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2 Fluid Dynami
s AreaAbstra
tAn aerospa
e vehi
le is a

elerated by a propulsion system to a given velo
-ity. A nozzle is used to extra
t the maximum thrust from high pressure exhaustgases generated by the propulsion system. The nozzle is responsible for provid-ing the thrust ne
essary to su

essfully a

omplish the mission while its designe�
ien
y translates to greater payload and redu
tion in propellant 
onsump-tion.Spe
i�
ally, the nozzle is that portion of the engine beyond the 
ombustion
hamber. Typi
ally, the 
ombustion 
hamber is a 
onstant area du
t into whi
hpropellants are inje
ted, mixed and burned. Its length is su�
ient to 
ompletethe 
ombustion of the propellants before the nozzle a

elerates the gas prod-u
ts. The nozzle is said to begin at the point where the 
hamber diameterbegins to de
rease.This paper exploits the De Laval nozzle, a 
onvergent-divergent nozzle inventedby Carl De Laval toward the end of the 19th 
entury, and it tries to give a pra
-ti
al pro
edure to design the nozzle of minimum length. The basi
 assumptionmade is that the boundary layer thi
kness is small 
ompared to the 
hara
teristi
length, i.e. nozzle radius, so that the nozzle �ow �eld 
an be treated as invis-
id for the purpose of designing the aerodynami
 lines. On
e the aerodynami
lines are determined, a 
orre
tion 
an be made to a

ount for the displa
ementthi
kness of the boundary layer. This se
ond step of the designing pro
edure isnot treated in here. This basi
 pro
edure has been applied su

essfully to manysupersoni
 nozzles.



CRS4 31 Introdu
tionA De Laval nozzle 
omprises a 
ombustion 
hamber, a 
onvergent se
tion, a throatand a divergent se
tion. The 
ombustion 
hamber is a region of high pressure where a
hemi
al 
ombustion or a nu
lear rea
tion releases the energy whi
h in turn in
reasesthe enthalpy of the 
ontained �uid. The enthalpy of the �uid is then transformed inkineti
 energy by the nozzle. In the 
onvergent se
tion the �ow is a

elerated fromlow subsoni
 
onditions, typi
al of the 
ombustion 
hamber, to soni
 
onditions atthe throat. In the divergent se
tion the �ow is still a

elerated from soni
 
onditionsto supersoni
 
onditions. As far as the divergent se
tion design is 
on
erned, a 
oni
allinear nozzle with half opening angle of about 15o usually represents a reasonablegood 
ompromise between ease of 
onstru
tion (and of mesh generation for thenumeri
al simulations) and thrust loss redu
tion. A more a

urate design would leadto the typi
al bell-shaped divergent se
tion. This will be dis
ussed in se
tion 3.The 
onvergent se
tion is usually easier. Typi
ally, any 
onverging shape doesa

elerates the �ow to the required soni
 
onditions at the throat.Finally the nozzle design must satisfy an overall relation between the nozzle throatarea, the mass �ow rate, the stagnation temperature and pressure whi
h 
an bewritten, under the assumption of isentropi
 �ow, as follows:_mA� = pstp
pRTst � 2
 + 1� 
+12(
�1)



4 Fluid Dynami
s Area2 Convergent Se
tion DesignTwo di�erent approa
hes have been developed in the following se
tions in order to�nd the geometry of the 
onvergent se
tion. In the �rst approa
h the geometry is
omputed by assuming a smooth pressure gradient along its axis. In the latter thegeometry is obtained in a graphi
al way by drawing a 
onvergent se
tion with smoothbend variations.2.1 Pressure Gradient CriterionThe goal is of this approa
h is to obtain a smooth pressure transition from the valueat the 
ombustion 
hamber, i.e. the stagnation pressure, to the value at the throatin order to ensure a �ow free of vorti
es and instabilities. To this end, a designpro
edure has been developed, based on the quasi-1D gas dynami
s relations for�ows in variable-area du
ts. Exa
t formulas are valid for a 
alori
ally and thermallyperfe
t gas, but they 
an be used, with reasonable approximation, for non ideal gasesas well. The equation whi
h gives the ratio of the unknown variable area distributionalong the nozzle axis to the throat area as a fun
tion of the Ma
h number distributionis [2℄1:  A(x)A� !2 = 1M2(x) � 2
 + 1 �1 + 
 � 12 M2(x)�� 
+1
�1or: A(x)A? = 1M(x) � 2
 + 1 �1 + 
 � 12 M2(x)�� 
+12(
�1) (1)being A(x) and M(x) the area and the Ma
h number along the nozzle axis x. Fromthe total temperature 
onservation law and from the isentropi
 relation betweenpressure and temperature, it 
an be obtained:p(x)ptot = �1 + 
 � 12 M(x)2�� 

�1 (2)being p(x) the pressure along the nozzle axis x. Finally by inverting equation 1:2
 + 1 �1 + 
 � 12 M(x)2�(
+1) � "A(x)A? M#2(
�1) = 0 (3)The design pro
edure 
an be summarized as follows:1Equation 5.20



CRS4 51. An arbitrary Ma
h number distribution along the nozzle axis, M(x), is 
hosen;2. The 
orresponding pressure distribution is derived from equation 2 ;3. The �rst two steps are repeated until a �good� pressure distribution has beenfound;4. The area distribution, whi
h gives the shape of the nozzle 
onvergent se
tion,is obtained from equation 1;5. The designed nozzle is 
onne
ted to the 
ombustion 
hamber through a �llet
urve;6. The new pressure distribution is 
omputed by solving equation 3 via Newtonmethod;7. A 
he
k is made that the pressure distribution 
onne
ted to the new geometrymaintains the desired smoothness.A reasonable 
hoi
e, for the arbitrary Ma
h number distribution, 
an be a generi
se
ond order 
urve:M(x) = a �xL�2 + b � xL�+ 
 (4)where L is the 
onvergent se
tion length, with the following boundary 
onditions:M(0) = 0 at x = 0 = End of the 
ombustion 
hamberM(1) = 1 at x = L = Nozzle throatwhi
h give the requirements: 
 = 0, a + b = 1.Figure 1 shows three possible 
hoi
es for the two 
oe�
ients a and b ad the
orresponding pressure 
urves. The distribution 
orresponding to a linear shape 
on-vergent se
tion is also added to the �gure, though it does not �t the se
ond orderexpression for the Ma
h number distribution. The linear shape is presented be
auseit often represents a "good", as well as easy, 
hoi
e. However, as it 
an be seen inthe �gure, for an arbitrary 
hosen overall area ratio of 1322, (
ombustion 
hamberradius 0.2m, throat radius 0.0055m), the linear shape generates a very steep pressuregradient.
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Figure 1: Ma
h number distributions (left) and 
orresponding pressure distributions(right).2.2 Geometri
 Shape CriterionA

ording to this approa
h a �good looking� 
onvergent se
tion shape is 
hosenand the 
orresponding pressure distribution is 
omputed. What is meant here bythe words �good looking� is a smooth variation of the 
ross se
tion area from the
ombustion 
hamber down to the throat. An easy way to a

omplish that is shownin �gure 2.
(Xcc,Ycc)

(Xt,Yt)Rcc

Rt

Figure 2: Geometri
 
reation of the 
onvergent se
tion pro�le



CRS4 7Two 
ir
les of given radii have been drawn, one at the end of the 
ombustion
hamber and the other at the throat se
tion, together with a line whi
h is tangent toboth. The line and the two ar
s form the 
onvergent se
tion shape. Four parametershave to be set to fully de�ne the geometry namely the position and the radius of thetwo 
ir
les.Figures 3 and 4 show the results obtained by varying the distan
e between the
ir
les while the �gures 5 and 6 display the e�e
t of the throat 
ir
le radius on thegeometry and pressure distribution.
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Figure 3: E�e
t of L, distan
e between 
ir
les 
enters on geometryIt 
an be seen that the e�e
t of widening the gap between the two 
ir
les is,geometri
ally, to straighten out the 
onvergent se
tion shape and, from the pressurepoint of view, to redu
e the zone where the whole pressure 
hanges take pla
e andas a 
onsequen
e it 
auses a steeper pressure 
urve.On
e have been set the distan
e between the 
ir
les and the 
ombustion 
hamber
ir
le radius, in
reasing the throat 
ir
le radius has the e�e
t of giving a mu
h roundershape 
urve and enlarging the area where the most of the pressure 
hanges takespla
e this way it redu
es the steepness of the pressure 
urve.
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Figure 4: E�e
t of L, distan
e between 
ir
les 
enters on pressure distribution

0 0.1 0.2 0.3 0.4
X

0

0.02

0.04

0.06

0.08

0.1

R

Rf=0.05
Rt=0.1
Rt=0.15
Rt=0.2

L=0.3

Figure 5: E�e
t of Rt, throat 
ir
le radius on geometry2.3 Con
lusionsComparing the pressure distributions, given by the two 
riteria, it 
an be notedthat the pressure gradient 
riterion, for its embedded nature, behaves better; the
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Figure 6: E�e
t of Rt, throat 
ir
le radius on pressure distributionpressure de
reases with smoothness to its throat value whereas in the geometri
shape 
riterion there are narrow zones of steep variation and wide zones of 
onstantvalues.Figure 7 shows (on the right) the nozzle shape for the pressure gradient 
riterionwith a = 1 and b = 0 together with the CAD 
urve 
onne
ting the area pro�le tothe stagnation 
hamber. On the left side of the same �gure the two pressure distri-butions are shown (with and without the 
onne
tion). The smooth �llet 
onne
tiongenerated with a CAD 
urve does not 
hange the pressure distribution 
hosen.
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CRS4 113 Divergent Se
tion DesignThe e�e
tiveness of a De Laval nozzle design is determined predominantly by theshape of its divergent se
tion. The 
al
ulation of the isentropi
 divergent se
tion,when the e�e
ts of thermal transfer and vis
ous for
e at the wall are ignored, 
an bea

omplished by using the method of 
hara
teristi
s. The method of 
hara
teristi
sis a well known, simple method for determining the �ow inside of a given set of walls;however, the inverse problem, i.e. the determination of an axisymmetri
 wall 
ontourwhi
h gives a parti
ular �ow pattern to arbitrary pre
ision, is not as straightforward.The mathemati
al utility of the 
hara
teristi
s is that along them the partialdi�erential equations for the �ow properties, that is the Euler equations under theassumption of invis
id and adiabati
 
onditions, are transformed into ordinary di�er-ential equations. Physi
ally, they des
ribe the way a disturban
e, su
h as a 
hangein wall angle, propagates through a �owing �eld. The wall 
urvature 
an be approx-imated by a series of sharp wall bends from whi
h depart the 
hara
teristi
s withtheir information on the wall angle variation. Re
ognizing that there is another wallopposite this one with opposite 
urvature, it is 
lear that 
hara
teristi
s from thetwo wall must 
ross. The result is a sum of e�e
ts, and both in two-dimensional andaxisymmetri
 
ase the axis line 
an be 
onsidered as a symmetry axis and thereforethe 
omputation 
an be limited to one half of the domain (one half of a sli
e for theaxisymmetri
 
ase).For a De Laval nozzle the design aims to redu
e all the expansion lines so that atthe exit the �ow will 
ontinue to be uniform to ta
kle the so 
alled geometry loss.2The pro
edure for removing or 
an
eling the expansion e�e
ts is to a

ommodate thewall shape in su
h a way that the in
ident 
hara
teristi
 will be de�e
ted parallel to the
enterline or axis of the nozzle. This pro
edure is repeated until every 
hara
teristi
originated in the initial se
tion is removed from the �ow.A generi
 nozzle divergent se
tion is drawn in �gure 8. Half a nozzle is representedfor symmetry reasons. TB is the throat se
tion and EF is the exit se
tion. Let #wallbe the angle of the divergent se
tion wall with respe
t to the 
enterline. The se
tionof the nozzle where #wall is in
reasing is 
alled the expansion zone; here expansionwaves are generated and propagate downstream, re�e
ting at the opposite wall.Point C is an in�e
tion point of the 
ontour, where #wall = #wallmax . Downstream ofpoint C, #wall de
reases until the wall be
omes parallel to the 
enterline dire
tion.The se
tion from C to E is 
alled the 
an
elation zone and it is a straightening se
tion2In fa
t for 
onventional bell nozzle, loss me
hanism fall into three 
ategories:geometri
 or diver-gen
e loss, vis
ous drag loss and 
hemi
al kineti
 loss. Geometri
 loss results when a portion of thenozzle exit �ow is dire
ted away from the nozzle axis, resulting in a radial 
omponent of momentum.The se
ond 
ause of loss depends on the vis
ous for
es while the 
hemi
al kineti
 loss relies essentiallyon the fa
t that the gas is not in 
hemi
al equilibrium at any point in the nozzle �ow.
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T
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Cancellation
zone

Reflection
zone

C

E

Centerline or axis

AB FFigure 8: Nozzle divergent se
tionspe
i�
ally designed to 
an
el all the expansion waves generated by the expansionzone. The area TCAB 
overed with both left- and right-running 
hara
teristi
s is
alled a non-simple region. In this region the 
hara
teristi
s are 
urved lines. In
ontrast, the region CAE is 
overed by waves of only one family be
ause the otherfamily is 
an
eled. This is 
alled a simple region.The length and shape of the initial expansion zone are arbitrary. The shortestnozzle, in whi
h this paper is interested, is obtained by having zero length for theinitial expansion, that is, a Prandtl-Meyer expansion to #max . T 
ollapses into C andall the 
hara
teristi
s depart from the same point.Any point of the �ow �eld along a 
hara
teristi
 is des
ribed by two variables:the angle # of the velo
ity with respe
t to the 
enterline and � , the Prandtl-Mayerfun
tion whi
h is de�ned as:� = s
 + 1
 � 1 ar
tans
 � 1
 + 1 (M2 � 1)� ar
tanpM2 � 1Thus a supersoni
 Ma
h number M is always asso
iated with a de�nite value ofthe fun
tion �. As M varies from 1 to1, � in
reases monotoni
ally from 0 to �max .Figure 9 shows the meaning of the angle # and displays the left- and right-running
hara
teristi
s at a generi
 point P. The angle � between the 
hara
teristi
s and thevelo
ity is 
alled the Ma
h angle and it is related to the Ma
h number through thesimple relation sin� = 1M
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Figure 9: Illustration of left- and right-running 
hara
teristi
s.3.1 Two-dimensional Divergent Se
tion DesignA relation, 
alled of 
ompatibility. ties the two variables # and �. By rewritingthe equations of motion in the 
hara
teristi
s 
oordinate system (�; �), after somealgebra:��� (� � #) = 0��� (� + #) = 0or:� � # = R = 
onstant along a � � 
hara
ter isti
 (5)� + # = Q = 
onstant along a � � 
hara
ter isti
 (6)



14 Fluid Dynami
s Areawhere Q and R are 
alled the Riemann invariants. The 
omputation method takesadvantage of this relation. Figure 10 displays two points where # and � are known.The position and the variables # and � in a third, internal, point are obtained.
(

1
,ν θ1

)

( ,ν θ )
2 2

( ,ν θ )
3 3

ν1+θ1

Q=

θ2ν2R= −

µ1

µ1

µ2

µ3

µ3

µ2η

ξ
A

B

C

Figure 10: Chara
teristi
s network for 
omputation of an internal point.The point C lies on the 
rossing of the 
hara
teristi
s passing through the twopoints A and B. The 
hara
teristi
s are assumed to be straight lines in AC and BC.Therefore the point C has 
oordinates:x3 = (q1 � q2)(m2 �m1) (7)y3 = m1x3 + q1 (8)with:m1 = tan (#1 � �1)q1 = y1 �m1x1m2 = tan (#2 + �2)q2 = y2 �m2x2From the 
onstan
e of the Riemann invariants, �3 and �3 are obtained:�3 = 12 (�1 + �2) + 12 (#1 � #2) (9)#3 = 12 (�1 � �2) + 12 (#1 + #2) (10)



CRS4 15or in terms of invariants:�3 = 12 (Q+ R) (11)#3 = 12 (Q� R) (12)If the point C lies on the 
enterline (�gure 11) only a right-running 
hara
teristi
is involved.
(
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,ν θ1

)
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µ1

µ3

µ3

( ,ν θ )
3 3

ν1+θ1

Q=

ξ
A

CcenterlineFigure 11: Chara
teristi
 network for 
omputation of a 
enterline point.The expressions 9 and 10 be
ome:�3 = �1 + #1#3 = 0where the se
ond 
ondition is due to the symmetry of the problem.If the point C is a wall point then the situation is the one depi
ted in �gure 12.The interse
tion between the wall 
ontour and the left-running 
hara
teristi
 givesthe new boundary point. At the point C # = #2 in order to guarantee the 
an
elationof the expansion wave. From the equation 5 � is also 
onserved. In formulas:�3 = �2#3 = #2The wall slope 
hanges to #3 to let the �ow straighten out.Finally for a two-dimensional nozzle the maximum de�e
tion of the wall 
ontour#max , whi
h o

urs at the point of in�e
tion, 
an be easily 
al
ulated from the exitPrandtl-Meyer fun
tion: #max = �exit2
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Figure 12: Chara
teristi
 network for 
omputation of a boundary point.3.1.1 Numeri
al MethodsTwo methods are applied in order to obtain the two-dimensional divergent se
tiondesign namely the method of 
hara
teristi
s and the method of weak waves, usually
alled method of 
hara
teristi
s as well.Method of Weak Waves A

ording to the equations 11 and 12, in going alonga left-running 
hara
teristi
, i.e. �, the Riemann invariant R is 
onstant and so the
hanges in � and # depend only on the 
hanges in Q, owing to the 
rossing of theright-running 
hara
teristi
s, i.e. the �0s. Thus:�� = 12�Q = �#Similarly, in going along a right-running 
hara
teristi
:�� = 12�R = ��#so a point rea
hed from an initial point P, traversing m left-running 
hara
teristi
sand n right-running 
hara
teristi
s, has:# = #P + (m� n) �# (13)� = �P + (m+ n) �# (14)The use of �nite weak waves for the 
onstru
tion of plane �ows is justi�ed bythe theorem that states that the strength of a weak wave is not a�e
ted by theinterse
tion with other waves. Here the term strength has the meaning of de�e
tion�# whi
h the wave produ
es. On the 
enterline the strength of the re�e
ted waveis the same as that of the in
ident one. On the wall the de�e
tion is equal to thestrength of the in
ident wave, whi
h is then 
an
eled.Referring to �gure 13, the method 
an be outlined as follows:1. Cal
ulate the #max 
orresponding to the given Mexit ;
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Figure 13: Weak Waves Method.2. Divide #max by the given number of waves to obtain �#;3. The waves depart from the throat edge (Points A to D in the example).Ea
h wave is drawn with its re�e
tion and 
an
elation and at any 
rossingthe Prandtl-Meyer fun
tion � and the �ow angle # are 
al
ulated with theformulas 13 and 14 with C as a generi
 point P. The Ma
h number M and theMa
h angle � are hen
e derived as well;4. The 
oordinates of interse
tion points between waves, waves and wall, wavesand 
enterline are 
al
ulated.The a

ura
y is improved by in
reasing the number of waves. The pro
edure hasbeen implemented on a Fortran 
ode. At all Ma
h number a good agreement isfound with the area ratios resulting from the quasi-1D relation 1 at page 4.The Method of Chara
teristi
s or MOC This method uses the equations 9 and10 to propagate, starting from the throat, through the �eld. The program stopswhen a wall point assumes the desired exit Ma
h number. Figure 14 roughly showsthe appearan
e of a 
al
ulation web.The a

ura
y is improved by in
reasing the number of points if the initial dataare reliable. Good initial data are given by a previous Euler 
omputation whi
h 
anyield the soni
 line shape. In order to over
ome this problem an e�e
tive approa
his to a

umulate the points near the 
orner edge and to assign �1 = #1 = #max tothe �rst and: �i = #i = #min + i (#max�#min)n�1 to the i-th, where #min is an � ne
essaryto avoid numeri
al problems in the determination of the points and n is the numberof points.The pro
edure has been implemented and the results are, alike the method ofwaves, in good agreement with the quasi-1D relation 1 of page 4.
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θmax

section
exit
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throat
section

C

number of initial points=3Figure 14: Chara
teristi
s Method.3.2 Axisymmetri
 Divergent Se
tion DesignThe 
ompatibility relation between # and � assumes a more 
ompli
ated form thanthe 
orresponding two-dimensional, be
ause the geometry of the �ow �eld is nowinvolved through the variable r, distan
e from the 
enterline:� (� � #)�� = sin� sin#r (15)� (� + #)�� = sin� sin#r (16)Two methods for solving the equations 15 and 16 are here presented. The �rstone [5℄ is to write them in a �nite di�eren
e form. The latter [1℄ is to approximatethem.Developing the �rst approa
h the two equations, whi
h are valid along the left-and right-running 
hara
teristi
 respe
tively, are�# = A �M � B �x (17)�# = �A �M + C �x (18)where x is the 
enterline axis 
oordinates originated on the throat and the 
oef-�
ients are in turn given byA = pM2 � 1M �1 + 
�12 M2�B = 1�pM2 � 1 
ot#� 1� rC = 1�pM2 � 1 
ot#+ 1� r



CRS4 19In order to 
ompute the 
oordinates and the �ow variables on a third point, giventhe 
oordinates and �ow data on the �rst two, the use of an iterative pro
edure isne
essary. The formulas for the 
oordinates of the third point are the equations 7and 8, same as the two-dimensional 
ase, while M3 and #3 are obtained from:M3 = #1 � #2 + A1M1 + A2M2 + B2 (x3 � x2) + C1 (x3 � x1)A1 + A2 (19)#3 = #2 + A2 (M3 �M2)� B2 (x3 � x2) (20)When the distan
e r is null, it 
an be shown that the 18 takes the following form:�# = 12A �MThe se
ond approa
h, see �gure 15, integrates the equations 15 along the 
har-a
teristi
 segments AC and BC:Z 32 d (� � #) = Z 32  sin� sin#r ! d�Z 31 d (� + #) = Z 31  sin� sin#r ! d�Assuming the quantities in parentheses on the right-hand side to be 
onstant overthe interval of integration, the integration leads to:�3 � #3 = �2 � #2 + sin�2 sin#2r2 ��23 (21)�3 + #3 = �1 + #1 + sin�1 sin#1r1 ��13 (22)where ��23 and ��13 are the distan
e from point B to C and from A to C,respe
tively.Comparing the equations 5 and 6 with the 21 and 22 it is 
lear the presen
e of anadditional term dependent on the geometry and on the �ow variables. The Riemanninvariants are not valid anymore. Solving the equations 21 and 22 for �3 and #3:�3 = 12 (�1 + �2) + 12 (#1 � #2) + 12 �sin�1 sin#1r1 ��13 + sin�2 sin#2r2 ��23� (23)#3 = 12 (�1 � �2) + 12 (#1 + #2) + 12 �sin�1 sin#1r1 ��13 � sin�2 sin#2r2 ��23� (24)
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Figure 15: Chara
teristi
s network for 
omputation of an internal point.whi
h are the equivalent of the 9 and 10 for the axisymmetri
 
ase.If the point C lie on the 
enterline only a right-running 
hara
teristi
 is involved.The expressions 23 and 24 be
ome:�3 = �1 + #1 + sin�1 sin#1r1 ��13#3 = 0where the se
ond expression is due to the symmetry of the problem.If the point C is a wall point, its 
oordinates are given by the interse
tion betweenthe wall 
ontour and the left-running 
hara
teristi
. The point C has #3 = #2 inorder to 
an
el the in
ident wave. The 
hara
teristi
 doesn't en
ounter any other
hara
teristi
 so the � is also 
onserved. In formulas:�3 = �2#3 = #2The wall slope assumes the value #3 to let the �ow straighten out.The maximum de�e
tion of the wall 
ontour #max 
annot be easily 
al
ulated.So, for a minimum length nozzle, it is a result of the numeri
al solution.



CRS4 213.2.1 Numeri
al MethodsThe same methods seen in se
tion 3.1.1 are usable with some adjustments.Method of Weak Waves With respe
t to the two-dimensional 
ase, #max is notknown in advan
e and the wave strength depends on the 
hara
teristi
 networkgeometry. That leads to the following pro
edure (see �gure 13) :1. Guess a #max ;2. Divide #max by the given number of waves to obtain �# whi
h is now used onlyto de�ne the strength of the initial points (Points A,B,C,D in the example);3. The waves depart from those points. Ea
h wave is drawn with its re�e
tion and
an
elation and, at any 
rossing, the Prandtl-Meyer fun
tion � and the �owangle # are 
al
ulated, with the formulas 22, together with the 
oordinates x3and y3. The Ma
h number M and the Ma
h angle � are hen
e derived as well;4. Compare �T to �exit desired and modify the #max a

ordingly. Return to step 2.The method has been implemented and the area ratios found are signi�
ativelysmaller than the ones predi
ted by the quasi-1D relation 1 at page 4.Method of Chara
teristi
s or MOC The method has to be iterative, just like theWeak Waves Method, be
ause #max is unknown before the 
omputation. A way toa

omplish the task is to follow the right-running 
hara
teristi
 departing from thethroat edge with � = �max through its re�e
tion on the axis until it 
rosses again thewall 
ontour. The � at the wall is then 
ompared to the �exit desired and the #maxvaried a

ordingly. Figure 16 shows the �spe
ial 
hara
teristi
 line� along with theothers (whi
h depart from the throat edge with � < �max).This method, whi
h leads to good results in the two-dimensional 
ase, 
onvergesonly for low exit Ma
h numbers. A number of 
hanges have been made to over
omethis problem but with no real improvement. Table sums up brie�y the formulationswhi
h have been tested numeri
ally. Ea
h formulation is des
ribed by di�eren
e fromthe one whi
h is more similar to, apart for the �rst one whi
h is wholly portrayed.3.3 Con
lusionsTwo methods have been presented for designing the two-dimensional and axisym-metri
 divergent se
tions. In two dimensions the methods are 
omparable. In ax-isymmetry the MOC method seems to fail maybe due to its need of reliable initialdata on the throat line (or the soni
 line geometry).
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characteristic followed

A

Figure 16: Chara
teristi
 Method for axisymmetri
 nozzle.
# Similar to # Des
ription or Di�eren
e from the similar one1 - Formulation MOC approximated. Points on the throat 
olumn equally spa
ed.External loop whi
h modi�es #max based on �exit value.Every loop stops when �wall > �desired or #wall < � .2 1 The slope of the 
hara
teristi
s is 
al
ulated by averaging the slopeof lines AC and BC.3 1 #wall is taken as the average of the last #wall and the new #wall .4 1 Points on the throat are distributed a

ording to a 
osine law.5 4 The integral is obtained by averaging sin#,sin� and r between AC, and BC6 4 The 
he
k to exit from the loop is made on the 
hara
teristi
 line at �max7 6 1r d� and 1r d� are integrated8 6 The integral is obtained by averaging sin �,sin� and r between AC and BC.9 6 Points on the 
olumn are divided in a part equally spa
ed and in a partdistributed with 
osine law10 9 Finite Di�eren
e formulation only for the points on the 
enterline.11 9 Finite Di�eren
es formulation for all the points.12 11 The points distributed with 
os law are made 
oin
ident to the throat edge.13 12 �wall = �internal for any wall points.14 12 The mass �ow 
onservation is used to pla
e the points on the wall.15 12 The point C is obtained through iterations.16 15 The mass �ow 
onservation is used to pla
e the points on the wall.17 12 The formulation is 
hanged to the MOC approximated.Table 1: Summary of formulations tested numeri
ally.



CRS4 234 ResultsIn order to verify the quality of the design pro
edure a test has been 
arried out onthree axisymmetri
 ro
ket nozzles. The �rst nozzle is designed with the 
onvergentand divergent se
tions geometry deriving by the appli
ation of the pressure gradient
riterion and the weak waves method. The se
ond nozzle has the same 
onvergentof the �rst nozzle but the divergent 
ontour is a straight line3. Finally the thirdnozzle has both 
onvergent and divergent se
tion 
ontours drawn as straight lines.The nozzles all have the same radius at the 
ombustion 
hamber, at the throat andat the exit se
tion and the same 
onvergent and divergent se
tion lengths. The threenozzles hereafter will be referred to as the �
onvdiv� nozzle, the �
onvlin� nozzle andthe �linear� nozzle.The main 
ommon design parameters of the nozzles are given in table 2.Symbol Meaning ValueR

 Combustion Chamber Radius 0.2mR� Throat Radius 0.1mT

 Combustion Chamber or Total Temperature 2500K_m Mass Flow Rate 5.0Kg/sME Exit Ma
h Number 3.0R; 
 Spe
i�
 Gas 
onstant for air, Spe
i�
 heat ratio for air 287 J/KgK, 1.4Table 2: Common design parameters of the three nozzles.The 
oe�
ients used in the pressure gradient 
riterion, see se
tion 2.1 page 4,are a = 1 and b = 0, whi
h result in a paraboli
 Ma
h number distribution along theaxis of the 
onvergent se
tion. A 
onvergent se
tion length of L = 0:2m have been
hosen.The divergent se
tion shape is obtained by the appli
ation of the method ofwaves, see se
tion 3.2.1 page 21. With 200 waves , the area ratio4 
orrespondingto the given ME is approximately AEA� = 3:88so that the exit radius is RE = 0:196979m3In 2D a straight line. In axisymmetry a frustum of 
one.4Area ratio is the 
ross se
tional area of the nozzle exit divided by the 
ross se
tional area of thenozzle throat.
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s AreaThe one-dimensional equation 1 would give ME = 2:91 for the same area ratio,or AEA� = 4:23 for the same ME = 3:00.The 
ombustion 
hamber pressure or total pressure is given by:P

 = _mA�sRT


 � 2
 + 1�� 
+12(
�1) = 196890 PaThe exit stati
 pressure and temperature 
an be easily obtained from the isen-tropi
 relations:PE = P

 �1 + 
 � 12 ME2�� 

�1 = 5360Pa (25)TE = T

 �1 + 
 � 12 ME2��1 = 892:86K (26)The methods presented earlier in this report are valid under the assumption ofinvis
id �ow hen
e the test 
ase has been 
arried out by solving the Euler equation.In addition to the Euler 
omputation a 
omputation has been made using the Navier-Stokes equations plus the Spalart-Allmaras turbulen
e model, in order to 
he
k howthe methods behave when the vis
osity play a role in the �ow evolution.All the 
omputations have been 
ondu
ted with the 
ommer
ial 
ode Fluentrelease 6.



CRS4 254.1 Invis
id ComputationsThe 
omputational grids used are shown in �gure 17. The grids are stru
tured andthey have 131 points along the axis by 21 points along the radius.

Figure 17: Grids used for the invis
id 
omputations. From top to bottom the 
onvdivnozzle, the 
onvlin nozzle and the linear nozzle.A summary of the main 
omputational settings used for the 
al
ulation is pre-sented in table 3 .Type of Cal
ulation Invis
idDimension 2D-Axisymmetri
Solver Coupled - Impli
itPre
onditioning YesDis
retization 2nd order upwindUsed Boundary ConditionInlet Stati
 Pressure, Total Temperature, Velo
ity Dire
tionWall Adiabati
 Solid WallOutlet Stati
 Pressure while subsoni
 
onditions existTable 3: Main Fluent settings.The 
onvergen
e histories are reported in �gure 18, 19 and 20. The mass �owrate balan
e error is of order 1:E � 6 on all grids.
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Figure 18: Convergen
e history of the 
onvdiv nozzle.
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Figure 19: Convergen
e history of the 
onvlin nozzle.Figures 21, 22 and 23 show the ve
tor �eld on the nozzles with the enlargements
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Figure 20: Convergen
e history of the linear nozzle.

Figure 21: Ve
tors on the 
onvdiv nozzle.of the 
onvergent portion and the exit area. Both 
onvergent se
tion shapes seem togive the same �ow pattern whereas the �ow in divergent se
tions di�ers. In fa
t the
onvlin and the linear nozzle have, at the exit se
tion, a signi�
ant radial 
omponent
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Figure 22: Ve
tors on the 
onvlin nozzle.

Figure 23: Ve
tors on the linear nozzle.of the velo
ity whi
h 
auses a net thrust loss.The Ma
h number along the nozzle axis is reported in �gure 24. The trend alongthe 
onvergent se
tion is, as imposed, paraboli
 for both the 
onvdiv and 
onvlinnozzles. In the divergent se
tion a sudden drop is registered at an axial 
oordinaterange 0:3 < x < 0:5. By running the three-dimensional 
ase , see �gure 25, the



CRS4 29drop is substituted by a slight 
hange in slope and the Ma
h behavior in the 
onvdivnozzle is now in
reasing monotoni
. The three-dimensional grids, �gures 32 to 34,are obtained from the rotation of 360Æ of the axisymmetri
 grids. The number ofpoints on the 
ir
umferential dire
tion is 41.The Ma
h number �elds for the axisymmetri
 and 3d grids are drawn in �gure26 and 27. The isolines of the axisymmetri
 nozzles are irregular even though the
onvergen
e has been rea
hed. The worst behavior in terms of Ma
h number seemsto happen near the 
enterline. This fa
t may indi
ate some problem of Fluent withthe axis boundary 
ondition in the axisymmetri
 model.The three nozzles have a di�erent Ma
h number isolines appearan
e. The 
onvdivnozzle rea
hes higher Ma
h numbers at the exit and its isolines are mu
h stret
hedalong the axis dire
tion.
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Figure 24: Ma
h number along the axis line for the three nozzles.The stati
 temperature behavior depends 
losely on the Ma
h number. In �gure28 is reported the stati
 temperature along the axis. The sudden rise in temperaturein the divergent se
tion, top of �gure 28, is a 
onsequen
e, via the isentropi
 relation26, of the Ma
h number drop, whi
h has been previously registered.Figure 29 shows the result obtained with the three-dimensional grids des
ribedearlier. Again the trend of the 
onvdiv nozzle is monotoni
 and its exit value is lowerthan the other nozzles.
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Figure 25: Ma
h number along the axis line for the three 3d nozzles.The stati
 pressure along the nozzle axis is displayed in �gure 30. The 
onvdivand 
onvlin nozzles has, with respe
t to the linear nozzle, a larger zone of pressurevariation in the 
onvergent se
tion that is lower pressure gradients. In the divergentse
tion the 
onvdiv is the nozzle whi
h gives a lower exit pressure. The sudden risein pressure in the divergent se
tion is again a 
onsequen
e of the Ma
h distribution.In �gure 31 is shown the pressure distribution for the three nozzles 
omputed on thethree-dimensional grids.
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Figure 26: From top to bottom. Ma
h �eld for the 
onvdiv, the 
onvlin and thelinear nozzles.
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Figure 27: From top to bottom. Ma
h �eld for the 
onvdiv 3d, the 
onvlin 3d andthe linear 3d nozzles.
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Figure 28: Stati
 temperature for the three nozzles.
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Figure 29: Stati
 Temperature for the three 3d nozzles.
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Figure 30: Stati
 pressure for the three nozzles.
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Figure 31: Stati
 Pressure for the three 3d nozzles.
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onvdiv nozzle.
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Figure 33: 3D grid on 
onvlin nozzle.

Figure 34: 3D grid on linear nozzle.
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s Area4.2 Vis
ous ComputationsIn �gure 35 are shown the grids used in the 
omputations. The dimensions are131 points in the axial dire
tion by 60 in the radial dire
tion. The grids are highlystret
hed in order to 
apture the boundary layer.

Figure 35: Grids used for the vis
ous 
omputations. From top to bottom the 
onvdivnozzle, the 
onvlin nozzle and the linear nozzle.The main 
omputational settings used for the 
al
ulation are summarized in table4. The 
onvergen
e histories are reported in �gure 36, 37 and 38. The mass �owrate balan
e error is of order 1:E � 4 on all grids.Figures 39, 40 and 41 show the ve
tor �eld on the nozzles with some enlarge-ments. The boundary layer seems to be 
orre
tly reprodu
ed. Again only the 
onvdivnozzle has, at the exit se
tion, the ve
tors aligned along the axial dire
tion.The Ma
h number along the nozzle axis is reported in �gure 42. With respe
t tothe invis
id 
omputation, the drop in Ma
h number magnitude is less severe for allthe three 
ases. Figure 43 marks this 
omparison.The drop redu
tion has been investigated in a three-dimensional se
tor, whosegrid is obtained from the rotation of 10 degrees of the axysimmetri
 grid. The numberof points on the 
ir
umferential dire
tion is 5. Figure 45 shows the results for the



CRS4 37Type of Cal
ulation Vis
ous. Spalart-Allmaras turbulen
e modelDimension 2D-Axisymmetri
Solver Coupled - Impli
itPre
onditioning YesDis
retization 2nd order upwindUsed Boundary ConditionInlet Stati
 Pressure, Total Temperature, Velo
ity Dire
tion,Turbulent Vis
osity RatioWall Adiabati
 Solid Wall. no slip 
ondition.Outlet Stati
 Pressure while subsoni
 
onditions existBa
k�ow Modi�ed Turbulent Vis
osityTable 4: Main Fluent settings.
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Figure 36: Convergen
e history of the 
onvdiv nozzle.three axisymmetri
 and three-dimensional nozzles; they mat
h. The reason 
ouldbe that the three-dimensional nozzle is not in fa
t a �real 3d� be
ause a periodi
boundary is used in the 
ir
umferential dire
tion. A �real 3d� 
ase has not beenrun be
ause of the mesh generation 
omplexity and 
omputational heaviness (Thegrid would be over 1.5million of points). What 
an be hypothesized is that the�real 3d� results would follow the ones seen for the three-dimensional mesh of theinvis
id 
ase and therefore that the axisymmetry and three-dimensional se
tor fail to



38 Fluid Dynami
s Area

Iterations

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0 500 1000 1500 2000 2500 3000 3500 4000 4500

nut

Residuals
continuity
x-velocity
y-velocity
energy

Figure 37: Convergen
e history of the 
onvlin nozzle.
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Figure 38: Convergen
e history of the linear nozzle.predi
t the real behavior due to some problem in their boundary 
onditions along the
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Figure 39: Ve
tors on the 
onvdiv nozzle.
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Figure 40: Ve
tors on the 
onvlin nozzle.
ir
umferential dire
tion.The Ma
h number �elds for the axisymmetri
 grids are drawn in �gure 44.The stati
 temperature and pressure along the axis for the three axisymmetri
nozzles are plotted in �gures 46 and 47 respe
tively. The same 
onsiderations made
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Figure 41: Ve
tors on the linear nozzle.
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Figure 42: Ma
h Number along the axis line for the three nozzles.for the invis
id 
ase may apply for the vis
ous 
ase.
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Figure 43: Ma
h Number 
omparison between vis
ous and invis
id 
omputation onthe three nozzles.
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Figure 44: Ma
h Number �elds for, from top to bottom, the 
onvdiv, the 
onvlinand the linear nozzle.
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Figure 45: Ma
h Number 
omparison between 3d se
tor and axisymmetri
 resultson the three nozzles.
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Figure 46: Stati
 Temperature along the axis for the three nozzles.
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Figure 47: Stati
 Pressure along the axis for the three nozzles.



CRS4 455 Con
lusionsA method to design the 
onvergent and the divergent se
tions of an invis
id axisym-metri
 supersoni
 nozzle has been presented. The results on the test 
ase herebypresented seems to promote both a 
areful pressure based designed nozzle and alinear one. In the divergent se
tion the designed nozzle has the advantage of gettingvelo
ity ve
tors more aligned along the axial dire
tion while the �ow quality seemsto be slightly a�e
ted.The �nal nozzle design must deal with vis
osity. In this paper the invis
id designhas been tested in a vis
ous �ow. The results seems to follow the same behavior ofthe invis
id 
ase.
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