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Abstract

An aerospace vehicle is accelerated by a propulsion system to a given veloc-
ity. A nozzle is used to extract the maximum thrust from high pressure exhaust
gases generated by the propulsion system. The nozzle is responsible for provid-
ing the thrust necessary to successfully accomplish the mission while its design
efficiency translates to greater payload and reduction in propellant consump-
tion.

Specifically, the nozzle is that portion of the engine beyond the combustion
chamber. Typically, the combustion chamber is a constant area duct into which
propellants are injected, mixed and burned. Its length is sufficient to complete
the combustion of the propellants before the nozzle accelerates the gas prod-
ucts. The nozzle is said to begin at the point where the chamber diameter
begins to decrease.

This paper exploits the De Laval nozzle, a convergent-divergent nozzle invented
by Carl De Laval toward the end of the 19th century, and it tries to give a prac-
tical procedure to design the nozzle of minimum length. The basic assumption
made is that the boundary layer thickness is small compared to the characteristic
length, i.e. nozzle radius, so that the nozzle flow field can be treated as invis-
cid for the purpose of designing the aerodynamic lines. Once the aerodynamic
lines are determined, a correction can be made to account for the displacement
thickness of the boundary layer. This second step of the designing procedure is
not treated in here. This basic procedure has been applied successfully to many
supersonic nozzles.
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1 Introduction

A De Laval nozzle comprises a combustion chamber, a convergent section, a throat
and a divergent section. The combustion chamber is a region of high pressure where a
chemical combustion or a nuclear reaction releases the energy which in turn increases
the enthalpy of the contained fluid. The enthalpy of the fluid is then transformed in
kinetic energy by the nozzle. In the convergent section the flow is accelerated from
low subsonic conditions, typical of the combustion chamber, to sonic conditions at
the throat. In the divergent section the flow is still accelerated from sonic conditions
to supersonic conditions. As far as the divergent section design is concerned, a conical
linear nozzle with half opening angle of about 15° usually represents a reasonable
good compromise between ease of construction (and of mesh generation for the
numerical simulations) and thrust loss reduction. A more accurate design would lead
to the typical bell-shaped divergent section. This will be discussed in section 3.

The convergent section is usually easier. Typically, any converging shape does
accelerates the flow to the required sonic conditions at the throat.

Finally the nozzle design must satisfy an overall relation between the nozzle throat
area, the mass flow rate, the stagnation temperature and pressure which can be
written, under the assumption of isentropic flow, as follows:

M P/ ( 2 )2%
A" /RTa

A* v+1
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2 Convergent Section Design

Two different approaches have been developed in the following sections in order to
find the geometry of the convergent section. In the first approach the geometry is
computed by assuming a smooth pressure gradient along its axis. In the latter the
geometry is obtained in a graphical way by drawing a convergent section with smooth
bend variations.

2.1 Pressure Gradient Criterion

The goal is of this approach is to obtain a smooth pressure transition from the value
at the combustion chamber, i.e. the stagnation pressure, to the value at the throat
in order to ensure a flow free of vortices and instabilities. To this end, a design
procedure has been developed, based on the quasi-1D gas dynamics relations for
flows in variable-area ducts. Exact formulas are valid for a calorically and thermally
perfect gas, but they can be used, with reasonable approximation, for non ideal gases
as well. The equation which gives the ratio of the unknown variable area distribution
along the nozzle axis to the throat area as a function of the Mach number distribution

is [2]*
(Ajb)z = v [ (14 5 w0 =

AA(\):) - M:Ex) Lyi 1 (1 +1 1M2(X)>}m

—

or:

(1)

being A(x) and M(x) the area and the Mach number along the nozzle axis x. From
the total temperature conservation law and from the isentropic relation between
pressure and temperature, it can be obtained:

% - (1 %_IM(XY)_% 2)

being p(x) the pressure along the nozzle axis x. Finally by inverting equation 1:

<1 L= 1 M(x)2> (v+1) B lA(X) y

=0 (3)

2 A*

2(v-1)
y+1 ]

The design procedure can be summarized as follows:

1Equation 5.20
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1. An arbitrary Mach number distribution along the nozzle axis, M(x), is chosen;
2. The corresponding pressure distribution is derived from equation 2 ;

3. The first two steps are repeated until a “good” pressure distribution has been
found;

4. The area distribution, which gives the shape of the nozzle convergent section,
is obtained from equation 1;

5. The designed nozzle is connected to the combustion chamber through a fillet
curve;

6. The new pressure distribution is computed by solving equation 3 via Newton
method;

7. A check is made that the pressure distribution connected to the new geometry
maintains the desired smoothness.

A reasonable choice, for the arbitrary Mach number distribution, can be a generic
second order curve:

M(x):a(%)ib(%) +c (4)

where L is the convergent section length, with the following boundary conditions:

M(0) =0 at x=0= End of the combustion chamber
M(1)=1 at x=L = Nozzle throat

which give the requirements: c =0, a+ b=1.

Figure 1 shows three possible choices for the two coefficients a and b ad the
corresponding pressure curves. The distribution corresponding to a linear shape con-
vergent section is also added to the figure, though it does not fit the second order
expression for the Mach number distribution. The linear shape is presented because
it often represents a "good", as well as easy, choice. However, as it can be seen in
the figure, for an arbitrary chosen overall area ratio of 1322, (combustion chamber
radius 0.2m, throat radius 0.0055m), the linear shape generates a very steep pressure
gradient.



6 Fluid Dynamics Area

1 — ‘ ‘ ‘ ‘ ‘ 1
P 7 I
— a=0:;b=1 // 1
08 —---a=1;b=0 /7 409+
| —— a=05;b=05 //// | i
— - - Linear Nozzle P !
< 06 P 4 08F -
3] 4 ! o
IS 77 - =
= s i 2
0.4 - s 4 0.7+ Q
s |
S // H S
7L |
02 [ - // 1| 06 7
/ // / r
- _- ,
0 SO T R 05 ‘ ! ‘ ! ‘ ! ‘ ! ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/L x/L

Figure 1: Mach number distributions (left) and corresponding pressure distributions
(right).

2.2 Geometric Shape Criterion

According to this approach a “good looking” convergent section shape is chosen
and the corresponding pressure distribution is computed. What is meant here by
the words “good looking” is a smooth variation of the cross section area from the
combustion chamber down to the throat. An easy way to accomplish that is shown
in figure 2.

Rcc

(Xcce,Yce)

Figure 2: Geometric creation of the convergent section profile
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Two circles of given radii have been drawn, one at the end of the combustion
chamber and the other at the throat section, together with a line which is tangent to
both. The line and the two arcs form the convergent section shape. Four parameters
have to be set to fully define the geometry namely the position and the radius of the
two circles.

Figures 3 and 4 show the results obtained by varying the distance between the
circles while the figures 5 and 6 display the effect of the throat circle radius on the
geometry and pressure distribution.

0.45
0.35 a
Rt=0.1 L=0.3
G—oL=04
0.25 r 5—-+L=0.5 8
&G—=L=0.6
0.15 r a
0.05 r .
-0.05 - a
-0.15 - a
-0.25

"-0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65

Figure 3: Effect of L, distance between circles centers on geometry

It can be seen that the effect of widening the gap between the two circles is,
geometrically, to straighten out the convergent section shape and, from the pressure
point of view, to reduce the zone where the whole pressure changes take place and
as a consequence it causes a steeper pressure curve.

Once have been set the distance between the circles and the combustion chamber
circle radius, increasing the throat circle radius has the effect of giving a much rounder
shape curve and enlarging the area where the most of the pressure changes takes
place this way it reduces the steepness of the pressure curve.
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Figure 4: Effect of L, distance between circles centers on pressure distribution
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Figure b: Effect of Rt, throat circle radius on geometry

2.3 Conclusions

Comparing the pressure distributions, given by the two criteria, it can be noted
that the pressure gradient criterion, for its embedded nature, behaves better; the
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Figure 6: Effect of Rt, throat circle radius on pressure distribution

pressure decreases with smoothness to its throat value whereas in the geometric
shape criterion there are narrow zones of steep variation and wide zones of constant
values.

Figure 7 shows (on the right) the nozzle shape for the pressure gradient criterion
with a = 1 and b = 0 together with the CAD curve connecting the area profile to
the stagnation chamber. On the left side of the same figure the two pressure distri-
butions are shown (with and without the connection). The smooth fillet connection
generated with a CAD curve does not change the pressure distribution chosen.
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Figure 7: Radius ratio (left) and pressure ratio (right) versus the non dimensional
axial coordinate.
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3 Divergent Section Design

The effectiveness of a De Laval nozzle design is determined predominantly by the
shape of its divergent section. The calculation of the isentropic divergent section,
when the effects of thermal transfer and viscous force at the wall are ignored, can be
accomplished by using the method of characteristics. The method of characteristics
is a well known, simple method for determining the flow inside of a given set of walls;
however, the inverse problem, i.e. the determination of an axisymmetric wall contour
which gives a particular flow pattern to arbitrary precision, is not as straightforward.

The mathematical utility of the characteristics is that along them the partial
differential equations for the flow properties, that is the Euler equations under the
assumption of inviscid and adiabatic conditions, are transformed into ordinary differ-
ential equations. Physically, they describe the way a disturbance, such as a change
in wall angle, propagates through a flowing field. The wall curvature can be approx-
imated by a series of sharp wall bends from which depart the characteristics with
their information on the wall angle variation. Recognizing that there is another wall
opposite this one with opposite curvature, it is clear that characteristics from the
two wall must cross. The result is a sum of effects, and both in two-dimensional and
axisymmetric case the axis line can be considered as a symmetry axis and therefore
the computation can be limited to one half of the domain (one half of a slice for the
axisymmetric case).

For a De Laval nozzle the design aims to reduce all the expansion lines so that at
the exit the flow will continue to be uniform to tackle the so called geometry loss.?
The procedure for removing or canceling the expansion effects is to accommodate the
wall shape in such a way that the incident characteristic will be deflected parallel to the
centerline or axis of the nozzle. This procedure is repeated until every characteristic
originated in the initial section is removed from the flow.

A generic nozzle divergent section is drawn in figure 8. Half a nozzle is represented
for symmetry reasons. T B is the throat section and EF is the exit section. Let ¥,y
be the angle of the divergent section wall with respect to the centerline. The section
of the nozzle where 9, is increasing is called the expansion zone; here expansion
waves are generated and propagate downstream, reflecting at the opposite wall.
Point C is an inflection point of the contour, where ¢, = Ywai,,... Downstream of
point C, ¥,,, decreases until the wall becomes parallel to the centerline direction.
The section from C to E is called the cancelation zone and it is a straightening section

2In fact for conventional bell nozzle, loss mechanism fall into three categories:geometric or diver-
gence loss, viscous drag loss and chemical kinetic loss. Geometric loss results when a portion of the
nozzle exit flow is directed away from the nozzle axis, resulting in a radial component of momentum.
The second cause of loss depends on the viscous forces while the chemical kinetic loss relies essentially
on the fact that the gas is not in chemical equilibrium at any point in the nozzle flow.
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Figure 8: Nozzle divergent section

specifically designed to cancel all the expansion waves generated by the expansion
zone. The area TCAB covered with both left- and right-running characteristics is
called a non-simple region. In this region the characteristics are curved lines. In
contrast, the region CAE is covered by waves of only one family because the other
family is canceled. This is called a simple region.

The length and shape of the initial expansion zone are arbitrary. The shortest
nozzle, in which this paper is interested, is obtained by having zero length for the
initial expansion, that is, a Prandtl-Meyer expansion to 9,,,.c. T collapses into C and
all the characteristics depart from the same point.

Any point of the flow field along a characteristic is described by two variables:
the angle 9 of the velocity with respect to the centerline and v , the Prandtl-Mayer
function which is defined as:

1 -1
v= T arctan \/’Y— (M? —1) —arctanvM? — 1
v—-1 ¥+1

Thus a supersonic Mach number M is always associated with a definite value of
the function v. As M varies from 1 to oo, v increases monotonically from 0 to v,,ax.

Figure 9 shows the meaning of the angle 9% and displays the left- and right-running
characteristics at a generic point P. The angle u between the characteristics and the
velocity is called the Mach angle and it is related to the Mach number through the
simple relation

_ 1
smu:M
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(left—running characteristic

centerline

(right-running characteristic)

Figure 9: lllustration of left- and right-running characteristics.

3.1 Two-dimensional Divergent Section Design

13

A relation, called of compatibility. ties the two variables ¥ and v. By rewriting
the equations of motion in the characteristics coordinate system (&, n), after some

algebra:
0
0
or:

v—19 = R = constant along an — characteristic

v+19%=Q = constant along a& — characteristic
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where Q and R are called the Riemann invariants. The computation method takes
advantage of this relation. Figure 10 displays two points where % and v are known.
The position and the variables ¥ and v in a third, internal, point are obtained.

n (vz,e;) }”2

Figure 10: Characteristics network for computation of an internal point.

The point C lies on the crossing of the characteristics passing through the two
points A and B. The characteristics are assumed to be straight lines in AC and BC.
Therefore the point C has coordinates:

(C/1 - Clz)
Xs — —— 7 7
3 (m2 _ m]_) ( )
Y3 = miXz+ g1 (8)
with:

my = tan (¥ — 1)

di = Y1—mMXxy
my, = tan (U5 + o)
G = Yo — MXo

From the constance of the Riemann invariants, v; and 65 are obtained:

V3 = % (//1 + 1/2) + % (191 — ’192) (9)
9, = % (v — ) + % (0, + 0,) (10)
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or in terms of invariants:

vy = %(Q +R) (11)

1
193:§(Q—R) (12)

If the point C lies on the centerline (figure 11) only a right-running characteristic
is involved.

centerline . C - Mg

Figure 11: Characteristic network for computation of a centerline point.

The expressions 9 and 10 become:

V3 = I/1+’l91
93 = 0

where the second condition is due to the symmetry of the problem.

If the point C is a wall point then the situation is the one depicted in figure 12.
The intersection between the wall contour and the left-running characteristic gives
the new boundary point. At the point C 1 = ¥, in order to guarantee the cancelation
of the expansion wave. From the equation 5 v is also conserved. In formulas:

V3 = I»
Y3 = 9,

The wall slope changes to 93 to let the flow straighten out.

Finally for a two-dimensional nozzle the maximum deflection of the wall contour
¥ max, Which occurs at the point of inflection, can be easily calculated from the exit
Prandtl-Meyer function:

Vexit
7-9max =

2
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Figure 12: Characteristic network for computation of a boundary point.

3.1.1 Numerical Methods

Two methods are applied in order to obtain the two-dimensional divergent section
design namely the method of characteristics and the method of weak waves, usually
called method of characteristics as well.

Method of Weak Waves According to the equations 11 and 12, in going along
a left-running characteristic, i.e. 1, the Riemann invariant R is constant and so the
changes in v and ¥ depend only on the changes in Q, owing to the crossing of the
right-running characteristics, i.e. the &'s. Thus:

1
Av = EAQ =AY
Similarly, in going along a right-running characteristic:

1
Av = EAR = —A¥
so a point reached from an initial point P, traversing m left-running characteristics
and n right-running characteristics, has:

% =9p + (m—n)AY (13)
v=vp+ (m+n)AY (14)

The use of finite weak waves for the construction of plane flows is justified by
the theorem that states that the strength of a weak wave is not affected by the
intersection with other waves. Here the term strength has the meaning of deflection
AP which the wave produces. On the centerline the strength of the reflected wave
is the same as that of the incident one. On the wall the deflection is equal to the
strength of the incident wave, which is then canceled.

Referring to figure 13, the method can be outlined as follows:

1. Calculate the ¥,,. corresponding to the given Meyis;
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Figure 13: Weak Waves Method.

2. Divide ¥ max by the given number of waves to obtain A;

3. The waves depart from the throat edge (Points A to D in the example).
Each wave is drawn with its reflection and cancelation and at any crossing
the Prandtl-Meyer function v and the flow angle % are calculated with the
formulas 13 and 14 with C as a generic point P. The Mach number M and the
Mach angle u are hence derived as well;

4. The coordinates of intersection points between waves, waves and wall, waves
and centerline are calculated.

The accuracy is improved by increasing the number of waves. The procedure has
been implemented on a Fortran code. At all Mach number a good agreement is
found with the area ratios resulting from the quasi-1D relation 1 at page 4.

The Method of Characteristics or MOC This method uses the equations 9 and
10 to propagate, starting from the throat, through the field. The program stops
when a wall point assumes the desired exit Mach number. Figure 14 roughly shows
the appearance of a calculation web.

The accuracy is improved by increasing the number of points if the initial data
are reliable. Good initial data are given by a previous Euler computation which can
yield the sonic line shape. In order to overcome this problem an effective approach
is to accumulate the points near the corner edge and to assign v; = ¥ = ¥ ax tO

the first and: v, =%, = Opin + /Wm;;fﬂ?

1"”'”) to the i-th, where 9,,,, is an € necessary
to avoid numerical problems in the determination of the points and n is the number
of points.

The procedure has been implemented and the results are, alike the method of

waves, in good agreement with the quasi-1D relation 1 of page 4.
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exit.
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Figure 14: Characteristics Method.

3.2 Axisymmetric Divergent Section Design

The compatibility relation between ¢ and v assumes a more complicated form than
the corresponding two-dimensional, because the geometry of the flow field is now
involved through the variable r, distance from the centerline:

O(v—1) sinusin®

5 - (15)
O(v+1v) sinusin®
o¢ r (16)

Two methods for solving the equations 15 and 16 are here presented. The first
one [5] is to write them in a finite difference form. The latter [1] is to approximate
them.

Developing the first approach the two equations, which are valid along the left-
and right-running characteristic respectively, are

AY = AAM — B Ax (17)
A9 = —AAM+C Ax (18)

where x is the centerline axis coordinates originated on the throat and the coef-
ficients are in turn given by

A VM
M (1+25Em2)
1
5 = (\/MQ—lcotﬁ—l)r
1
C —

(\/M2 —1 cotd + 1) r
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In order to compute the coordinates and the flow variables on a third point, given
the coordinates and flow data on the first two, the use of an iterative procedure is
necessary. The formulas for the coordinates of the third point are the equations 7
and 8, same as the two-dimensional case, while M5 and 13 are obtained from:

’l91 — 192 =+ AlMl =+ AQMQ =+ BQ (X3 — XQ) + Cl (X3 — Xl)

93 = P2+ A (M3 — M) — Br (x5 — Xx2) (20)

When the distance r is null, it can be shown that the 18 takes the following form:

AV = %A AM

The second approach, see figure 15, integrates the equations 15 along the char-
acteristic segments AC and BC:

/;d(u—'ﬁ) — /23 (W) dn

/13d(1/—|—19) _ /13 (sinp,:in'l?) de

Assuming the quantities in parentheses on the right-hand side to be constant over
the interval of integration, the integration leads to:

sin Wy sin 9,

V3 — ’l93 = Vy— 7.92 + riAT]23 (21)
2
sin Wy sin ¢
V3 + 193 = U1 + '191 + #Aflg, (22)
1

where Amos and A&;3 are the distance from point B to C and from A to C,
respectively.

Comparing the equations 5 and 6 with the 21 and 22 it is clear the presence of an
additional term dependent on the geometry and on the flow variables. The Riemann
invariants are not valid anymore. Solving the equations 21 and 22 for v3 and ¥s:

sin W1 Sin 194 sin o sin ¥y
2T TIA >z rer e
( o €13 +

1 1 1
vs = 3 (v1+w2) + 5 (P91 —U2) + 5 A7723> (23)

sin o sin ¥y

A&13

1 1 1 /sinugsint
V3 = E(Ul—Uz)’l‘E(f}l-|-192)+§(L

An23> (24)
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Figure 15: Characteristics network for computation of an internal point.

which are the equivalent of the 9 and 10 for the axisymmetric case.
If the point C lie on the centerline only a right-running characteristic is involved.
The expressions 23 and 24 become:

sin wysin 9
V3 = U1+191+LA§13

r
93 = 0

where the second expression is due to the symmetry of the problem.

If the point C is a wall point, its coordinates are given by the intersection between
the wall contour and the left-running characteristic. The point C has 93 = ¥, in
order to cancel the incident wave. The characteristic doesn’'t encounter any other
characteristic so the v is also conserved. In formulas:

vz = 1»
v = U
The wall slope assumes the value 93 to let the flow straighten out.

The maximum deflection of the wall contour 9,,,, cannot be easily calculated.
So, for a minimum length nozzle, it is a result of the numerical solution.
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3.2.1 Numerical Methods

The same methods seen in section 3.1.1 are usable with some adjustments.

Method of Weak Waves With respect to the two-dimensional case, 9, IS not
known in advance and the wave strength depends on the characteristic network
geometry. That leads to the following procedure (see figure 13) :

1. Guess a Oy ;

2. Divide 9,2« by the given number of waves to obtain A% which is now used only
to define the strength of the initial points (Points A,B,C,D in the example);

3. The waves depart from those points. Each wave is drawn with its reflection and
cancelation and, at any crossing, the Prandtl-Meyer function v and the flow
angle ¥ are calculated, with the formulas 22, together with the coordinates x3
and y3. The Mach number M and the Mach angle i are hence derived as well;

4. Compare Ut tO Veyjt desired and modify the 9 ,,,, accordingly. Return to step 2.

The method has been implemented and the area ratios found are significatively
smaller than the ones predicted by the quasi-1D relation 1 at page 4.

Method of Characteristics or MOC The method has to be iterative, just like the
Weak Waves Method, because 9,,,¢ is unknown before the computation. A way to
accomplish the task is to follow the right-running characteristic departing from the
throat edge with v = v,,,, through its reflection on the axis until it crosses again the
wall contour. The v at the wall is then compared to the Veyit desireq and the ¥ max
varied accordingly. Figure 16 shows the “special characteristic line” along with the
others (which depart from the throat edge with v < Vp.y).

This method, which leads to good results in the two-dimensional case, converges
only for low exit Mach numbers. A number of changes have been made to overcome
this problem but with no real improvement. Table sums up briefly the formulations
which have been tested numerically. Each formulation is described by difference from
the one which is more similar to, apart for the first one which is wholly portrayed.

3.3 Conclusions

Two methods have been presented for designing the two-dimensional and axisym-
metric divergent sections. In two dimensions the methods are comparable. In ax-
isymmetry the MOC method seems to fail maybe due to its need of reliable initial
data on the throat line (or the sonic line geometry).
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Figure 16: Characteristic Method for axisymmetric nozzle.

# | Similar to # Description or Difference from the similar one
1 - Formulation MOC approximated. Points on the throat column equally spaced.

External loop which modifies 9,2 based on V. value.

Every loop stops when vy, > Vgesired OF Qwan < € .
2 1 The slope of the characteristics is calculated by averaging the slope

of lines AC and BC.
3 1 Y2 1S taken as the average of the last 9,,,, and the new 9. .
4 1 Points on the throat are distributed according to a cosine law.
5 4 The integral is obtained by averaging sin¢,sin u and r between AC, and BC
6 4 The check to exit from the loop is made on the characteristic line at vay
7 6 ~dv and 1dn are integrated
8 6 The integral is obtained by averaging sin8,sin u and r between AC and BC.
9 6 Points on the column are divided in a part equally spaced and in a part

distributed with cosine law
10 9 Finite Difference formulation only for the points on the centerline.
11 9 Finite Differences formulation for all the points.
12 11 The points distributed with cos law are made coincident to the throat edge.
13 12 Vwall = Vinternar fOr any wall points.
14 12 The mass flow conservation is used to place the points on the wall.
15 12 The point C is obtained through iterations.
16 15 The mass flow conservation is used to place the points on the wall.
17 12 The formulation is changed to the MOC approximated.

Table 1: Summary of formulations tested numerically.
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4 Results

In order to verify the quality of the design procedure a test has been carried out on
three axisymmetric rocket nozzles. The first nozzle is designed with the convergent
and divergent sections geometry deriving by the application of the pressure gradient
criterion and the weak waves method. The second nozzle has the same convergent
of the first nozzle but the divergent contour is a straight line3. Finally the third
nozzle has both convergent and divergent section contours drawn as straight lines.
The nozzles all have the same radius at the combustion chamber, at the throat and
at the exit section and the same convergent and divergent section lengths. The three
nozzles hereafter will be referred to as the “convdiv’ nozzle, the “convlin” nozzle and
the “linear” nozzle.
The main common design parameters of the nozzles are given in table 2.

| Symbol | Meaning Value
Rec Combustion Chamber Radius 0.2m
R* Throat Radius 0.1m
Tee Combustion Chamber or Total Temperature 2500K
m Mass Flow Rate 5.0Kg/s
Mg Exit Mach Number 3.0
R,~ | Specific Gas constant for air, Specific heat ratio for air | 287 J/KgK, 1.4

Table 2: Common design parameters of the three nozzles.

The coefficients used in the pressure gradient criterion, see section 2.1 page 4,
are a =1 and b = 0, which result in a parabolic Mach number distribution along the
axis of the convergent section. A convergent section length of L = 0.2m have been
chosen.

The divergent section shape is obtained by the application of the method of
waves, see section 3.2.1 page 21. With 200 waves , the area ratio* corresponding
to the given Mg is approximately

so that the exit radius is

Re = 0.196979m

3In 2D a straight line. In axisymmetry a frustum of cone.
4Area ratio is the cross sectional area of the nozzle exit divided by the cross sectional area of the
nozzle throat.
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The one-dimensional equation 1 would give Mg = 2.91 for the same area ratio,
or 2 = 4.23 for the same Mg = 3.00.
The combustion chamber pressure or total pressure is given by:

m [RT.. / 2 \ 0
P..=— = = 196890 P
A g <'y + 1) d

The exit static pressure and temperature can be easily obtained from the isen-
tropic relations:

O

—1 =
Pe = Pe <1+,YTMEQ> 71:5360/33 (25)

-1 -1
Te = To <1 ’YTM52> — 892.86K (26)

The methods presented earlier in this report are valid under the assumption of
inviscid flow hence the test case has been carried out by solving the Euler equation.
In addition to the Euler computation a computation has been made using the Navier-
Stokes equations plus the Spalart-Allmaras turbulence model, in order to check how
the methods behave when the viscosity play a role in the flow evolution.

All the computations have been conducted with the commercial code Fluent
release 6.
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4.1 Inviscid Computations

The computational grids used are shown in figure 17. The grids are structured and
they have 131 points along the axis by 21 points along the radius.

Figure 17: Grids used for the inviscid computations. From top to bottom the convdiv
nozzle, the convlin nozzle and the linear nozzle.

A summary of the main computational settings used for the calculation is pre-
sented in table 3 .

Type of Calculation Inviscid
Dimension 2D-Axisymmetric

Solver Coupled - Implicit

Preconditioning Yes

Discretization 2nd order upwind

Used Boundary Condition

Inlet Static Pressure, Total Temperature, Velocity Direction
Wall Adiabatic Solid Wall
Outlet Static Pressure while subsonic conditions exist

Table 3: Main Fluent settings.

The convergence histories are reported in figure 18, 19 and 20. The mass flow
rate balance error is of order 1.E — 6 on all grids.
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Figure 18: Convergence history of the convdiv nozzle.
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Figure 19: Convergence history of the convlin nozzle.

Figures 21, 22 and 23 show the vector field on the nozzles with the enlargements
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Figure 20: Convergence history of the linear nozzle.

Figure 21: Vectors on the convdiv nozzle.

of the convergent portion and the exit area. Both convergent section shapes seem to
give the same flow pattern whereas the flow in divergent sections differs. In fact the
convlin and the linear nozzle have, at the exit section, a significant radial component
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Figure 22: Vectors on the convlin nozzle.

Figure 23: Vectors on the linear nozzle.

of the velocity which causes a net thrust loss.

The Mach number along the nozzle axis is reported in figure 24. The trend along
the convergent section is, as imposed, parabolic for both the convdiv and convlin
nozzles. In the divergent section a sudden drop is registered at an axial coordinate
range 0.3 < x < 0.5. By running the three-dimensional case , see figure 25, the
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drop is substituted by a slight change in slope and the Mach behavior in the convdiv
nozzle is now increasing monotonic. The three-dimensional grids, figures 32 to 34,
are obtained from the rotation of 360° of the axisymmetric grids. The number of
points on the circumferential direction is 41.

The Mach number fields for the axisymmetric and 3d grids are drawn in figure
26 and 27. The isolines of the axisymmetric nozzles are irregular even though the
convergence has been reached. The worst behavior in terms of Mach number seems
to happen near the centerline. This fact may indicate some problem of Fluent with
the axis boundary condition in the axisymmetric model.

The three nozzles have a different Mach number isolines appearance. The convdiv
nozzle reaches higher Mach numbers at the exit and its isolines are much stretched
along the axis direction.

3 throat
| 0—Oconvdiv
- convlin
3 A—A linear
Eo L i
>
z
e
Q
[0
=~ i
o L
-0.5 0 0.5 1
4 T T
33 ]
€
=)
z
e
3
=2 1
1

12

Axial Coordinate

Figure 24: Mach number along the axis line for the three nozzles.

The static temperature behavior depends closely on the Mach number. In figure
28 is reported the static temperature along the axis. The sudden rise in temperature
in the divergent section, top of figure 28, is a consequence, via the isentropic relation
26, of the Mach number drop, which has been previously registered.

Figure 29 shows the result obtained with the three-dimensional grids described
earlier. Again the trend of the convdiv nozzle is monotonic and its exit value is lower
than the other nozzles.
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GC—O convdiv 3d
3 convlin 3d b

A—2A linear 3d

Mach Number

-0.5 0 0.5 1
Axial Coordinate

Figure 25: Mach number along the axis line for the three 3d nozzles.

The static pressure along the nozzle axis is displayed in figure 30. The convdiv
and convlin nozzles has, with respect to the linear nozzle, a larger zone of pressure
variation in the convergent section that is lower pressure gradients. In the divergent
section the convdiv is the nozzle which gives a lower exit pressure. The sudden rise
in pressure in the divergent section is again a consequence of the Mach distribution.
In figure 31 is shown the pressure distribution for the three nozzles computed on the
three-dimensional grids.
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Figure 26: From top to bottom. Mach field for the convdiv, the convlin and the
linear nozzles.
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Figure 27: From top to bottom. Mach field for the convdiv 3d, the convlin 3d and

the linear 3d nozzles.
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. Static temperature for the three nozzles.
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Figure 29: Static Temperature for the three 3d nozzles.
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Figure 30: Static pressure for the three nozzles.
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Figure 31: Static Pressure for the three 3d nozzles.

Figure 32: 3D grid on convdiv nozzle.
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Figure 33: 3D grid on convlin nozzle.

Figure 34: 3D grid on linear nozzle.
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4.2 Viscous Computations

In figure 35 are shown the grids used in the computations. The dimensions are
131 points in the axial direction by 60 in the radial direction. The grids are highly
stretched in order to capture the boundary layer.
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Figure 35: Grids used for the viscous computations. From top to bottom the convdiv
nozzle, the convlin nozzle and the linear nozzle.

The main computational settings used for the calculation are summarized in table
4. The convergence histories are reported in figure 36, 37 and 38. The mass flow
rate balance error is of order 1.E — 4 on all grids.

Figures 39, 40 and 41 show the vector field on the nozzles with some enlarge-
ments. The boundary layer seems to be correctly reproduced. Again only the convdiv
nozzle has, at the exit section, the vectors aligned along the axial direction.

The Mach number along the nozzle axis is reported in figure 42. With respect to
the inviscid computation, the drop in Mach number magnitude is less severe for all
the three cases. Figure 43 marks this comparison.

The drop reduction has been investigated in a three-dimensional sector, whose
grid is obtained from the rotation of 10 degrees of the axysimmetric grid. The number
of points on the circumferential direction is 5. Figure 45 shows the results for the
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Type of Calculation Viscous. Spalart-Allmaras turbulence model
Dimension 2D-Axisymmetric
Solver Coupled - Implicit
Preconditioning Yes
Discretization 2nd order upwind
Used Boundary Condition
Inlet Static Pressure, Total Temperature, Velocity Direction,
Turbulent Viscosity Ratio
Wall Adiabatic Solid Wall. no slip condition.
Outlet Static Pressure while subsonic conditions exist
Backflow Modified Turbulent Viscosity

Table 4: Main Fluent settings.
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Figure 36: Convergence history of the convdiv nozzle.

three axisymmetric and three-dimensional nozzles; they match. The reason could
be that the three-dimensional nozzle is not in fact a “real 3d" because a periodic
boundary is used in the circumferential direction. A “real 3d” case has not been
run because of the mesh generation complexity and computational heaviness (The
grid would be over 1.5million of points). What can be hypothesized is that the
“real 3d” results would follow the ones seen for the three-dimensional mesh of the
inviscid case and therefore that the axisymmetry and three-dimensional sector fail to
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Figure 37: Convergence history of the convlin nozzle.
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Figure 38: Convergence history of the linear nozzle.

predict the real behavior due to some problem in their boundary conditions along the
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Figure 40: Vectors on the convlin nozzle.

circumferential direction.

The Mach number fields for the axisymmetric grids are drawn in figure 44.

The static temperature and pressure along the axis for the three axisymmetric
nozzles are plotted in figures 46 and 47 respectively. The same considerations made
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Figure 42: Mach Number along the axis line for the three nozzles.

for the inviscid case may apply for the viscous case.



CRS4 41

3 [ _
2 [ _
S
(]
o
S
=}
pd
<
(&)
m - -
= G—>© convdiv viscous
"""""" convdiv inviscid
1r convlin viscous 7
convlin inviscid
/A—A2\ linear viscous
— - — linear inviscid
0 L | L | L |
-0.5 0 0.5 1

Axial Coordinate

Figure 43: Mach Number comparison between viscous and inviscid computation on
the three nozzles.



42 Fluid Dynamics Area

Mach Number
3
2.78571
257143
2.35714
2.14286
1.92857
1.71429
15
1.28571
1.07143
0.857143
0.642857
0.428571
0.214286
0

Figure 44: Mach Number fields for, from top to bottom, the convdiv, the convlin
and the linear nozzle.
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Figure 45: Mach Number comparison between 3d sector and axisymmetric results
on the three nozzles.
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Static Temperature along the axis for the three nozzles.
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Figure 47: Static Pressure along the axis for the three nozzles.
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5 Conclusions

A method to design the convergent and the divergent sections of an inviscid axisym-
metric supersonic nozzle has been presented. The results on the test case hereby
presented seems to promote both a careful pressure based designed nozzle and a
linear one. In the divergent section the designed nozzle has the advantage of getting
velocity vectors more aligned along the axial direction while the flow quality seems
to be slightly affected.

The final nozzle design must deal with viscosity. In this paper the inviscid design
has been tested in a viscous flow. The results seems to follow the same behavior of
the inviscid case.
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