decrease.These decreases in time step size are caused by numerical instability at these times. A reason27
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Figure 10: The histogram of timestep size for the nudging (left) and no nudging (right) runfor the initial conditions perturbation runfor this numerical instability has not be found.Figure 10 shows the histograms of the timestep size for the nudging run (left) and the nonudging run (right) for the initial conditions perturbation run. From Figure 10 it can beseen that for the no nudging run almost all timesteps are the maximum allowed 15 secondswith the exception of a few very small time steps causes by the numerical instaility at time12500 seconds. The histogram of the nudging run also contains a lot of the maximum allowedtimestep, however the most occurred timestep size is around 7 seconds. Also a timestep sizeof eight seconds occurs quite often. This is due to the e�ect of the nudging technique whichdecreases the used time step to about 7.5 during the assimilation time (see Figure 9). Furtherthere is also for the nudging run a considerable amount of the small timestep sizes caused bythe numerical instability at around 12800 seconds.Compared to the atmospheric perturbation run, the smaller time steps play a less importantrole in the initial condition perturbation run. Therefore also the required number of timestepsis much smaller for the initial condition run than for the atmospheric perturbation.5.3.2 The inuence of the nudging technique on the hydrological resultsFor the initial perturbation run the e�ect of the nudging has been analysed for the samehydrological variables as was done for the atmospheric perturbation run. Figure 11 shows theinuence of the nudging technique on the spatial distribution of the water table depths at fourdi�erent times (from left to right; t= 0 s, t = 3600 s, t = 10800 s and t = 14400 s). The topfour plots are the values as computed with the base run, the central four as computed with thenudging run and the bottom four as computed with the no nudging run. The base run showsa completely di�erent distribution at time is 0 as a result of di�erent initial conditions. Thee�ect of the nudging technique can only be seen at t = 14400 s, which shows for the nudgingrun at the borders of the topographic depression higher computed water tables compared tothe no nudging run, which is in better agreement with the observed values as generated bythe base run.The spatial distributed error between the computed and observed values has been plotted28
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Figure 11: The water table depths for the base run (top four plots), the nudging run (centralfour plots) and the no nudging run (bottom four) for the initial conditions perturbation runat 4 di�erent times: t = 0, t = 3600, t = 10800 and t = 14400 seconds (from left to right).
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Figure 12: The di�erence in water saturation at the surface nodes between the base run andthe no nudging run (top four graphs) and between the base run and the nudging run (bottomfour plots) for the initial conditions perturbation run at four di�erent times: t = 0, t = 3600,t = 10800 and t = 14400 seconds (from left to right).for the no nudging run (top four plots) and the nudging run (bottom four plots) in Figure12. This �gure shows a same behavior as Figure 7 with decreasing computed errors for thenudging run at and around the �ve nudging points. The initial mean areal di�erence is forboth runs 0.1695. At the �rst observation time this error has decreased for the nudging runtill 0.0509, while the error of the no nudging run only decreases till 0.0748. At the secondobservation time the error for the nudging run has further decreased to 0.0365 and for the nonudging run this error reaches a value of 0.0551. At the end of the simulation these errors haveagain increased because the nudging technique is not active anymore to become respectively0.0448 and 0.0660. From these values and the plots can be concluded that also for the initialperturbation run the computed surface soil moisture values improve when using the nudgingtechnique.To see the e�ect of the nudging technique on the temporal variation of the soil moisture atthe nudging nodes, also for the initial conditions perturbation run this temporal variation ofthe soil moisture at these �ve nodes has been investigated. Figure 13 shows the temporalvariation of the soil moisture at the �ve nudging points for the base run, the no nudging runand the nudging run as calculated by the initial condition perturbation run. The top twoplots show a saturated soil for all of the runs for almost the whole simulation period. Only asmall decrease in soil moisture can be noticed after around 12000 seconds. But even here adi�erence between the nudging and the no nudging run can be seen. During the end of theassimilation time when the no nudging run already decreases, the nudge run stays saturated30
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Figure 13: The temporal variation of soil moisture at the �ve observation points for the baserun (dotted line), no nudge run (dashed line) and the nudge run (solid line) performed by theinitial condition perturbation run with the two observation times at 3600 s and 10800 s. Thenudging parameter values used are: G=0.1, � = 1, � = 1800s, Rxy = 100 m, and Rz = 2 m31



for these two nodes. Even after the assimilation time has ended it takes a while before thenudging run starts to decrease.The other three nodes show a more interesting behavior. At time 0 the base run di�erssigni�cantly from the nudging and no nudging run as a result of di�erent initial conditions.Until the beginning of the �rst asimilation time the nudge run and the no nudge run are (byde�nition) exactly the same. However at the beginning of the assimilation time it can beseen that the nudging run is immediately corrected upward, towards the base run, while theno nudging run remains decreasing. Also after the �rst assimilation time the results of thenudging run remain close to those of the base run as a result of the same atmospheric inputs.Therfore the correction which has to be made at the second observation point is much smallercompared to the �rst assimilation point or the corrections at the atmospheric perturbationrun. Also after the second assimilation time has ended the nudging run remains till the end ofthe simulation very close to the observation data. Therefore it can be concluded from Figure13 that also for the initial condition perturbation runs, the implementation of the nudgingtechnique considerably decreases the error between the computed values and the observedvalues.6 The inuence of the nudging parameters6.1 IntroductionAfter having seen the inuence of the nudging technique on the hydrological results in theprevious chapter, this chapter describes the inuence of some nudging parameters on thenudging e�ect. The inuence of di�erent values for the nudging parameters has been inves-tigated in terms of hydrological as well as computational bahavior, using the atmosphericperturbation scenario . Section 6.2 describes the inuence of G, section 6.3 the inuence ofRxy and section 6.4 the inuence of � on the hydrological and computational results.6.2 The inuence of GTable 2 shows the e�ect of di�erent G values on some numerical and computational results.From this table it can be concluded that for small values of G (till G = 0.1) the cumulativeabsolute mass balance error is generally smaller compared to the no nudge run while largerG-values show a small increase in the cumulative absolute mass balance error. However thecumulative relative mass balance error is smallest for the no nudging run. The total number ofrequired back-stepping occurences is for G-values till 0.3 relatively small. For G-values of 0.5and higher this number increases rapidly due to numerical instability. The total CPU reachesa minumum for G=0.005 of 837 seconds, which is almost 44 percent less than required forthe no nudging run. However for G-values of 0.5 and higher this total CPU increases rapidly.The number of total timesteps shows a similar behavior and also reaches a minimum for G =0.005 of 6827 timesteps, which is a decrease of 29 percent compared to the no nudging run.The minum timestep size is large for the no nudging run and for the run with G = 10�3. ForG-values higher than 10�3 the minimum timestep size decreases and even reaches the minimalallowed timestep size twice (for G = 0.005 and G = 0.1). For G-values of 0.3 and higher thereare a lot of back-stepping occurences but the minimal allowed timestep size is never reached for32



Table 2: The e�ect of the di�erent G-values on the numerical and computational results.Note that \Total timesteps" does not include back-stepping occurrences.G-values no-nudge 0.001 0.005 0.01Cum. abs. mass bal. error 1.64784 �104 1.58407 �104 1.37183 �104 1.35106 �104Cum. rel. mass bal. error -5.70785 -6.18765 -7.05843 -7.41774Total back-stepping occur. 1 1 12 2Total CPU for the simul. 1408 1315 837 1393Total timesteps 9655 11173 6827 10593Smallest timestep 0.125 0.25 0.0001221 0.03125Largest timestep 32 32 32 32Average timestep 1.491 1.289 2.109 1.359Avg NL iter. per timestep 4.20 4.02 4.30 4.04G-values 0.05 0.1 0.3 0.5Cum. abs. mass bal. error 1.64016 �104 1.57571�104 1.66649 �104 1.62116 �104Cum. rel. mass bal. error -9.43828 -9.10268 -9.61364 -9.36321Total back-stepping occur. 4 10 5 452Total CPU for the simul. 1165 1040 1612 1901Total timesteps 6959 7196 12535 9656Smallest timestep 0.007813 0.0001221 0.0004883 0.0004883Largest timestep 32 32 32 32Average timestep 2.069 2.001 1.149 1.491Avg NL iter. per timestep 4.25 4.34 4.27 6.64G-values 0.8 1.0 10.0Cum. abs. mass bal. error 1.65944 �104 1.65472 �104 1.71729 �104Cum. rel. mass bal. error -9.58681 -9.53248 -9.83784Total back-stepping occur. 1631 2121 31299Total CPU for the simul. 5564 5137 81385Total timesteps 14624 16104 54157Smallest timestep 0.0004883 0.0004883 0.0002441Largest timestep 32 32 32Average timestep 0.9847 0.8942 0.2659Avg NL iter. per timestep 9.82 10.70 32.12
33



Table 3: The inuence of G on the mean spatial di�erence of the soil moisture at the surfacenodes between the base run and the nudging run at three di�erent times for the atmosphericperturbation run. time (seconds) 3600 10800 14400no nudging run 0.2997 0.2861 0.2646G = 10�4 0.2992 0.2832 0.2638G = 10�3 0.2934 0.2484 0.2521G = 0.005 0.2622 0.1867 0.2036G = 0.01 0.2364 0.1777 0.1928G = 0.05 0.2063 0.1775 0.1888G = 0.1 0.2036 0.1785 0.1888G = 0.3 0.2020 0.1795 0.1887G = 0.5 0.2018 0.1802 0.1887G = 0.8 0.2016 0.1804 0.1886G = 1.0 0.2017 0.1805 0.1885G - 10.0 0.2015 0.1813 0.1883these runs. For all runs the largest time step reaches the maximal allowed timestep which is inthis case 32 seconds. The average time step is largest for the run with G = 0.005 but also theruns with G-values of 0.05 and 0.1 have an average timestep size which is larger than 2 seconds.For the nudging runs with G-values of 0.8 and 1.0 the average timestep becomes smaller than1 second. The average nonlinear iterations per timestep generally remains between 4.0 and4.3 for G-values till 0.3 while for higher G-values this number increases to reach a value of32.12 when G = 10.Table 3 shows the e�ect of the G term on the mean spatial error of the soil moisture at thesurface nodes for the nudging runs compared to the base run at three di�erent times. For theno nudging run the mean di�erence is largest at time 3600 and smallest for time 14400. Forthe nudging runs however the smallest mean di�erence can be seen at the second observationtime due to the nudging technique and shows an increase in the error for t is 14400.For a G-value of 10�4 the mean di�erence is close to those values of the no nudging run.However for increasing G-values an decreasing mean di�erence can be seen. For the �rstobservation time this decrease goes on till G = 0.8 after which it slightly increases for G =1. However after G = 0.05 the increase of the improvement decreases. For the run with G= 0.05 the improvement compared to the no nudge run is 31.2 percent while for G = 0.8this improvement is 32.7 percent. The same behavior can be seen at time 14400 s, at whichhowever the improvement stabilizes after G = 0.05.The results for the second observation time show a slightly di�erent behavior in the decreaseof the di�erence. For this time it reaches a minimum for the run with G = 0.05 and showsincreasing values for higher G-values. Therefore and, taking into account the higher requiredCPU for the larger G-values (see table 2), in this case for the spatial distribution of soilmoisture content at the surface nodes the optimal G-value is around 0.05.From Table 4 can be seen that the variance of the di�erence between the observed and thecomputed values of surface soil moisture decrease with increasing values of G to reach a34



Table 4: The inuence of G on the variance (�) of the di�erences between the base- andnudging run of the spatial soil moisture values at the surface nodes averaged over the wholesimilation time. G-value � G-value �G = 0.0001 0.0281 G = 0.3 0.0233G = 0.001 0.0260 G = 0.5 0.0233G = 0.005 0.0233 G = 0.8 0.0233G = 0.01 0.0226 G = 1.0 0.0233G = 0.05 0.0231 G = 10.0 0.0233G = 0.1 0.0232minimum value of 0.0226 at G = 0.01. For a G value of 0.1 � has increased to 0.232 and forG -values 0.3 till 1.0 the variance remains the same.Figure 14 shows the e�ect of the value of G on the temporal variation of soil moisture valuesat the �ve nudging points. Figure 14 shows the results of seven nudging runs, all with di�erentvalues of G together with the base run and the no nudging run. The thick line representsthe observation data and the dotted line the no nudging run. The nudging runs are labeled 1to 6 representing the G values respectively of 10�4, 10�3, 0.005, 0.01, 0.1 and 0.5. From thebottom three graphs of Figure 14 it can be seen that the higher the value of G, the strongerthe computed data are driven towards the observation data. Compared to the run with G =0.1, which has been used in all previous runs, the run with G = 0.5 converges better to thebase run and for G-values below 0.1 the opposite can be seen. For G = 10�3 almost no e�ectcan be seen during the �rst assimilation time, however during the second assimilation time aclear di�erence between the nudging and no nudging run can still be seen. For a G-value of10�4also this di�erence at the second assimilation time has mostly disappeared. Between theresults of the nudging runs with G-values from 0.3 to 1 almost no distinction in the temporalvariation of soil moisture values at the nudging points can be seen. Therefore this categoryis in this �gure only represented by G = 0.5.Besides this di�erence in stronger or less strong convergence to the observation data a seconddi�erence between the several nudge runs can be noticed from this �gure. The higher thevalues of G the quicker the response of the nudge run. For the run with the G-value of 0.5the increase at the �rst assimilation time and the decrease at the second assimilation time aremuch \steeper" compared to the runs with lower G-values. From the top two plots a samee�ect of the di�erent G-values can be concluded; the higher the values of G, the stronger andsooner is the convergence towards the observation data. Also for these nodes it is shown thatfor a G-value of 10�4 the inuence of the nudging is nil.Figure 15 shows the di�erence in temporal variation of the soil moisture values at two of the�ve nudging points for G-values of 0.1, 1 and 10. From this �gure it can be concluded thatdespite the very strong e�ect of G = 10 on the numerical results , its e�ect on the hydrologicalresults is relatively small. 35
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6 Figure 14: The inuence of G on the temporal behavior of the soil moisture content at the�ve nudging points together with the base run (thick line) and the no nudging run (dottedline). 1: G = 10�4, 2: G = 10�3, 3: G = 0.005 4: G = 0.01, 5: G = 0.1, 6: G = 0.536
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3 Figure 15: The inuence of high G-values on the temporal behavior of the soil moisturecontent at two nudging points 1: G = 0.1, 2: G = 1, 3: G = 106.3 The inuence of RxyAfter the inuence of G on the nudging e�ect had been investigated, the e�ect of the horizontalradius of inuence of the nudging technique (Rxy) on the same variables was investigated.Table 5 shows the inuence ofRxyon the numerical and computational results. The cumulativeabsolute mass balance error generally increases with increasing Rxy-value. and stabilizes forRxy values of 150 m and higher. The total back-stepping occurences are low for the no-nudgerun and the run with Rxy=50. For the runs with higher Rxy-values the total back-steppingoccurences are about 11 with the exception for Rxy = 200, which only has 4 back-steppingoccurences. This run also has a very low CPU of only 622 seconds, which is a decrease of56 percent compared to the no nudge run. Also the number of required timesteps reaches aminimum of 4565 for this run, which is a decrease of 53 percent compared to the no nudgingrun. For the total CPU and the number of timesteps the nudging run with Rxy = 50 performsworst. However for this run the minimum required timestep size is relatively high, while forthe runs with Rxy =100,150 and 250 meter the minumum allowed timestep size is reached.For all runs the timestep size reaches the maximum allowed size of 32 seconds. The averagetimestep over the simulation exceeds 2.0 for all runs with Rxy-values of 100 m and largerand reaches a maximum for Rxy = 200 with an average timestep which is even larger than 3seconds. The average nonlinear iterations per timestep is for all runs between 4.1 and 4.5.Figure 16 shows the inuence of Rxy on the spatial distribution of the nudging e�ect for thedi�erence in the water saturation at the surface nodes between the base run and the nudgingrun. The results have been plotted for three di�erent times: 3600 s (left column), 10800 s(central column) and for t = 14400 s (right column) for three nudging runs with di�erentRxy-values. The three plots at the top show the results for the nudging run with Rxy = 50m, the three plots in the middle those for Rxy = 150 m and the three plots at the bottom theresults for Rxy= 250 m.From the results for the run with Rxy= 50 m can clearly be seen that the nudging e�ect isrestricted to an area close to the nudging points. Only the grid cells in which the nudgingpoints are located show a clear decrease in the di�erence between the computed and observeddata. This behavior changes when Rxy increases. From the run with Rxy-values equal to37



Table 5: The e�ect of the di�erent Rxy-values on the numerical and computational results.R-values (G = 0.1, � = 1800) no-nudge 50 100Cum. abs. mass bal. error 1.64784 �104 1.65996 �104 1.57571 �104Cum. rel. mass bal. error -5.70785 -7.06258 -9.10268Total back-stepping occur. 1 2 10Total CPU for the simul. 1408 1486 1040Total timesteps 9655 12079 7196Smallest timestep 0.125 0.0312 0.0001221Largest timestep 32 32 32Average timestep 1.491 1.192 2.001Avg NL iter. per timestep 4.20 4.13 4.34R-values (G = 0.1, � = 1800) 150 200 250Cum. abs. mass bal. error 1.62903 �104 1.57991 �104 1.47116 �104Cum. rel. mass bal. error -10.8507 -11.0386 -10.8640Total back-stepping occur. 11 4 11Total CPU for the simul. 910 622 954Total timesteps 7076 4565 6771Smallest timestep 0.0001221 0.003906 0.0001221Largest timestep 32 32 32Average timestep 2.035 3.154 2.127Avg NL iter. per timestep 4.26 4.46 4.32
Table 6: The inuence of Rxy on the mean spatial di�erence of the soil moisture at the surfacenodes between the base run and the nudging run at three di�erent times for the atmosphericperturbation run. time 3600 10800 14400no nudging run 0.2997 0.2861 0.2646R = 50 0.2580 0.2424 0.2361R = 100 0.2036 0.1785 0.1888R = 150 0.1913 0.1614 0.1754R = 200 0.1891 0.1577 0.1731R = 250 0.1718 0.1454 0.163038
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Figure 16: The inuence of Rxyon the spatial distribution of the di�erence between the baseand nudging run. The upper three graphs show the results at the times (from left to right)3600, 10800 and 14400 for Rxy = 50 m, the three plots in the center for Rxy = 150 m andthe bottom three graphs for Rxy = 250 m. 39



Table 7: The inuence of Rxy on the variance (�) of the di�erences between the base- andnudging run of the spatial soil moisture values at the surface nodes averaged over the wholesimulation time. R-value �R = 50 m 0.0258R = 100 m 0.0232R = 150 m 0.0226R = 200 m 0.0219R = 250 m 0.0206150 m it can be seen that the area of inuence has increased. Not only the grid cells in whichthe nudging points are located show a better agreement of the nudging run with the base runbut also the surrounding cells show a clear improvement. At time 3600 this is only the casefor the three bottom nudging points. However at the second observation time and at the endof the simulation this wider spatial inuence of the nudging technique can be seen for all thenudging points.This increase in the spatial inuence of the nudging technique leads to a signi�cant im-provement of these results. The mean di�erence between the base- and nudging run clearlydecreases with increasing Rxy-values (Table 6). From this table it can be seen that for alltimes the error in the spatially calculated surface soil moisture decreases with increasingRxy-values. But even the results for the run with Rxy-value equals to 50 m an average im-provement of 13.3 percent in the results compared to the no nudging run can be noticed. ForRxy = 250 this improvement has increased to 43.4 percent. Further it can be seen from Table6 that the inuence of larger Rxy-values is biggest at the two observation times but also attime 14400, which is one hour after the second observation time and half an hour after thenudging technique has ended, a considerable improvement of the results compared to the nonudging run can still be seen.Figure 16 also shows that for the run with Rxy = 250 m the decrease in the error compared tothe run with Rxy = 150 m can be seen for most cells. However for some grid cells (for example(300,100), (300,150) and (250,150) ) the run with Rxy = 250 m shows an increased di�erencebetween the base and nudging run. However the mean di�erence of the run with Rxy = 250 mshows an improvement of more than 9 percent compared to the run with Rxy= 150m. FromFigure 16 and Table 6 it can therefore be concluded that increasing values of Rxy lead to abetter spatial agreement of the computed data with the observation data. From these resultstogether with Table 5, which shows that the total CPU and the number of timesteps do notshow an increase for larger Rxy-values we can conclude that the use of bigger Rxy-values isbetter compared to smaller values.From Table 7 it can be seen that the variance of the error in surface soil moisture decreases forincreasing values of Rxy. This means that the error, which also itself decreases with increasingRxy-values (table 6), is more smoothed over the grid cells. The decrease in variance betweenRxy = 50 m and Rxy = 250 m is more than 20 percent.40



Table 8: The e�ect of the di�erent � -values on the numerical and computational results.� -values (G = 0.1, R = 100) no-nudge 900 1350Cum. abs. mass bal. error 1.64784 �104 1.46045 �104 1.56898 �104Cum. rel. mass bal. error -5.70785 -7.77830 -8.83323Total back-stepping occur. 1 3 0Total CPU for the simul. 1408 1173 816Total timesteps 9655 11294 7099Smallest timestep 0.125 0.003906 0.0625Largest timestep 32 32 32Average timestep 1.491 1.275 2.028Avg NL iter. per timestep 4.20 4.07 4.27� -values (G = 0.1, R = 100) 1800 2250 2700Cum. abs. mass bal. error 1.57571 �104 1.53507 �104 1.52101 �104Cum. rel. mass bal. error -9.10268 -9.00813 -9.04928Total back-stepping occur. 10 11 0Total CPU for the simul. 1040 1529 1564Total timesteps 7196 11248 11284Smallest timestep 0.0001221 0.0001221 0.0625Largest timestep 32 32 32Average timestep 2.001 1.280 1.276Avg NL iter. per timestep 4.34 4.17 4.166.4 The inuence of �The inuence of the time during which the nudging technique is active (�) has also beeninvestigated. Table 8 shows the e�ect of the � value on the numerical and computationalresults. From this table it can be seen that the cumulative relative mass balance error increaseswith increasing � values and stabilizes for � values of 1800 and higher around -9.05 percent.The number of back-stepping occurences is generally small and even 0 for the runs with �values equal to 1350 and 2700 s. The total CPU for the simulation reaches a minimum for �equals 1350 of 816 seconds. For the runs with � values of 2250 and 2700 this total CPU isalmost twice as much compared to this minimum CPU. The total number of required timestepsshows a similar behavior with the exception of the high number of required timesteps for therun with � equals 900 s. The smallest time step is relatively large for the nudge runs with �values of 1350 and 2700 seconds but reaches the minimum allowed timestep for the runs with� values 1800 and 2250 seconds. For all runs the timestep size reaches the maximum allowed32 seconds. The largest average timestep size is reached for the two runs with � values of 1350and 1800 seconds, both with a value of over two seconds. The average nonlinear iterations isfor all runs between 4.0 and 4.35.Table 9 shows the inuence of � on the spatial error between the observed and computedsoil moisture values at the surface nodes at three di�erent times. At t = 4200 s, which isonly 10 minutes after the �rst observation time, the mean di�erence increases with increasing� -values. From this it seems that the spatial e�ect of the nudging technique close to theobservation time is better for small values of � . However the results for the two other times,which are both one hour away from the observation times, show the opposite behavior. The41



Table 9: The inuence of � on the mean spatial di�erence of the soil moisture at the surfacenodes between the base run and the nudging run at three di�erent times (4200 s, 7200 s,14400 s) for the atmospheric perturbation run.time 4200 7200 14400� = 900 0.2387 0.2172 0.1944� = 1350 0.2403 0.2038 0.1891� = 1800 0.2424 0.1975 0.1887� = 2250 0.2432 0.1919 0.1880� = 2700 0.2435 0.1874 0.1861Table 10: The inuence of � on the variance (�) of the di�erences between the base- andnudging run of the spatial soil moisture values at the surface nodes averaged over the wholesimilation time. � -value �� = 900 s 0.0244� = 1350 s 0.0241� = 1800 s 0.0238� = 2250 s 0.0235� = 2700 s 0.0235di�erence between observed and computed data decreases with increasing � -values. This isbecause the nudging technique is active longer for runs with higher � -values than with small� -values causing that at times not close to the observation times the error is smaller comparedto the runs with small � -values.Table 10 shows the inuence of � on the variance of the spatial error of the surface soilmoisture values and from this table it can be seen that the variance slightly linearly decreaseswith increasing � till � reaches the value of 2250 s. For higher values � remains constant ata value of 0.0235, which is only 3.7 percent less than for � of 900 s.The inuence of � on the temporal variation of soil moisture values has also been investigated.Figure 17 shows the inuence of � on the temporal behavior of the soil moisture at the �venudging points. The thick line represents the observation data, and the dotted line the nonudging run. The nudging runs are labeled 1 to 5 representing the � values ranging from900 s to 2700 s. From the bottom three graphs it can clearly be seen that the shorter � , thelonger the nudging run follows the no nudging run. For the run with � = 2700 the resultsof the nudging run already di�er from the no nudging run after 900 s, while the nudginge�ect for the run with � = 900 s can only be seen after 2700 seconds. Also after the �rstobservation time at �rst the � = 900 run converges to the no nudging run, while the otherruns remain longer close to the observed data. This convergence towards the no nudge runis much stronger for the runs with low � -values compared to the runs with higher � valuesas a results of the smaller inuence time of the nudging technique. This same behavior canalso be seen for the second observation time but the di�erences between the nudging runs aremuch smaller at this time. 42
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Figure 17: The inuence of � on the temporal behavior of the soil moisture content at the�ve nudging points together with the base run (thick line) and the no nudging run (dottedline). 1: � = 900s, 2: � = 1350s, 3: � = 1800s, 4: � = 2250s, 5: � = 2700s43



From these three plots the inuence of the weighting functions can clearly be seen. Thetemporal dependency of the weighting functions has been de�ned as a head function (seeFigure 3). This weighting function increases over a time perod of �=2 linearly from 0 to 1and remains 1 for a period of � after which it decreases linearly to 0 over a time period of�=2. The period when the weighting function remains 1 can be recognized in the convergenceof the nudging runs to the base run. From these three plots it can be seen that the nudgerun does not converge to the actual value of the base run at the start of the assimilation timebut converges until it reaches the value observed at the �rst observation time and remainsconstant, as a result of the de�ned temporal dependency of the weighting function for a periodof � .From the upper two graphs it can be seen that the de�ned time of nudging inuence impliesthat the nudge runs with larger � values remain close to the observed saturated soil moisturevalues for a longer time, while the runs with lower � values converge quicker, longer andtherefore further toward the no nudging run for both assimilation times.From the three bottom plots it can be concluded that higher � values do not neccesarily leadto better results in the temporal behavior of soil moisture values. The run with � value equalto 2700 overestimates the base run much more compared to the runs with � = 1800 and � =2250, which seem to have a better agreement with the base run between the two assimilationtimes.For the upper two graphs however higher � values do lead to a better agreement with the baserun, because overestimating is in this particular case (saturated observed data) not possible.Generally however it can be concluded that a longer time of inuence does not for all caseslead to better results in the temporal behavior of soil moisture. However for very small valuesof � the results are worse than for very high values from which can be concluded that it ispreferable to take higher � values.7 Conclusions and recommendations7.1 ConclusionsFrom the application of the CATHY model to the testcase it can be concluded that theimplementation of the nudging technique has a positive inuence on the hydrological results.Especially for the grid cells in which the �ve de�ned nudging points are located and thesurrounding cells, the computed results of the nudging run show a better agreement with theobserved values than the run without the nudging technique. This improvement is strongestduring the assimilation times, but also at the end of the similation, which is one hour afterthe last observation time and half an hour after the last assimilation time has ended, a clearimprovement compared to the run without the nudging technique can still be seen.This improvement is made because during the assimilation times the computed hydrologicalvariables at and around the nudging points are driven towards the observed data to reacha better agreement with these values. However for the atmospheric perturbation run animmediate increase in di�erence between the observed and computed data is noticed after theassimilation time has ended, while for the initial condition perturbation run the computedvalues remain close to the observed values, also after the assimilation time has ended.44



From these two perturbation runs it is di�cult to draw general conclusions regarding thee�ect of the nudging technique on the computation time. In this case the run includingthe nudging technique is more e�cient for the atmospheric perturbation run, while for theinitial conditions perturbation run the run without the nudging technique shows a bettercomputational e�ciency.Besides this general e�ect of the nudging technique on the results also the inuence of threeseparate nudging parameters has been determined. The inuence of G on the nudging e�ect isthat generally for increasing G values a decrease in the mean areal di�erence between observedand computed data is reached. This improvement is not only made during the assimilationtimes but also after the nudging technique is not active anymore. The improvement in thespatially computed data is reached because for larger G values the computed data convergestronger towards the observation data during assimilation times and reach therefore a betteragreement with these values. However for G values larger than 0.1 almost no di�erence inconvergence can be noticed. This is also the reason why the decrease in mean spatial errorstabilizes for G values larger than 0.1.From this stabilization in improvement of the hydrological results, together with the factthat for higher G values, especially for those of 0.5 and higher, the number of back-steppingoccurrences and therefore the total number of required time steps increase rapidly causinga much higher total CPU compared to smaller G values, it can be concluded that it is notrecommendable to take high G-values. In this case an optimal value of G is between 0.05 and0.1.In contrast to increasing G values, increasing values of Rxy do not lead to an increase in back-stepping occurrences and total number of timesteps and therefore do not show an increasein total CPU. The minima for these variables are even reached for a run with a relativehigh value of Rxy. Increasing Rxy values lead to considerable decreases in the mean spatialdi�erences between the observed and computed values. This is because a larger area aroundthe observation points is inuenced by the nudging technique when using higher Rxy values.Also the variance of the spatially distributed error decreases with increasing Rxy values,showing that for a larger radius of inuence not only the mean error is smaller but alsothat the error is more smoothed over the grid cells. In contrast to increasing G values, theimprovements in the mean spatial error do not stabilize for high Rxy values. The inuenceof Rxy on the convergence towards the observed data at the nudging points is much smallercompared to the inuence of G and � on this convergence.From these improvements for higher Rxy values without requiring more CPU it can thereforebe concluded that it is better to take high values for the horizontal radius of nudging inuence.From the investigations of the inuence of the time of the nudging technique being active itcan be concluded the mean spatial error decreases with increasing � values at times outsidethe assimilation period, while the spatial error increases with increasing � values at timesclose to the observation times. It seems that the smaller � , the stronger the inuence of thenudging technique is during the assimilation time, while due to the small time of nudginginuence, its inuence further away from the observation times decreases. Further it can beconcluded that for higher � values the convergence toward the observation values is strongerand lasts longer. However higher � values do not neccessary lead to better results, because forhigh � values the computed results between the two assimilation times could remain too longat the value of the �rst observed value while the actual observed values change. Thereforeit can be concluded that a higher time of nudging inuence does not automatically lead to45



better results.7.2 RecommendationsThis study was a �rst testing of a data assimilation technique (Newtonian relaxation), imple-mented in a complex spatially distributed hydrological model, to one particular testcase. Thisstudy provides a �rst impression of the inuence of the nudging technique on the hydrologi-cal and numerical results. However to get a better understanding of the the exact inuenceof the nudging technique and its parameters, further research is required. Therefore a fewrecommendations for further research are summarized in this paragraph.The inuence of the number of observation times and therefore assimilation periods needs stillto be investigated. Because small � values seen to have a better agreement with the observeddata close to the observation times but perform worse further away from these observationtimes it would be interesting to to see the e�ect of more assimilation times with smaller �values on the results.Because the inuence of the nudging parameters has only been investigated for one particulartest case it would also be good to see the e�ect of these parameters in other testcases inorder to draw general conclusions. For example, is the same optimal value of G are reached?Does the improvement of the hydrological results always stabilize for high G values? Doesincreasing the radius of inuence always lead to better results without requiring a higherCPU?Finally, to get a better understanding of the nudging technique more research has to be doneon the inuence of the weighting functions (W). Are the de�ned functions for the horizontal,vertical and temporal dependency the optimal ones? What would be the e�ect on the inuenceof the nudging technique if the de�ned \head function" for the temporal inuence is replacedby one similar to that used for the horizontal inuence?Acknowlegments This work has been supported in part by the European Commission(contract EVK1-CT-1999-00022), by the Italian Ministry of the University (project ISR8,C11-B), and by the Sardinia Regional Authorities.ReferencesBixio, A. C., S. Orlandini, C. Paniconi and M. Putti, Physically-based distributed model forcoupled surface runo� and subsurface ow simulation at the catchment scale. In: Bentley,L. R. (ed.) Computational Methods in Water Resources, Vol. 2. Balkema, Rotterdam,The Netherlands, pp 1115{1122, 2000.Brooks, R. H. and A. T. Corey, Hydraulic properties of porous media. Hydrology Paper 3,Colorado State University, Fort Collins, CO, 1964.Daley, R., Atmospheric Data Analysis. Cambridge University Press, Cambridge, UK, 1991.46
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