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Automatic calibration of CODESA-3D using PEST 

Giuditta Lecca 
Hydrology and Water Resources Management 

Centre for Advanced Studies, Research and Development in Sardinia (CRS4) 

Introduction 

We describe here our experience in using the Model Independent Pameter ESTimation (PEST) 
free software tool [Doherty, 2002] to perform the automatic calibration of the COupled DEnsity-
dependent variably SAturated flow and miscible transport (CODESA-3D) groundwater model 
[Gambolati et al., 1999]. Generally speaking, calibration of a model requires that a suitable method 
of spatial parameter characterization be defined in order to adjust model parameters until model 
outputs correspond well to specific laboratory and/or field measurements of the system which is 
simulated. In particular, for groundwater models the adjustable parameters are usually given by 
main hydrogeological properties (e.g. hydraulic permeability) and/or system excitations (e.g. 
abstraction volumes) while control data are represented by piezometric heads and/or salt 
concentrations measured in the field. Model calibration is a complex task. To perform it for a 3D 
fully-distributed physically-based hydrological model we need to build up a chain of interdependent 
software tools and data through the interdisciplinary expertise of GIS experts, modelers and 
hydrogeologists (Figure 1). 
The newly generated optimization model is comprised by the two pieces of software CODESA-3D 
and PEST with the latter wrapping the former up. The optimization model is not restricted in its use 
solely to the calibration of the groundwater model, through this tool modeler can gain valuable 
insight into the strengths and weakness of the input dataset allowing future data gathering to be 
undertaken in an optimal manner. In addition, lessons learned will be applicable also to the 
estimation of the degree of uncertainty associated with a given calibrated model prediction and to 
make decisions regarding appropriate levels of model complexity. 
In the following we discuss in detail the optimization model development and test using “synthetic 
observations” generated by the groundwater model itself. 
 
 

 

Figure 1. Work-flow of the simulation and calibration process for a fully-distributed physically-based 
groundwater 3D model. 

Post-processing 

Visualization 

Pre-Processing 

Model GIS 

Calibration 



PEST 

PEST is a nonlinear model-independent parameter estimation package that can be used to 
estimate parameters for any existing model even if  the user do not have the model source code. 
PEST is currently being used in many field of science and engineering and it has become a 
groundwater industry standard. Indeed some of the most popular computer codes like SWAT1, 
MODFLOW2, MT3D3, GMS4, etc, use it to implement automatic calibration modules. 
PEST adjust model parameters in order to reduce to a minimum the discrepancy between model-
generated outputs and the corresponding field measurements. The computer code does it taking 
the control of the embedded model and running it as many times as is necessary in order to 
determine the optimal set of model parameters in a weighted least square sense. PEST uses a 
nonlinear technique known as the Gauss-Marquardt-Levemberg method whose strength is to 
require fewer model runs that any other estimation method. A mathematical requirement of the 
GML approach is that the dependence of model-generated observations on adjustable model 
parameters be continuously differentiable. 
Another software requirement of PEST is that model input and output variables involved in the 
optimization process are written in ASCII (i.e. text) files. In our case this was easily achieved using 
pre- and post-processing tools to link together PEST with CODESA-3D without modifying directly 
any original model input/output formats. 
For linear models the GML algorithm can give the optimal parameter set just in one iteration while 
for nonlinear models (CODESA-3D falls under this category) parameter estimation is an iterative 
process. At each iteration step the relationship between selected model parameters (inputs) and 
model-generated observations (outputs) is linearized by means of the Taylor expansion about the 
actual best parameter set, hence the derivatives of all outputs with respect to all parameters are 
calculated. Then the linearized problem is solved for a better parameter set and this set is tested 
by a new model run. The iterative procedure is stopped when the objective function, generally 
speaking the sum of squared deviations between model outputs and field measures, reduces to a 
minimum corresponding to a user-defined threshold. 
As the calibration process proceeds, PEST continuously records the sensitivity of each adjustable 
parameter to the observation dataset which is available for user inspection. Trough this information 
the modeler can discover those parameters that influence mostly the calibration and those that are 
practically not relevant to it. In addition at the end of the process, PEST writes a large amount of 
useful auxiliary data (parameter correlation coefficient matrix, parameter covariance matrix etc.). 
All this information helps a lot the modeler to refine the conceptual model of the system under 
study, to exploit available data and to efficiently plan future campaign of data acquisition. 
Besides the traditional way of using PEST in performing parameter estimation (model calibration), 
predictive analysis mode determines the maximum/minimum model predictions while still 
maintaining the model calibrated below a user-defined threshold. This mode allows the user to 
assess upper and lower bounds of the uncertainty interval associated with model predictions, 
which is definitely the true added value of any modeling analysis. 
Another important tool of the PEST software distribution is the Parallel PEST (PPEST) module. It 
distributes model runs across networked PCs. Where model run times are large and adjustable 
parameters are many, the saving in overall optimization time through the use of the parallel module 
can be enormous. Thus Parallel PEST can be used in the calibration of large and complex models 
where application of nonlinear parameter estimation techniques would have previously been 
considered impossible. 

The groundwater model 

CODESA-3D is a fully-distributed physically-based hydrological model. In more details CODESA-
3D is a three-dimensional finite element simulator for groundwater flow and solute transport in 
variably saturated porous media on unstructured domains. The flow and solute transport processes 
are coupled through the variable density of the filtrating mixture made of water and dissolved 

                                            
1
 http://www.brc.tamus.edu/swat/  

2
 http://www.scisoftware.com/products/modflow_details/modflow_details.html 

3
 http://www.epa.gov/ada/csmos/models/mt3d.html 

4
 http://chl.erdc.usace.army.mil/CHL.aspx?p=s&a=Software;1 



matter (salt, pollutants). The flow module simulates the water movement in the porous medium, 
taking into account different forcing inputs: infiltration/evaporation, recharge/discharge, 
withdrawal/injection, etc., while the transport module computes the migration of the salty plume 
due to advection and diffusion processes. Model parameters and system excitations are assumed 
variable in space and/or time (for details see SWIMED project Deliverable D6 Groundwater Flow 
Models [Ababou and Al-Bitar, 2005] and D7 Seawater Intrusion Models [Lecca and Larabi, 2005]. 
Typical applications of the model are so-called density-dependent problems in subsurface 
hydrology; in particular the model has been applied to the saltwater intrusion problem of coastal 
aquifer. Denser-than-water non-aqueous phase liquids (DNAPLs), such as chlorinated organic 
contaminants, are other examples of density-dependent contaminants, which can be modeled with 
CODESA-3D. Recently the code has been coupled with a genetic algorithm to compute optimal 
pumping volumes for an hypothetical aquifer under constraints by Palestinian and Moroccan 
SWIMED partners [Qahman et al., 2005]. 
CODESA-3D computer code can be obtained from CRS4 (Italy) through a license agreement for 
research purposes only. The code manual is Implementing and Testing CODESA-3D [Lecca, 
2000]. 

 

Figure 2. Sketch of the overall optimization model (PEST + CODESA-3D). 

The optimization model 

The optimization model is represented by the integrated system, shown in Figure 2, between 
executables (models and tools) and datasets performing an iterative calibration process. In 
particular, CODESA-3D outputs feed a post-processor that extracts pertinent data from large 
model files and put them into smaller text files for easier PEST access. Hence PEST computes the 
objective function and, if required, calculates the next optimal parameter set. PEST outputs are 
written in a small file which in turn is pre-processed to generate appropriate CODESA-3D input 
files. This process results in a single batch job (Figure 3) made of a chain of 3 executables in 
succession (“composite model”). The first processor (write_soil) reads a PEST output file (current 



adjustable parameter set) and write the corresponding CODESA-3D input file, the second 
processor is the physical model itself (CODESA-3D) and the third one (extract_solution) reads a 
CODESA-3D output file containing the pressure heads of all the grid nodes and extract only nodal 
unknowns corresponding to the available measures allowing PEST to calculate residuals.  
It should be stressed that the ad hoc tools developed to process data exchanged between models 
are strictly application dependent. Thus the choice of a specific parameter set strongly affects the 
needed translator programs. 
 
echo ' run write_soil' 

write_soil; 

echo ' run codesa3d.r6k' 

codesa3d.r6k; 

echo ' run extract_solution' 

extract_solution; 

Figure 3. Batch file doit called by PEST as the embedded model consisting of 3 executables in succession. 

In the following the specific problem under study and the data exchange between executables are 
described in the case of a coastal aquifer system where hydraulic permeability values are assumed 
as adjustable parameters and piezometric heads are the corresponding control measurements. 

Synthetic observations as control data 

To test the overall optimization procedure we used synthetic observations generated by the 
CODESA-3D model itself. The advantage of using synthetic observations instead of real 
measurements for the given problem is that we can test the optimization system without the 
system being clouded by issues related to failure of the groundwater model and available data to 
represent real-world problems. After the verification of the proposed methodology and 
implementation, the next step will be to actually calibrate a real-world problem. 
The synthetic observations were obtained in the following way. We ran first a realistic case study 
(Oristano aquifer system, Italy [Lecca and Cau, 2004] and we recorded a subset of the 
corresponding model outputs (piezometric heads) in some selected points of the 3D aquifer grid. 
Hence we modified some initial model parameters (hydraulic permeability) editing the 
corresponding model input files. Then the optimization exercise was to verify model capability to 
find again the initial hydraulic permeability values (prior user modification) by means of calibrating 
the model against the recorded piezometric heads. 
Oristano case study. We describe here only the characteristics of the case-study relevant to the 
test of the optimization model, all the other properties can be found in the cited bibliography. The 
3D aquifer mesh, containing 20603 nodes and 108540 tetrahedra, was obtained by replicating 
vertically the land surface triangulation to form 10 layers of variable thickness. These layers 
discretize the three main hydrogeological units: upper (1) and lower (2) aquifers and the 
interbedded aquitard. The groundwater flow model was implemented using the original values 
(target values of parameters for the calibration test) of aquifer and aquitard hydraulic conductivity 
These values are: 

 upper aquifer horizontal (kh_aquifer1) and vertical (kv_aquifer1) hydraulic conductivity; 

 lower aquifer horizontal (kh_aquifer2) and vertical (kv_aquifer2) hydraulic conductivity;  

 aquitard isotropic hydraulic conductivity (k_aquitard).    

After the first “synthetic run” (flow steady state) these values were modified to some initial values of 
the adjustable parameters as shown in Table 1. 
 

hydraulic conductivity [m/s] target value initial value 

kh_aquifer1  10-5 10-4 

kv_aquifer1  10-6 10-4 

k_aquitard    10-8 10-7 

kh_aquifer2 10-5 10-7 

kv_aquifer2 10-6 10-5 

Table 1. Target and initial values of the adjustable parameters. 



The CODESA-3D-PEST interface 

To build up the CODESA-3D/PEST interface are required 3 types of input files: 

 Template files, one for each model input file where adjustable parameters are located; 

 Instruction files, one for each model output file where model-generated observations are 
located; 

 Control file, a single file supplying PEST with information about names of template and 
instruction files, names of the corresponding model input and output files, problem size, control 
variables, initial parameter values, measurement values and weights. 

Template files 

For each input file containing adjustable parameters we must create a corresponding template file 
to instruct PEST on the names and the relative positions in the file of any of such adjustable 
parameters. This file is used by PEST to rewrite properly input files with the current best parameter 
set and re-run the embedded model. In our case study we ask PEST to adjust aquifer hydraulic 
conductivity values (k) written in the CODESA-3D input file ‘soil’ (Figure 4).  The file contains many 
parameters as described in SWIMED deliverable D6 [Ababou and Al-Bitar, 2005] but the relevant 
ones are only 5 numbers corresponding to: kh_aquifer1, kv_aquifer1, kh_aquifer2, kv_aquifer2 and 

k_aquitard.   

 
-10.                               PMIN  (m) 

  3                                IVGHU(0 VG, 1 XVG, 2 HU **n, 3 HU **G, 4 BC) 

  3.35  0.08   -3.0                VGN,VGRMC,VGPSAT 

  0.015 0.   0.  -0.10  0.01 ---   HUALFA,HUBETA,HUGAMA,HUPSIA,HUSWR 

  2.0                              HUN 

  0. 0.                      ---   HUA,HUB 

  2.25  0.02   -0.25               BCBETA,BCRMC,BCPSAT 

1.0E-05 1.0E-05 1.0E-06 1.0E-05 3.0E-01 –-zone=1 nstr=1   phreatic aquifer 

1.0E-05 1.0E-05 1.0E-06 1.0E-05 3.0E-01 --     2      1    

1.0E-05 1.0E-05 1.0E-06 1.0E-05 3.0E-01 --     3      1 

 

. . . 

. . . 

1.0E-08 1.0E-08 1.0E-08 1.0E-05 3.0E-01 --     1      4   aquitard 

. . . 

. . . 

1.0E-05 1.0E-05 1.0E-06 1.0E-05 3.0E-01 --   1 10         semi-confined aquifer 

1.0E-05 1.0E-05 1.0E-06 1.0E-05 3.0E-01 --   2 10          

1.0E-05 1.0E-05 1.0E-06 1.0E-05 3.0E-01 --   3 10 

 

  kx    ky      kz      S       n 

Figure 4. CODESA-3D input file soil containing the selected adjustable parameters.  

To this end an intermediate input file (Oristano-K.inp) was created selecting from file soil only the 
relevant information to be read and re-written by PEST with the current optimal set. The file is 
shown in Figure 5. The corresponding template file (Oristano-K.tpl), which is shown in Figure 6, 
notifies to PEST that only 5 numbers separated by a special character (‘#’ is chosen here) are 
chosen as the calibration parameters. The intermediate input file is then pre-processed by the tool 
write_soil  to rewrite the CODESA-3D input file soil .   
 
10 3             nstrat, nzone 

4                iaquitardo 

1.0E-05 1.0E-06 

1.0E-08 

1.0E-05 1.0E-07 

 

Figure 5. Example of intermediate input file (Oristano-K.inp) for which the template file of Figure 6 was build. 



Preparation of a template file is a simple procedure. Comparing Figure 5 and 6 we see that it can 
be easily done using a text editor to replace chosen parameter values on a typical model input file 
by their respective parameter name and space identifiers. PEST is not interested at all in the other 
input parameters that are present in the intermediate file that are used by the pre-processor 
write_soil (Figure 3) to re-write the CODESA-3D input file soil. The ‘#’ special character delimits the 
name of the variable and the range of its input format in the file.  
 

ptf #            PEST Template File 

10 3             nstrat, nzone 

4                iaquitardo 

#kh_aquifer1# #kv_aquifer1# 

#k_aquitard # 

#kh_aquifer2# #kv_aquifer2# 

Figure 6. Example of PEST template file (Oristano-K.tpl) corresponding to the input file shown in Figure 5.  

Instruction files 

Of the possibly voluminous amount of information that a model may write to its output files, PEST 
is interested in only those outputs values for which corresponding field/laboratory data are 
available. For every model output file containing model-generated observations we must provide a 
template file in order to instruct PEST to read it.  
 
flow: nodal pressure heads 

  this file is printed only if IPRT>=1  

     0  0.0000E+00     NSTEP   TIME 

   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00 

   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00 

.  .  .  .  .  

.  .  .  .  . 
   1.119900E+02   1.064420E+02   1.008650E+02   7.925900E+01   8.166900E+01 

   7.791800E+01   7.984000E+01   1.101340E+02 

     1  1.7000E+38     NSTEP   TIME 

   1.030000E+01   1.030000E+01   0.000000E+00   0.000000E+00   0.000000E+00 

   0.000000E+00   0.000000E+00  -1.119761E+00  -2.050025E-01   0.000000E+00 

. . . . 

. . . . 

   1.109743E+02   1.050539E+02   9.603888E+01   7.731216E+01   7.387076E+01 

   7.582153E+01   7.533511E+01   1.038622E+02 

Figure 7. Example of CODESA-3D output file (psi.out) containing pressure head grid nodal values for each 
user-selected time step. Only few of the 41,225 file lines are shown here. 

For a steady state flow simulation, we are interested in a single CODESA-3D output file (psi.out). 
This file (Figure 7) contains the pressure head of the 3D grid nodes (20603) for all time steps (in 

our case initial 0.0000E+00 and final 1.7000E+38 time).  
 

soluzione al tempo  0.1699999976E+39 (steady state) 

-1.42771E+01 

-1.07762E-01 

 0.00000E+00 

-3.40603E-01 

. . . 

. . . 

 1.42683E+02 

 1.36570E+02 

 1.08960E+02 

Figure 8. Example of intermediate output file (psi-control.out) for which the instruction file of Figure 9 was 
build. In this specific example the file contains only 188 of the 41,225 lines of the corresponding CODESA-3d 
output file. 



pif # 

 # solution # 

l1 (psi001)1:15 

l1 (psi002)1:15 

l1 (psi003)1:15 

l1 (psi004)1:15 

. . . 

. . . 

l1 (psi185)1:15 

l1 (psi186)1:15 

l1 (psi187)1:15 

Figure 9. Example of PEST instruction file (Oristano-K.ins) to read the intermediate output file shown in 
Figure 8. 

Thus we first post-process this output, using the extract_solution tool (Figure 3),  to write a small 
text file (Figure 8) containing only the simulated piezometric heads of the selected grid nodes (187) 
for which available field measurements exist. Then PEST is easily instructed to read this 
intermediate file by means of  the PEST instruction file. The corresponding instruction file (Figure 
9) contains a comment line (# solution #), the PEST instruction to move the file cursor of 1 line 
below at each time (line advance: l1), the name of the control variable (psi<>) and the maximum 
range of the output format which goes from column 1 to 15. 

Control file 

Once all the template and instruction file have been prepared a PEST control file must be 
assembled which brings it all together.  An example of this file is given in Figure 10. The file is 
subdivide into sections as described below. 
The “control data” section of the PEST control file is used to set internal array dimensions, tune 
and optimization options, and to set data output options.  Variable PESTMODE is set to “estimation”. 

Other options are “regularization” and “prediction”. Variable NPAR is the total number of adjustable 

parameters, NOBS is the total number of available field observations, NPRIOR is the number of 

articles of prior information, NTPLFLE is the number of template files and NINSFLE is the number of 

instruction files. The meanings of the other control variables are explained in the PEST manual 
[Doherty, 2002].   
Each adjustable parameter must belong to a “parameter group” since the input variables that 
define how derivatives are calculated pertain to the parameter group rather than individual 
parameter. The main characteristics set in this section are:  

 the parameter group name (PARGPNME); 

 the increment type (INCTYP);  

 the derivative increment (DERINC) used to perform forward-difference calculation;  

 the derivative increment lower bound (DERINCBL);  

 the type of finite difference scheme (FORCEN , forward/central);  

 the maximum allowed multiplier for DERINC (DERINCMUL). 

The “parameter data” section of the PEST control file is divided into two parts. The first part is 
related to the true adjustable parameters and the second is related to tied parameters5. If there are 
no tied parameters this last section is omitted. For instance, for the adjustable parameter 
kh_aquifer1 we set a type log-transformed,  factor-limited  (greater than zero), with initial value 

1.000000E-04 and lower and upper value 1.000000E-06 and 1.000000E-04, respectively. 

In the “observation groups” section of the PEST control file a name is supplied for every 

observation group. In our case we had only one set of observation named obsgroup.  

For every observation cited in the PEST instruction file (Figure 9) there must be one line of data in 
the “observation data” section. The line contains 4 items: observation name, observation 
measurement value and (non-negative) weight, and observation group. If observations are of 

                                            
5
 Tied parameters are variables linked to adjustable parameters by means of a user-supplied mathematical 

equation. 



different types, weights are vital in setting the relative importance of each measurement in the 
overall optimization process.  
The “model command line” section of the PEST control file supplies the command (batch file doit, 
Figure 3) that PEST must use to run the embedded model. 
 
pcf 

* control data 

restart  estimation                   RSTFLE PESTMODE 

    5   187     5     0     1         NPAR NOBS NPARGRP NPRIOR NOBSGP 

    1     1 single point   1   0   0  NTPLFLE NINSFLE PRECIS DPOINT NUMCOM 

JACFILE MESSFILE  

  5.0   2.0   0.3  0.03    10         RLAMDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM 

  3.0   3.0 0.001                     RELPARMAX FACPARMAX FACORIG 

  0.1                                 PHIREDSWH  

   30  0.01     3     3  0.01     3   NOPTMAX PHIREDSTP NPHISTP NPHINORED 

RELPARSTP NRELPAR 

    1     1     1                     ICOV ICOR IEIG 

* parameter groups 

kh_aquifer1  relative 0.01  0.0  switch  2.0 parabolic  PARGPNME INCTYP DERINC 

DERINCBL FORCEN DERINCMUL NRELPAR 

kv_aquifer1  relative 0.01  0.0  switch  2.0 parabolic   

k_aquitard   relative 0.01  0.0  switch  2.0 parabolic 

kh_aquifer2  relative 0.01  0.0  switch  2.0 parabolic 

kv_aquifer2  relative 0.01  0.0  switch  2.0 parabolic 

* parameter data    

kh_aquifer1  log  factor   1.000000E-04   1.000000E-06   1.000000E-04 

kh_aquifer1  1.0000   0.00000E+00  1 

kv_aquifer1  log  factor   1.000000E-04   1.000000E-06   1.000000E-04 

kv_aquifer1  1.0000   0.00000E+00  1 

k_aquitard   log  factor   1.000000E-07   1.000000E-10   1.000000E-07 k_aquitard   

1.0000   0.00000E+00  1 

kh_aquifer2  log  factor   1.000000E-07   1.000000E-07   1.000000E-04 

kh_aquifer2  1.0000   0.00000E+00  1 

kv_aquifer2  log  factor   1.000000E-05   1.000000E-08   1.000000E-05 

kv_aquifer2  1.0000   0.00000E+00  1 

 

* observation groups 

obsgroup        

* observation data 

psi001 -1.42771E+01     1.0   obsgroup  

psi002 -1.07747E-01     1.0   obsgroup  

psi003  0.00000E+00     1.0   obsgroup  

psi004 -3.40609E-01     1.0   obsgroup  

psi005 -4.02249E+00     1.0   obsgroup  

. . . 

. . . 

. . . 

psi182  1.16930E+02     1.0   obsgroup  

psi183  1.33566E+02     1.0   obsgroup  

psi184  1.24396E+02     1.0   obsgroup  

psi185  1.42683E+02     1.0   obsgroup  

psi186  1.36570E+02     1.0   obsgroup  

psi187  1.08960E+02     1.0   obsgroup  

* model command line 

doit                              

* model input/output 

Oristano-K.tpl  Oristano-K.inp 

Oristano-K.ins  psi-controllo.out 

* prior information 

Figure 10. Example of the PEST control file used for the Oristano case study.  



The “model input/output” section contains two lines as specified by the control variables 
NTPLFLE=1 and NINSFLE=1. The first line is the name of the PEST template file (Oristano-K.tpl) 

and the corresponding name of the model input file (Oristano-K.inp) to which the template is 

matched. The second line is the name of the PEST instruction file (Oristano-K.ins) and the 

corresponding name of the model output file (psi-controllo.out). 

Since the variable NPRIOR in the “control data” section is equal to zero, PEST do not expect any 

article of prior information to be taken into account in the “prior information” section of the PEST 
control file.   

Results 

As PEST executes, it writes a detailed record of the parameter estimation process to the file 
<filenamebase>.rec (Figure 11). After echoing its input data, the program calculates the objective 
function arising from the initial parameter set. The starting value of the sum of squared weighted 
residuals (objective function) for our case-study was 12600. The optimization process is terminated 
after 9 optimization iterations since over the last 3 successive iterations the objective function 

values were within a relative distance prescribed by the control variable PHIREDSTP = 0.01 as 

termination criteria. The total number of CODESA-3D calls to achieve convergence was 79.   

  
PEST Version 5.50. Watermark Numerical Computing. 

 

 PEST is running in Parameter Estimation mode. 

 

 PEST run record: case Oristano-K 

 (See file Oristano-K.rec for full details.) 

 

 Model command line:  

 doit 

 

 Running model ..... 

 esegue scrivi_soil 

  legge dal file Oristano-K.inp 

  scrive il file soil 

 esegue codesa3d.r6k 

 esegue scrivi_soluzione 

  legge il file punti-misure.grid 

  legge il file psi.out 

  scrive il file psi-controllo.out 

    Sum of squared weighted residuals (ie phi) =   12600.     

 

 

 OPTIMISATION ITERATION NO.        :    1 

    Model calls so far             :    1 

    Starting phi for this iteration:   12600.     

 

    Calculating Jacobian matrix: running model  5 times ..... 

 . . . 

        parameter "k_aquitard" frozen: - update vector out of bounds 

 

        Lambda =   5.0000     -----> 

        running model ..... 

            Phi =   6901.0      (   .548 of starting phi) 

 

        Lambda =   2.5000     -----> 

        running model ..... 

            Phi =   6901.7      (   .548 of starting phi) 

 

        Lambda =   10.000     -----> 

        running model ..... 

           Phi =   6900.3      (   .548 of starting phi) 

 



(continued) 

 

    No more lambdas: relative phi reduction between lambdas less than  .0300 

    Lowest phi this iteration:   6900.3     

    Maximum   factor change:  3.000     ["kh_aquifer1"] 

    Maximum relative change:  .9910     ["kv_aquifer2"] 

 

 OPTIMISATION ITERATION NO.        :    2 

    Model calls so far             :    9 

    Starting phi for this iteration:   6900.3     

    All frozen parameters freed 

 

    Calculating Jacobian matrix: running model  5 times ..... 

         Lambda =   10.000     -----> 

        running model ..... 

            Phi =   887.89      (   .129 of starting phi) 

 

    No more lambdas: phi is less than  .3000 of starting phi 

    Lowest phi this iteration:   887.89     

    Maximum   factor change:  3.000     ["kv_aquifer2"] 

    Maximum relative change:  2.000     ["kv_aquifer2"] 

 

. . . 

. . . 

  

  OPTIMISATION ITERATION NO.        :    9 

    Model calls so far             :   66 

    Starting phi for this iteration:  5.93705E-03 

 

    Calculating Jacobian matrix: running model 10 times ..... 

  

        Lambda =   20.000     -----> 

        running model ..... 

            Phi =  5.82846E-03  (   .982 of starting phi) 

 

        Lambda =   10.000     -----> 

        running model ..... 

            Phi =  5.85271E-03  (   .986 of starting phi) 

 

        Lambda =   40.000     -----> 

        running model ..... 

            Phi =  5.83299E-03  (   .982 of starting phi) 

 

    No more lambdas: phi rising 

    Lowest phi this iteration:  5.82846E-03 

    Maximum   factor change:  1.002     ["kh_aquifer2"] 

    Maximum relative change: 2.2942E-03 ["kh_aquifer2"] 

 

    Optimisation complete: relative parameter change less than 1.0000E-02 

                           over  3 successive iterations. 

    Total model calls:   79 

 

 Recording run statistics ..... 

 

 See file Oristano-K.rec for full run details. 

 See file Oristano-K.sen for parameter sensitivities. 

 See file Oristano-K.seo for observation sensitivities. 

 See file Oristano-K.res for residuals. 

 

Figure 11. Extract of the PEST run record file.  



After completing the parameter estimation process, PEST prints the optimized parameter values 
with the 95% confidence limits (Figure 12). The estimated values of the hydraulic conductivities 
(red color in the same Figure) are practically identical to the target values of the synthetic run 
provided in Table 1 demonstrating the success of the optimization exercise. 
After this information, the measured and the model-generated observation values are listed on the 
basis of the optimized parameter set along with the residuals. In addition a number of statistics 
pertaining to observation residuals are printed (same Figure). In our case-study the standard error 
of weighted residuals, calculated dividing the objective function value for the number of the degree 

of freedom of the system6,  equals to 7.7461E-05. 
                          

OPTIMISATION RESULTS 

 Parameters -----> 

 

 Parameter        Estimated         95% percent confidence limits 

                  value             lower limit       upper limit 

  kh_aquifer1    9.999813E-06       9.999457E-06      1.000017E-05 

  kv_aquifer1    1.000315E-06       9.999998E-07      1.000631E-06 

  k_aquitard     9.999836E-09       9.999651E-09      1.000002E-08 

  kh_aquifer2    1.000003E-05       9.999973E-06      1.000009E-05 

  kv_aquifer2    9.999725E-07       9.999435E-07      1.000002E-06 

 . . . 

Observations -----> 

 

 Observation  Measured       Calculated     Residual       Weight     Group 

              value          value 

  psi001      -14.2771       -14.2771       0.000000E+00    1.000      obsgroup     

  psi002      -.107747       -.107763       1.600000E-05    1.000      obsgroup     

  psi003      0.000000E+00   0.000000E+00   0.000000E+00    1.000      obsgroup     

  psi004      -.340609       -.340604      -5.000000E-06    1.000      obsgroup     

  . . . 

  psi184       124.396        124.396       0.000000E+00    1.000      obsgroup     

  psi185       142.683        142.683       0.000000E+00    1.000      obsgroup     

  psi186       136.570        136.570       0.000000E+00    1.000      obsgroup     

  psi187       108.960        108.960       0.000000E+00    1.000      obsgroup      

. . . 

Analysis of residuals -----> 

 

   All residuals:- 

      Number of residuals with non-zero weight               =   187 

      Mean value of non-zero weighted residuals              = -1.1150E-05 

      Maximum weighted residual [observation "psi037"]       =  3.0000E-05 

      Minimum weighted residual [observation "psi172"]       = -1.0000E-03 

      Standard variance of weighted residuals                =  6.0002E-09 

      Standard error of weighted residuals                   =  7.7461E-05  

 

Figure 12. Some optimization results from the PEST run record file Oristano-K.rec.  

Other important by-products of the parameter estimation process are the parameter covariance 
and the correlation coefficient matrices (Figure 13).  
The parameter covariance matrix C is a symmetric square matrix with as many columns and rows 
as the number of adjustable parameters. The diagonal elements of the matrix are the variance 
(square of its standard deviation) of the adjustable parameters. The off diagonal elements are the 

covariance between parameter pairs xi, xj :  jijiij xxxx  where  and 

 are the means of and , respectively. 

If we assume that the system under study can be described by the linear equation cXb   (linearity 

assumption), where X is a m x n matrix, b is a vector of order n which holds system parameters 

                                            
6
 Number of observations with non-zero weight. 

http://mathworld.wolfram.com/Mean.html


and c is a vector of order m of model-generated observations, the covariance matrix is obtained by 
PEST as: 

  12)(


 XXbC T  

with )/(2 nm  the reference variance and )()( XbcXbc T   the objective function. 

Notice that, even though the elements of c are assumed to be independent, C is not necessarily a 
diagonal matrix. In fact, in many problems parameters exhibit a strong correlation. In such cases 
some parameter variances (diagonal terms) may be large even though the objective function is 
reasonably low.  In our case-study, since the adjustable parameters were log-transformed, the C 
coefficients pertain to the logarithm (to base 10) of the corresponding parameter. For instance 

(Figure 13) the variance of log(kh_aquifer1) equals to .2439E-11 hence the standard deviation 

is 1.56E-06. The elements of the correlation coefficient matrix R are calculated as: 

jjii

ij

ij



   

where the elements ij  represent the elements of the covariance matrix. The diagonal elements of 

the correlation matrix are always 1 while the off-diagonal elements range between -1 and 1. The 
closer are the off-diagonal elements to 1 or -1 the more highly are the respective parameters 
correlated. In our case-study the two highly correlated parameters were the aquitard and the 
phreatic aquifer vertical hydraulic conductivity values (  =0.80). 

 
Parameter covariance matrix -----> 

 

              kh_aquifer1  kv_aquifer1   k_aquitard  kh_aquifer2  kv_aquifer2  

 kh_aquifer1    6.2439E-11  -1.5328E-10   4.1798E-12  -5.4260E-12   7.5010E-12 

 kv_aquifer1   -1.5328E-10   4.8884E-09  -2.2860E-10   1.4551E-11  -4.7520E-11 

 k_aquitard     4.1798E-12  -2.2860E-10   1.6808E-11  -9.2070E-13  -5.6515E-12 

 kh_aquifer2   -5.4260E-12   1.4551E-11  -9.2070E-13   1.6923E-12  -3.5831E-13 

 kv_aquifer2    7.5010E-12  -4.7520E-11  -5.6515E-12  -3.5831E-13   4.1514E-11 

 

 Parameter correlation coefficient matrix -----> 

 

              kh_aquifer1  kv_aquifer1   k_aquitard  kh_aquifer2  kv_aquifer2  

 kh_aquifer1     1.000       -.2774        .1290       -.5279        .1473     

 kv_aquifer1    -.2774        1.000       -.7975        .1600       -.1055     

 k_aquitard      .1290       -.7975       1.0000       -.1726       -.2140     

 kh_aquifer2    -.5279        .1600       -.1726        1.000      -4.2749E-02 

 kv_aquifer2     .1473       -.1055       -.2140      -4.2749E-02   1.0000     

Figure 13. Parameter covariance and correlation coefficient matrices as additional information provided by 
PEST  (Oristano-K.rec). 

Most of the time consumed during each PEST iteration is devoted to calculation of the Jacobian 
matrix containing the derivatives of the observations with respect to adjustable parameters. During 

this process the model must be run at least NPAR times7, where NPAR is the number of adjustable 

parameters (5 in our case-study). From the Jacobian matrix some additional information can be 
obtained: the parameter and observation sensitivities. 
Parameter sensitivity is a measure of composite changes in model outputs generated by a change 
in the value of the given parameter (Figure 14). Conversely observation sensitivity is a measure of 
all adjustable parameters change incurred by a change in the value of the given observation 
(Figure 15). 

                                            
7
 The number of model runs is equal to the number of adjustable parameters for forward finite difference 

scheme and twice the number of adjustable parameters for central finite difference scheme. 



                       COMPLETION OF OPTIMISATION PROCESS 

 Composite sensitivities for all observations/prior info -----> 

 

 Number of observations with non-zero weight =   187 

 Parameter name    Group          Current value   Sensitivity   Rel. Sensitivity 

   kh_aquifer1     kh_aquifer1     9.999813E-06    6.518657E-02    .325933     

   kv_aquifer1     kv_aquifer1     1.000315E-06    1.157415E-02   6.944330E-02 

   k_aquitard      k_aquitard      9.999836E-09     .197751       1.58201     

   kh_aquifer2     kh_aquifer2     1.000003E-05     .382093       1.91046     

   kv_aquifer2     kv_aquifer2     9.999725E-07    7.470985E-02    .448260     

Figure 14. Part of the parameter sensitivity file (<filename>.sen). The last two columns (in red) are  
measures of the sensitivity of the given parameter to all model outputs. 

Composite parameter sensitivities are useful for identifying those parameters that may degrade the 
performance of the optimization process through lack of sensitivity to model outputs. Observation 
sensitivities may be useful to identify observations particularly crucial to the inversion process 
because of their information content.  This does not necessarily mean that the information is 
indispensable to the parameter estimation process because it can be also redundant as long as 
other observations at nearly the same time/space, with similar sensitivity, are included.    
 
Observation   Group         Measured          Modelled          Sensitivity 

  psi001       obsgroup      -14.27710         -14.27710          3.537899     

  psi002       obsgroup      -.1077470         -.1077630          .5728126     

  psi003       obsgroup      0.0000000E+00     0.0000000E+00     0.0000000E+00 

  . . . 

  psi185       obsgroup       142.6830          142.6830          .6736807     

  psi186       obsgroup       136.5700          136.5700          .4417134     

  psi187       obsgroup       108.9600          108.9600          .4582096     

Figure 15. Part of the observation sensitivity file (<filename>.seo). The last column (in red) is a measure of 
the sensitivity of that measure to all adjustable parameters involved in the calibration process. 

Concluding remarks and further applications 

We have described here a composite model made of PEST free software tool and the hydrologic 
model CODESA-3D to perform optimal model parameter estimation. Our experience with PEST 
has been positive and successful for a steady-state groundwater problem using as control data 
synthetic observations generated by the model itself.  
Further developments of the described procedure will be carried out for a real-world problem in a 
transient state simulation. Since CPU time will be much greater than in this case-study we plan to 
apply the PEST parallel option to speed up the calculations on networked PC. 
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