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2 Fluid Dynamis AreaAbstratAn aerospae vehile is aelerated by a propulsion system to a given velo-ity. A nozzle is used to extrat the maximum thrust from high pressure exhaustgases generated by the propulsion system. The nozzle is responsible for provid-ing the thrust neessary to suessfully aomplish the mission while its designe�ieny translates to greater payload and redution in propellant onsump-tion.Spei�ally, the nozzle is that portion of the engine beyond the ombustionhamber. Typially, the ombustion hamber is a onstant area dut into whihpropellants are injeted, mixed and burned. Its length is su�ient to ompletethe ombustion of the propellants before the nozzle aelerates the gas prod-uts. The nozzle is said to begin at the point where the hamber diameterbegins to derease.This paper exploits the De Laval nozzle, a onvergent-divergent nozzle inventedby Carl De Laval toward the end of the 19th entury, and it tries to give a pra-tial proedure to design the nozzle of minimum length. The basi assumptionmade is that the boundary layer thikness is small ompared to the harateristilength, i.e. nozzle radius, so that the nozzle �ow �eld an be treated as invis-id for the purpose of designing the aerodynami lines. One the aerodynamilines are determined, a orretion an be made to aount for the displaementthikness of the boundary layer. This seond step of the designing proedure isnot treated in here. This basi proedure has been applied suessfully to manysupersoni nozzles.



CRS4 31 IntrodutionA De Laval nozzle omprises a ombustion hamber, a onvergent setion, a throatand a divergent setion. The ombustion hamber is a region of high pressure where ahemial ombustion or a nulear reation releases the energy whih in turn inreasesthe enthalpy of the ontained �uid. The enthalpy of the �uid is then transformed inkineti energy by the nozzle. In the onvergent setion the �ow is aelerated fromlow subsoni onditions, typial of the ombustion hamber, to soni onditions atthe throat. In the divergent setion the �ow is still aelerated from soni onditionsto supersoni onditions. As far as the divergent setion design is onerned, a oniallinear nozzle with half opening angle of about 15o usually represents a reasonablegood ompromise between ease of onstrution (and of mesh generation for thenumerial simulations) and thrust loss redution. A more aurate design would leadto the typial bell-shaped divergent setion. This will be disussed in setion 3.The onvergent setion is usually easier. Typially, any onverging shape doesaelerates the �ow to the required soni onditions at the throat.Finally the nozzle design must satisfy an overall relation between the nozzle throatarea, the mass �ow rate, the stagnation temperature and pressure whih an bewritten, under the assumption of isentropi �ow, as follows:_mA� = pstppRTst � 2 + 1� +12(�1)



4 Fluid Dynamis Area2 Convergent Setion DesignTwo di�erent approahes have been developed in the following setions in order to�nd the geometry of the onvergent setion. In the �rst approah the geometry isomputed by assuming a smooth pressure gradient along its axis. In the latter thegeometry is obtained in a graphial way by drawing a onvergent setion with smoothbend variations.2.1 Pressure Gradient CriterionThe goal is of this approah is to obtain a smooth pressure transition from the valueat the ombustion hamber, i.e. the stagnation pressure, to the value at the throatin order to ensure a �ow free of vorties and instabilities. To this end, a designproedure has been developed, based on the quasi-1D gas dynamis relations for�ows in variable-area duts. Exat formulas are valid for a alorially and thermallyperfet gas, but they an be used, with reasonable approximation, for non ideal gasesas well. The equation whih gives the ratio of the unknown variable area distributionalong the nozzle axis to the throat area as a funtion of the Mah number distributionis [2℄1:  A(x)A� !2 = 1M2(x) � 2 + 1 �1 +  � 12 M2(x)�� +1�1or: A(x)A? = 1M(x) � 2 + 1 �1 +  � 12 M2(x)�� +12(�1) (1)being A(x) and M(x) the area and the Mah number along the nozzle axis x. Fromthe total temperature onservation law and from the isentropi relation betweenpressure and temperature, it an be obtained:p(x)ptot = �1 +  � 12 M(x)2�� �1 (2)being p(x) the pressure along the nozzle axis x. Finally by inverting equation 1:2 + 1 �1 +  � 12 M(x)2�(+1) � "A(x)A? M#2(�1) = 0 (3)The design proedure an be summarized as follows:1Equation 5.20



CRS4 51. An arbitrary Mah number distribution along the nozzle axis, M(x), is hosen;2. The orresponding pressure distribution is derived from equation 2 ;3. The �rst two steps are repeated until a �good� pressure distribution has beenfound;4. The area distribution, whih gives the shape of the nozzle onvergent setion,is obtained from equation 1;5. The designed nozzle is onneted to the ombustion hamber through a �lleturve;6. The new pressure distribution is omputed by solving equation 3 via Newtonmethod;7. A hek is made that the pressure distribution onneted to the new geometrymaintains the desired smoothness.A reasonable hoie, for the arbitrary Mah number distribution, an be a generiseond order urve:M(x) = a �xL�2 + b � xL�+  (4)where L is the onvergent setion length, with the following boundary onditions:M(0) = 0 at x = 0 = End of the ombustion hamberM(1) = 1 at x = L = Nozzle throatwhih give the requirements:  = 0, a + b = 1.Figure 1 shows three possible hoies for the two oe�ients a and b ad theorresponding pressure urves. The distribution orresponding to a linear shape on-vergent setion is also added to the �gure, though it does not �t the seond orderexpression for the Mah number distribution. The linear shape is presented beauseit often represents a "good", as well as easy, hoie. However, as it an be seen inthe �gure, for an arbitrary hosen overall area ratio of 1322, (ombustion hamberradius 0.2m, throat radius 0.0055m), the linear shape generates a very steep pressuregradient.
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Figure 1: Mah number distributions (left) and orresponding pressure distributions(right).2.2 Geometri Shape CriterionAording to this approah a �good looking� onvergent setion shape is hosenand the orresponding pressure distribution is omputed. What is meant here bythe words �good looking� is a smooth variation of the ross setion area from theombustion hamber down to the throat. An easy way to aomplish that is shownin �gure 2.
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Figure 2: Geometri reation of the onvergent setion pro�le



CRS4 7Two irles of given radii have been drawn, one at the end of the ombustionhamber and the other at the throat setion, together with a line whih is tangent toboth. The line and the two ars form the onvergent setion shape. Four parametershave to be set to fully de�ne the geometry namely the position and the radius of thetwo irles.Figures 3 and 4 show the results obtained by varying the distane between theirles while the �gures 5 and 6 display the e�et of the throat irle radius on thegeometry and pressure distribution.
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Figure 3: E�et of L, distane between irles enters on geometryIt an be seen that the e�et of widening the gap between the two irles is,geometrially, to straighten out the onvergent setion shape and, from the pressurepoint of view, to redue the zone where the whole pressure hanges take plae andas a onsequene it auses a steeper pressure urve.One have been set the distane between the irles and the ombustion hamberirle radius, inreasing the throat irle radius has the e�et of giving a muh roundershape urve and enlarging the area where the most of the pressure hanges takesplae this way it redues the steepness of the pressure urve.
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Figure 4: E�et of L, distane between irles enters on pressure distribution
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Figure 5: E�et of Rt, throat irle radius on geometry2.3 ConlusionsComparing the pressure distributions, given by the two riteria, it an be notedthat the pressure gradient riterion, for its embedded nature, behaves better; the



CRS4 9

0 0.2 0.4 0.6 0.8 1
X

0

0.2

0.4

0.6

0.8

1

P
/P

cc Rf=0.05
Rt=0.1
Rt=0.15
Rt=0.2

L=0.3

Figure 6: E�et of Rt, throat irle radius on pressure distributionpressure dereases with smoothness to its throat value whereas in the geometrishape riterion there are narrow zones of steep variation and wide zones of onstantvalues.Figure 7 shows (on the right) the nozzle shape for the pressure gradient riterionwith a = 1 and b = 0 together with the CAD urve onneting the area pro�le tothe stagnation hamber. On the left side of the same �gure the two pressure distri-butions are shown (with and without the onnetion). The smooth �llet onnetiongenerated with a CAD urve does not hange the pressure distribution hosen.
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Figure 7: Radius ratio (left) and pressure ratio (right) versus the non dimensionalaxial oordinate.



CRS4 113 Divergent Setion DesignThe e�etiveness of a De Laval nozzle design is determined predominantly by theshape of its divergent setion. The alulation of the isentropi divergent setion,when the e�ets of thermal transfer and visous fore at the wall are ignored, an beaomplished by using the method of harateristis. The method of harateristisis a well known, simple method for determining the �ow inside of a given set of walls;however, the inverse problem, i.e. the determination of an axisymmetri wall ontourwhih gives a partiular �ow pattern to arbitrary preision, is not as straightforward.The mathematial utility of the harateristis is that along them the partialdi�erential equations for the �ow properties, that is the Euler equations under theassumption of invisid and adiabati onditions, are transformed into ordinary di�er-ential equations. Physially, they desribe the way a disturbane, suh as a hangein wall angle, propagates through a �owing �eld. The wall urvature an be approx-imated by a series of sharp wall bends from whih depart the harateristis withtheir information on the wall angle variation. Reognizing that there is another wallopposite this one with opposite urvature, it is lear that harateristis from thetwo wall must ross. The result is a sum of e�ets, and both in two-dimensional andaxisymmetri ase the axis line an be onsidered as a symmetry axis and thereforethe omputation an be limited to one half of the domain (one half of a slie for theaxisymmetri ase).For a De Laval nozzle the design aims to redue all the expansion lines so that atthe exit the �ow will ontinue to be uniform to takle the so alled geometry loss.2The proedure for removing or aneling the expansion e�ets is to aommodate thewall shape in suh a way that the inident harateristi will be de�eted parallel to theenterline or axis of the nozzle. This proedure is repeated until every harateristioriginated in the initial setion is removed from the �ow.A generi nozzle divergent setion is drawn in �gure 8. Half a nozzle is representedfor symmetry reasons. TB is the throat setion and EF is the exit setion. Let #wallbe the angle of the divergent setion wall with respet to the enterline. The setionof the nozzle where #wall is inreasing is alled the expansion zone; here expansionwaves are generated and propagate downstream, re�eting at the opposite wall.Point C is an in�etion point of the ontour, where #wall = #wallmax . Downstream ofpoint C, #wall dereases until the wall beomes parallel to the enterline diretion.The setion from C to E is alled the anelation zone and it is a straightening setion2In fat for onventional bell nozzle, loss mehanism fall into three ategories:geometri or diver-gene loss, visous drag loss and hemial kineti loss. Geometri loss results when a portion of thenozzle exit �ow is direted away from the nozzle axis, resulting in a radial omponent of momentum.The seond ause of loss depends on the visous fores while the hemial kineti loss relies essentiallyon the fat that the gas is not in hemial equilibrium at any point in the nozzle �ow.



12 Fluid Dynamis Area
T

Initial Expansion

zone

Cancellation
zone

Reflection
zone

C

E

Centerline or axis

AB FFigure 8: Nozzle divergent setionspei�ally designed to anel all the expansion waves generated by the expansionzone. The area TCAB overed with both left- and right-running harateristis isalled a non-simple region. In this region the harateristis are urved lines. Inontrast, the region CAE is overed by waves of only one family beause the otherfamily is aneled. This is alled a simple region.The length and shape of the initial expansion zone are arbitrary. The shortestnozzle, in whih this paper is interested, is obtained by having zero length for theinitial expansion, that is, a Prandtl-Meyer expansion to #max . T ollapses into C andall the harateristis depart from the same point.Any point of the �ow �eld along a harateristi is desribed by two variables:the angle # of the veloity with respet to the enterline and � , the Prandtl-Mayerfuntion whih is de�ned as:� = s + 1 � 1 artans � 1 + 1 (M2 � 1)� artanpM2 � 1Thus a supersoni Mah number M is always assoiated with a de�nite value ofthe funtion �. As M varies from 1 to1, � inreases monotonially from 0 to �max .Figure 9 shows the meaning of the angle # and displays the left- and right-runningharateristis at a generi point P. The angle � between the harateristis and theveloity is alled the Mah angle and it is related to the Mah number through thesimple relation sin� = 1M



CRS4 13

θ

µ

µ

V

P

η

ξ

(left−running characteristic)

(right−running characteristic)

streamline

centerline

Figure 9: Illustration of left- and right-running harateristis.3.1 Two-dimensional Divergent Setion DesignA relation, alled of ompatibility. ties the two variables # and �. By rewritingthe equations of motion in the harateristis oordinate system (�; �), after somealgebra:��� (� � #) = 0��� (� + #) = 0or:� � # = R = onstant along a � � harater isti (5)� + # = Q = onstant along a � � harater isti (6)



14 Fluid Dynamis Areawhere Q and R are alled the Riemann invariants. The omputation method takesadvantage of this relation. Figure 10 displays two points where # and � are known.The position and the variables # and � in a third, internal, point are obtained.
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CRS4 15or in terms of invariants:�3 = 12 (Q+ R) (11)#3 = 12 (Q� R) (12)If the point C lies on the enterline (�gure 11) only a right-running harateristiis involved.
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CRS4 19In order to ompute the oordinates and the �ow variables on a third point, giventhe oordinates and �ow data on the �rst two, the use of an iterative proedure isneessary. The formulas for the oordinates of the third point are the equations 7and 8, same as the two-dimensional ase, while M3 and #3 are obtained from:M3 = #1 � #2 + A1M1 + A2M2 + B2 (x3 � x2) + C1 (x3 � x1)A1 + A2 (19)#3 = #2 + A2 (M3 �M2)� B2 (x3 � x2) (20)When the distane r is null, it an be shown that the 18 takes the following form:�# = 12A �MThe seond approah, see �gure 15, integrates the equations 15 along the har-ateristi segments AC and BC:Z 32 d (� � #) = Z 32  sin� sin#r ! d�Z 31 d (� + #) = Z 31  sin� sin#r ! d�Assuming the quantities in parentheses on the right-hand side to be onstant overthe interval of integration, the integration leads to:�3 � #3 = �2 � #2 + sin�2 sin#2r2 ��23 (21)�3 + #3 = �1 + #1 + sin�1 sin#1r1 ��13 (22)where ��23 and ��13 are the distane from point B to C and from A to C,respetively.Comparing the equations 5 and 6 with the 21 and 22 it is lear the presene of anadditional term dependent on the geometry and on the �ow variables. The Riemanninvariants are not valid anymore. Solving the equations 21 and 22 for �3 and #3:�3 = 12 (�1 + �2) + 12 (#1 � #2) + 12 �sin�1 sin#1r1 ��13 + sin�2 sin#2r2 ��23� (23)#3 = 12 (�1 � �2) + 12 (#1 + #2) + 12 �sin�1 sin#1r1 ��13 � sin�2 sin#2r2 ��23� (24)
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CRS4 213.2.1 Numerial MethodsThe same methods seen in setion 3.1.1 are usable with some adjustments.Method of Weak Waves With respet to the two-dimensional ase, #max is notknown in advane and the wave strength depends on the harateristi networkgeometry. That leads to the following proedure (see �gure 13) :1. Guess a #max ;2. Divide #max by the given number of waves to obtain �# whih is now used onlyto de�ne the strength of the initial points (Points A,B,C,D in the example);3. The waves depart from those points. Eah wave is drawn with its re�etion andanelation and, at any rossing, the Prandtl-Meyer funtion � and the �owangle # are alulated, with the formulas 22, together with the oordinates x3and y3. The Mah number M and the Mah angle � are hene derived as well;4. Compare �T to �exit desired and modify the #max aordingly. Return to step 2.The method has been implemented and the area ratios found are signi�ativelysmaller than the ones predited by the quasi-1D relation 1 at page 4.Method of Charateristis or MOC The method has to be iterative, just like theWeak Waves Method, beause #max is unknown before the omputation. A way toaomplish the task is to follow the right-running harateristi departing from thethroat edge with � = �max through its re�etion on the axis until it rosses again thewall ontour. The � at the wall is then ompared to the �exit desired and the #maxvaried aordingly. Figure 16 shows the �speial harateristi line� along with theothers (whih depart from the throat edge with � < �max).This method, whih leads to good results in the two-dimensional ase, onvergesonly for low exit Mah numbers. A number of hanges have been made to overomethis problem but with no real improvement. Table sums up brie�y the formulationswhih have been tested numerially. Eah formulation is desribed by di�erene fromthe one whih is more similar to, apart for the �rst one whih is wholly portrayed.3.3 ConlusionsTwo methods have been presented for designing the two-dimensional and axisym-metri divergent setions. In two dimensions the methods are omparable. In ax-isymmetry the MOC method seems to fail maybe due to its need of reliable initialdata on the throat line (or the soni line geometry).
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Figure 16: Charateristi Method for axisymmetri nozzle.
# Similar to # Desription or Di�erene from the similar one1 - Formulation MOC approximated. Points on the throat olumn equally spaed.External loop whih modi�es #max based on �exit value.Every loop stops when �wall > �desired or #wall < � .2 1 The slope of the harateristis is alulated by averaging the slopeof lines AC and BC.3 1 #wall is taken as the average of the last #wall and the new #wall .4 1 Points on the throat are distributed aording to a osine law.5 4 The integral is obtained by averaging sin#,sin� and r between AC, and BC6 4 The hek to exit from the loop is made on the harateristi line at �max7 6 1r d� and 1r d� are integrated8 6 The integral is obtained by averaging sin �,sin� and r between AC and BC.9 6 Points on the olumn are divided in a part equally spaed and in a partdistributed with osine law10 9 Finite Di�erene formulation only for the points on the enterline.11 9 Finite Di�erenes formulation for all the points.12 11 The points distributed with os law are made oinident to the throat edge.13 12 �wall = �internal for any wall points.14 12 The mass �ow onservation is used to plae the points on the wall.15 12 The point C is obtained through iterations.16 15 The mass �ow onservation is used to plae the points on the wall.17 12 The formulation is hanged to the MOC approximated.Table 1: Summary of formulations tested numerially.



CRS4 234 ResultsIn order to verify the quality of the design proedure a test has been arried out onthree axisymmetri roket nozzles. The �rst nozzle is designed with the onvergentand divergent setions geometry deriving by the appliation of the pressure gradientriterion and the weak waves method. The seond nozzle has the same onvergentof the �rst nozzle but the divergent ontour is a straight line3. Finally the thirdnozzle has both onvergent and divergent setion ontours drawn as straight lines.The nozzles all have the same radius at the ombustion hamber, at the throat andat the exit setion and the same onvergent and divergent setion lengths. The threenozzles hereafter will be referred to as the �onvdiv� nozzle, the �onvlin� nozzle andthe �linear� nozzle.The main ommon design parameters of the nozzles are given in table 2.Symbol Meaning ValueR Combustion Chamber Radius 0.2mR� Throat Radius 0.1mT Combustion Chamber or Total Temperature 2500K_m Mass Flow Rate 5.0Kg/sME Exit Mah Number 3.0R;  Spei� Gas onstant for air, Spei� heat ratio for air 287 J/KgK, 1.4Table 2: Common design parameters of the three nozzles.The oe�ients used in the pressure gradient riterion, see setion 2.1 page 4,are a = 1 and b = 0, whih result in a paraboli Mah number distribution along theaxis of the onvergent setion. A onvergent setion length of L = 0:2m have beenhosen.The divergent setion shape is obtained by the appliation of the method ofwaves, see setion 3.2.1 page 21. With 200 waves , the area ratio4 orrespondingto the given ME is approximately AEA� = 3:88so that the exit radius is RE = 0:196979m3In 2D a straight line. In axisymmetry a frustum of one.4Area ratio is the ross setional area of the nozzle exit divided by the ross setional area of thenozzle throat.



24 Fluid Dynamis AreaThe one-dimensional equation 1 would give ME = 2:91 for the same area ratio,or AEA� = 4:23 for the same ME = 3:00.The ombustion hamber pressure or total pressure is given by:P = _mA�sRT � 2 + 1�� +12(�1) = 196890 PaThe exit stati pressure and temperature an be easily obtained from the isen-tropi relations:PE = P �1 +  � 12 ME2�� �1 = 5360Pa (25)TE = T �1 +  � 12 ME2��1 = 892:86K (26)The methods presented earlier in this report are valid under the assumption ofinvisid �ow hene the test ase has been arried out by solving the Euler equation.In addition to the Euler omputation a omputation has been made using the Navier-Stokes equations plus the Spalart-Allmaras turbulene model, in order to hek howthe methods behave when the visosity play a role in the �ow evolution.All the omputations have been onduted with the ommerial ode Fluentrelease 6.



CRS4 254.1 Invisid ComputationsThe omputational grids used are shown in �gure 17. The grids are strutured andthey have 131 points along the axis by 21 points along the radius.

Figure 17: Grids used for the invisid omputations. From top to bottom the onvdivnozzle, the onvlin nozzle and the linear nozzle.A summary of the main omputational settings used for the alulation is pre-sented in table 3 .Type of Calulation InvisidDimension 2D-AxisymmetriSolver Coupled - ImpliitPreonditioning YesDisretization 2nd order upwindUsed Boundary ConditionInlet Stati Pressure, Total Temperature, Veloity DiretionWall Adiabati Solid WallOutlet Stati Pressure while subsoni onditions existTable 3: Main Fluent settings.The onvergene histories are reported in �gure 18, 19 and 20. The mass �owrate balane error is of order 1:E � 6 on all grids.
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Figure 18: Convergene history of the onvdiv nozzle.

Iterations

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

0 200 400 600 800 1000 1200

energy

Residuals
continuity
x-velocity
y-velocity

Figure 19: Convergene history of the onvlin nozzle.Figures 21, 22 and 23 show the vetor �eld on the nozzles with the enlargements
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Figure 20: Convergene history of the linear nozzle.

Figure 21: Vetors on the onvdiv nozzle.of the onvergent portion and the exit area. Both onvergent setion shapes seem togive the same �ow pattern whereas the �ow in divergent setions di�ers. In fat theonvlin and the linear nozzle have, at the exit setion, a signi�ant radial omponent
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Figure 22: Vetors on the onvlin nozzle.

Figure 23: Vetors on the linear nozzle.of the veloity whih auses a net thrust loss.The Mah number along the nozzle axis is reported in �gure 24. The trend alongthe onvergent setion is, as imposed, paraboli for both the onvdiv and onvlinnozzles. In the divergent setion a sudden drop is registered at an axial oordinaterange 0:3 < x < 0:5. By running the three-dimensional ase , see �gure 25, the



CRS4 29drop is substituted by a slight hange in slope and the Mah behavior in the onvdivnozzle is now inreasing monotoni. The three-dimensional grids, �gures 32 to 34,are obtained from the rotation of 360Æ of the axisymmetri grids. The number ofpoints on the irumferential diretion is 41.The Mah number �elds for the axisymmetri and 3d grids are drawn in �gure26 and 27. The isolines of the axisymmetri nozzles are irregular even though theonvergene has been reahed. The worst behavior in terms of Mah number seemsto happen near the enterline. This fat may indiate some problem of Fluent withthe axis boundary ondition in the axisymmetri model.The three nozzles have a di�erent Mah number isolines appearane. The onvdivnozzle reahes higher Mah numbers at the exit and its isolines are muh strethedalong the axis diretion.
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Figure 24: Mah number along the axis line for the three nozzles.The stati temperature behavior depends losely on the Mah number. In �gure28 is reported the stati temperature along the axis. The sudden rise in temperaturein the divergent setion, top of �gure 28, is a onsequene, via the isentropi relation26, of the Mah number drop, whih has been previously registered.Figure 29 shows the result obtained with the three-dimensional grids desribedearlier. Again the trend of the onvdiv nozzle is monotoni and its exit value is lowerthan the other nozzles.
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Figure 25: Mah number along the axis line for the three 3d nozzles.The stati pressure along the nozzle axis is displayed in �gure 30. The onvdivand onvlin nozzles has, with respet to the linear nozzle, a larger zone of pressurevariation in the onvergent setion that is lower pressure gradients. In the divergentsetion the onvdiv is the nozzle whih gives a lower exit pressure. The sudden risein pressure in the divergent setion is again a onsequene of the Mah distribution.In �gure 31 is shown the pressure distribution for the three nozzles omputed on thethree-dimensional grids.
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Figure 26: From top to bottom. Mah �eld for the onvdiv, the onvlin and thelinear nozzles.
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Figure 27: From top to bottom. Mah �eld for the onvdiv 3d, the onvlin 3d andthe linear 3d nozzles.
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Figure 28: Stati temperature for the three nozzles.
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Figure 29: Stati Temperature for the three 3d nozzles.
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Figure 30: Stati pressure for the three nozzles.
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Figure 31: Stati Pressure for the three 3d nozzles.
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Figure 33: 3D grid on onvlin nozzle.

Figure 34: 3D grid on linear nozzle.



36 Fluid Dynamis Area4.2 Visous ComputationsIn �gure 35 are shown the grids used in the omputations. The dimensions are131 points in the axial diretion by 60 in the radial diretion. The grids are highlystrethed in order to apture the boundary layer.

Figure 35: Grids used for the visous omputations. From top to bottom the onvdivnozzle, the onvlin nozzle and the linear nozzle.The main omputational settings used for the alulation are summarized in table4. The onvergene histories are reported in �gure 36, 37 and 38. The mass �owrate balane error is of order 1:E � 4 on all grids.Figures 39, 40 and 41 show the vetor �eld on the nozzles with some enlarge-ments. The boundary layer seems to be orretly reprodued. Again only the onvdivnozzle has, at the exit setion, the vetors aligned along the axial diretion.The Mah number along the nozzle axis is reported in �gure 42. With respet tothe invisid omputation, the drop in Mah number magnitude is less severe for allthe three ases. Figure 43 marks this omparison.The drop redution has been investigated in a three-dimensional setor, whosegrid is obtained from the rotation of 10 degrees of the axysimmetri grid. The numberof points on the irumferential diretion is 5. Figure 45 shows the results for the



CRS4 37Type of Calulation Visous. Spalart-Allmaras turbulene modelDimension 2D-AxisymmetriSolver Coupled - ImpliitPreonditioning YesDisretization 2nd order upwindUsed Boundary ConditionInlet Stati Pressure, Total Temperature, Veloity Diretion,Turbulent Visosity RatioWall Adiabati Solid Wall. no slip ondition.Outlet Stati Pressure while subsoni onditions existBak�ow Modi�ed Turbulent VisosityTable 4: Main Fluent settings.
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Figure 36: Convergene history of the onvdiv nozzle.three axisymmetri and three-dimensional nozzles; they math. The reason ouldbe that the three-dimensional nozzle is not in fat a �real 3d� beause a periodiboundary is used in the irumferential diretion. A �real 3d� ase has not beenrun beause of the mesh generation omplexity and omputational heaviness (Thegrid would be over 1.5million of points). What an be hypothesized is that the�real 3d� results would follow the ones seen for the three-dimensional mesh of theinvisid ase and therefore that the axisymmetry and three-dimensional setor fail to
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Figure 37: Convergene history of the onvlin nozzle.
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Figure 38: Convergene history of the linear nozzle.predit the real behavior due to some problem in their boundary onditions along the
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Figure 39: Vetors on the onvdiv nozzle.
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Figure 40: Vetors on the onvlin nozzle.irumferential diretion.The Mah number �elds for the axisymmetri grids are drawn in �gure 44.The stati temperature and pressure along the axis for the three axisymmetrinozzles are plotted in �gures 46 and 47 respetively. The same onsiderations made
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Figure 41: Vetors on the linear nozzle.
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Figure 42: Mah Number along the axis line for the three nozzles.for the invisid ase may apply for the visous ase.
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Figure 43: Mah Number omparison between visous and invisid omputation onthe three nozzles.
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Figure 44: Mah Number �elds for, from top to bottom, the onvdiv, the onvlinand the linear nozzle.
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Figure 45: Mah Number omparison between 3d setor and axisymmetri resultson the three nozzles.
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Figure 46: Stati Temperature along the axis for the three nozzles.
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Figure 47: Stati Pressure along the axis for the three nozzles.



CRS4 455 ConlusionsA method to design the onvergent and the divergent setions of an invisid axisym-metri supersoni nozzle has been presented. The results on the test ase herebypresented seems to promote both a areful pressure based designed nozzle and alinear one. In the divergent setion the designed nozzle has the advantage of gettingveloity vetors more aligned along the axial diretion while the �ow quality seemsto be slightly a�eted.The �nal nozzle design must deal with visosity. In this paper the invisid designhas been tested in a visous �ow. The results seems to follow the same behavior ofthe invisid ase.
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