
THINS project: Intermediary report on the SPH code

parallelization and validation for free surface �ow

Luca Massidda, CRS4

CRS4, Science and Technology Park Polaris -
Piscina Manna, 09010 Pula (CA) - ITALY

1 Introduction

The simulation of liquid metal targets may be di�-
cult on standard CFD tools since phenomena such
as pressure waves, cavitation, liquid splashing and
free surface �ows are not easy to be described with
such tools.

The smoothed particle hydrodynamics (SPH) is
a particle method very �exible and well suited for
nonlinearities, it has been widely used to simulate
explosions and free surface motion of water with
wave breaking (Liu and Liu, 2003). First attempts
to use this methodology to study the hydrodynam-
ics of liquid metal targets have been conducted in
the ISOLDE experiment at CERN (Noah et al.,
2008). The Armando code has been developed to
simulate such problems and has been veri�ed on
experiments and applied to the simulation of liquid
metal targets such as for ESS.

The main disadvantage of particle-based meth-
ods is that they require a very large number of par-
ticles to obtain realistic results. It is therefore nec-
essary to take advantage of parallel computing for
this technique to be e�ective.

The method appears to be particularly suitable
for massively parallel machines, rather than clus-
ter of CPU for instance, so that it is possible to
run particle computation in parallel as separate
threads. It is therefore natural to adopt the massive
parallel computation capabilities of modern GPUs
to simulate large systems in extremely low compu-
tational times.

Graphics Processing Units (GPUs) appear as
a cheap alternative to handle High Performance

Computing for numerical modeling. GPUs are
designed to manage huge amounts of data and
their computing power has increased in the last
years much faster than the CPUs. Compute Uni-
�ed Device Architecture (CUDA) is a parallel pro-
gramming method and software for parallel com-
puting with some extensions to C/C++ language.
Researchers and engineers of di�erent �elds are
achieving high speedups implementing their codes
with the CUDA language. Several works on particle
methods have already appeared and also on SPH,
obtaining good acceleration and performance, but
still with some space for improvement.

2 Overview of the method

The simulation tools for physics may be roughly di-
vide in two types � Eulerian (grid-based) methods,
which calculate the properties of the simulation at
a set of �xed points in space, and Lagrangian (par-
ticle) methods, which calculate the properties of a
set of particles as they move through space.
SPH is a Lagrangian particle method, in which

the continuum is discretized with a �nite set of mu-
tually interacting particles.
The idea at the basis of the method is to ap-

proximate any function f(x) of the computational
domain as:

f(x) =

ˆ

Ω

f(x′)W (x− x′, h)dΩ (1)

The kernel function W is a smooth and di�eren-
tiable function depending on the distance between
the particles r = |x − x′| and on the smoothing
length h. It has a compact support and mimics the
Dirac function as h approaches zero, so that its in-
tegral over the domain is equal to unity. In discrete
notation, the previous approximation leads to the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by P-arch

https://core.ac.uk/display/51249161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 Neighbor search 2

following expression of the value of the function at
the particle i position fi = f̂(xi):

fi =
∑
j

mj
fj
ρj
Wij (2)

whereWij = W (xi−xj , h) and the sum is carried
out on all the particles and having mass mj and
density ρj .
The spatial derivatives of the function are ob-

tained similarly by deriving the kernel, if
∂Wij

∂xα is
the gradient ofW (xi−xj , h) calculated with respect
to the position of particle i, the discrete expression
reads:

∂fi
∂xα

=
∑
j

mj
fj
ρj

∂Wij

∂xα
(3)

The methodology may be applied to gases, liq-
uids and solids depending on the physical model
considered (Liu and Liu, 2003).
The SPH approximations of the Euler equations

are expressed as follows:

ρ̇i =
∑
j

mj(v
α
i − vαj)

∂Wij

∂xα
(4)

v̇i = −
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∂Wij

∂xα
+ gαi (5)

u̇i =
1

2

∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)(
vαi − vαj

) ∂Wij

∂xα
+ qi

(6)
An Equation Of State is added to close the sys-

tem, pi = f (ρi, ui).
The variation in time of density, velocity and en-

ergy for the particle i are evaluated as a sum on all
the other particles, therefore in general the com-
plexity of the algorithm for a single time step is
of the order of n2

p. The kernel function W has a
compact support, and rapidly becomes null as the
distance between two particles increases. Therefore
a cuto� distance is introduced, proportional to the
smoothing length h, the number of neighbor par-
ticles to which the sum is extended is limited nn,
the complexity of the calculation of the interactions
between particles is reduced to nnnp.
There are three main steps to the performing the

simulation:

1. Find the neighbors for each particle

2. Calculate particle interactions

3. Integrate particle quantities in time

The integration step is the simplest step. It inte-
grates the particle attributes (position and veloc-
ity) to move the particles through space. We use
a three step Total Variation Diminishing Runge-
Kutta scheme since it gives good smoothing prop-
erties and allows an higher value of the allowable
time step than the common Leap Frog scheme. The
increase of density velocity and energy is calculated
from particle interactions, the particle positions are
integrated on the basis of velocity value.

3 Neighbor search

A computationally expensive part in SPH simula-
tion is the neighborhood search, performed on each
particle for every time step. Searching for neigh-
bors consists in �nding the set of particles whose
distance is lower than a given value for each par-
ticle of the computational domain. A brute-force
force algorithm would result in computing all the
n2
p possible distances, and would be very slow for

any signi�cant simulation.
The performance may be increased with a spatial

subdivision techniques which divide the simulation
space so that it is easier to �nd the neighbors of a
given particle.
A uniform grid subdivides the simulation space

into a grid of uniformly sized cells. For simplicity,
we use a grid where the cell size is equal to 2h
and is constant for the whole model. Each particle
can potentially overlap several grid cells, but since
the kernel function value is negligible at distances
bigger than 2h, the search for neighbor particles is
limited to the grid cell where the particle is located
and to the 8 in 2D and 26 in 3D cells surrounding
it (3 x 3 x 3 = 27 in total).
Fixed grids have commonly been used to allocate

particles to buckets for fast spatial range queries.
The drawback of grid structures, however, is that
they may use too much memory since the grid
cell "buckets" containing the particles are allocated
with a prede�ned capacity. In a typical simulation,
many of these buckets are empty.
In our implementation the grid structure is gen-

erated from scratch at each time step but the size

3 Neighbor search 3

of the buckets is not determined "a-priori", it is
variable depending on the particle position, what
is �xed is the maximum number of neighbors that
any particle may have. The structured grid is de-
scribed by means of an hash table.
The structure of the GPU requires a careful se-

lection of the algorithm, to be optimized for this
architecture, the choice of this neighbor search algo-
rithm has been made on this basis, since it requires
the minimum memory transfer operation between
the host and the device and does not cause any
memory con�ict for parallel processes.
The algorithm consists in calculating for each

particle the corresponding grid cell or bucket con-
taining it, the array with this information has the
size of the particle number and contains the index
of the structured grid, that represents the hash key.
The number of possible hash keys is equal to the
number of grid cells of the structured grid that di-
vides the computational space.
This array is sorted with respect to the hash keys,

this way the indexes of particle that belong to the
same grid bucket are located in adjacent position
of the array.
Then two arrays are generated, with the size of

the hash keys, pointing at the beginning and at the
end of the group of particle with the same hash
value.
The neighbor list can be �nally generated, the

possible candidates belong the �nite set of grid cells
around the particle (9 in 2D and 27 in 3D), the
distances for all this particles are calculated and
the particles whose distance is lower then the cut-
o� value are stored in the neighbor list until the
maximum number of neighbors is reached.
In a standard con�guration the smoothing length

is usually close to the particle diameter h = 1.8r,
therefore the numerical density of particle in a grid
cell in 3D is

ncell =
(2h)

3

4
3πr

3
≈ 11

and the number of neighbors may be estimated as:

nn =
4
3π(2h)3

4
3πr

3
≈ 47

The number of grid cells in normal problems
is similar to the number of particles, therefore
the data structure required for particle interaction

computation in this implementation requires ap-
proximately 50np integers. At each time step it is
necessary to calculate the distance for 27ncellnp ≈
300np particle pairs and the particle interactions to
calculate the time variation of density, momentum
and energy for nnnp ≈ 47np particle pairs.
It appears to us as a good balance between mem-

ory occupancy and computational requirements.
The algorithm consists of several kernels. The

�rst kernel calculates a hash value for each particle
based on its cell id. At this stage we are using a
linear cell id as the hash, but it may be bene�cial
to use other functions such the Z-order curve to
improve the coherence of memory accesses. The
kernel stores the results as an array containing the
hash value for each particle.
We then sort the particles based on their hash

values. The sorting is performed using the fast
radix sort provided by the CUDPP library, avail-
able with the CUDA distribution, that is at the
moment the fastest sorting algorithm and library
on GPUs. The kernel creates a list of particle in-
dexes sorted on the basis of the hash value.
A third kernel is then used to sort the particle

variables with the new index array, in this way par-
ticles that belong o the same cell and therefore have
the same hash value are in close position in the ar-
rays that store the particle data. Sorting improves
the memory access coherency and the overall speed
of the computation. Furthermore in a future opti-
mization of the code, this can be used to further ac-
celerate computation taking advantage of the block
shared memory.
A fourth kernel �nds the start and the end of any

given cell in the sorted list, this is necessary because
in our data structure the cell bucket does not have a
�xed capacity, and we need to know which portion
of the particle data arrays belong to any given cell.
The kernel uses a thread per particle and compares
the cell index of the current particle with the cell
index of the previous particle in the sorted list. If
the index is di�erent, this indicates the start of a
new cell, the end of each cell is found in a similar
way.
Finally a �fth kernel calculates the neighbor list

for each particle on the device; a thread per parti-
cle is generated and calculates the distance of the
given particle from all the particle that belong to
the 27 cells around (∼ 300), all the particles whose
distance is lower than the cuto� value (∼ 47) are

5 Particle update 4

kept in the list and used for further computations.

The CPU version of the code has been rewrit-
ten on the same algorithm basis for simplicity of
maintenance of the code. The kernels launches on
the GPU are substituted by cycles on the particles,
the CPU calculates one particle at the time with
the same steps previously described. The parallel
radix sort of CUDPP library is substituted by the
Quick Sort of the standard C library.

4 Particle interactions

The time derivative of density, velocity and energy
for each particle are calculated through three sub
steps, in a TVD Runge Kutta scheme of the third
order. At each sub step the Lagrangian form of
the Runge Kutta equations has to be solved, us-
ing the particle approximation as previously shown.
Therefore for each particle, a summation over the
neighbors is required to calculate the time deriva-
tive.

This is split in two phases to obtain a preliminary
optimization of the code on GPUs. A �rst kernel
solves for the mass and momentum equations, and
a second kernel solves for the energy equation. This
is due to the fact that the number of registers that
can be used in the computation is limited, and if too
many data for particle are treated at the same time,
it may result in a reduction of the occupancy of the
computing hardware due to the lack of registers and
local memory for each thread.

The �rst computational kernel uses a thread per
particle, cycles on the neighbors calculating the
distance, the kernel function derivative, and sums
the contribution on the density and velocity time
derivative.

The second computational kernel operates in the
same way but calculates the value of the time
derivative of the particle energy, using also the ve-
locity divergence to calculate by the �rst kernel.

The operations performed in this phase are quite
simple when compared to the sorting algorithm,
but the number of particles involved is very high,
so this phase results in being the most computa-
tionally expensive for each time step.

The CPU version of the code has the same struc-
ture, kernels are substituted by functions, and the
thread subdivision is replaced by a cycle on the
particles.

5 Particle update

In the particle update phase, the position, velocity,
density and energy of each particle is updated from
the particle interaction calculation results. More-
over the Equation Of State is evaluated, giving as
a result the pressure of each particle for its density
and energy.

pi = EOS(ρi, ui) (7)

On the GPU, this operation is realized with a
kernel, launching one thread per particle. In the
CPU version, the multiple thread execution is re-
placed by a cycle on all the particles.

6 Test cases

For the sake of simplicity and debugging, devel-
opment and preliminary tests have been made on a
2D version of the code, the generality of the method
and of the performance obtained is not a�ected sig-
ni�cantly, and a further improvement in the accel-
eration is expected for 3D.

Two examples are presented in the following: a
classical dam break problem and a pressure wave
propagation due to sudden energy increase.

The �rst example puts in evidence the perfor-
mance of the code in dealing with strong non-
linearities and free surfaces; the second are oriented
towards the analysis of the short time scale tran-
sients induced by a sudden energy increase as in
the case of beam dumping in a liquid metal tar-
get. In both cases, the performance of the code on
the GPU and on a CPU are compared for several
problem sizes.

The machine used to evaluate the performance is
equipped with an Intel Xeon at 2.67GHz and the
NVIDIA Tesla C1060 GPU card.

6.1 Dam break

The dam break �ow with the consequent wall im-
pact is widely used to benchmark various numerical
techniques that tend to simulate interfacial �ows
and impact problems. A tank whose length is
L = 5.37m is partially �lled with a column of wa-
ter (l = 2m and h = 1m) located in the left side
of the model. Water is considered inviscid, but a

6 Test cases 5

numerical viscosity is added in the modeling to reg-
ularize the results as well as some dumping on the
mass conservation equation. Density is assumed as
ρ = 1000kg/m3, gravity is g = 9.81m/s and the
equation of state selected is a simple polynomial
equation.

pi =
ρc2

7

((
ρi
ρ

)7

− 1

)
(8)

Energy e�ect is not considered and the speed of
sound in the material is taken equal to c = 50m/s.
The compressibility of the water is therefore higher
than reality, this allows to greatly reduce the simu-
lation time in this kind of problems, since the time
step may be increased. To obtain reasonable re-
sults the sound velocity must be su�ciently higher
than the maximum �uid velocity found in the sim-
ulation.
Figure 1 shows the evolution of the model at sev-

eral time steps. Results with CPU and GPU are
identical.

The simulation was run using several particle
spacing values and particle number. The perfor-
mance measurements are listed in Table 6.1 It is
possible to verify that the speedup factor with the
GPU version of the code is higher than 50 as the
size of the problem increases.

The results of the code pro�ling are listed in Ta-
ble 2. The code spends most of its time in calcu-
lating the particle interaction to update the den-
sity and the velocity of each particle; this is the

Tab. 1: GPU and CPU performance on the Dam
break test case

Dam break Case 1 Case 2 Case 3

Particles 6462 22899 85773
Time steps 10000 20000 40000
CPU time 15m 26s 106m 44s 784m
GPU time 19s 1m 21s 8m 34s
Speedup 48 79 91

Fig. 1: Dam break test case: evolution the model
and of the pressure �eld

6 Test cases 6

Tab. 2: GPU pro�ling for the dam break problem
Kernel GPU time Threads Registers Occupancy

balanceMassMomentum 63.71% 256 27 50%
updateList 20.8% 256 21 50%

updateParticles 3.54% 256 13 100%
balanceEnergy 0.53% 256 5 100%

core of the problem so it is not a surprise. The
neighbor list calculation requires some 20% of the
time, all the other kernels take much less comput-
ing time. The �rst two methods require a cycle
on all the possible neighbor particles to calculate
distances and interactions. All the other methods
can be run in parallel without any communication
within threads.

These two methods have space for optimization
and will be realized in the following of the project.
The occupancy of the GPU card is limited to 50%
for these methods due to the high number of regis-
ters adopted. The card tested is classi�ed as Com-
pute capability 1.3, newer cards, of compute capa-
bility 2.0 have an higher number of available regis-
ters and would allow an occupancy of 75% for the
balanceMassMomentum kernel and 94% for the up-
dateList kernel. An higher performance is therefore
expected on newer cards without any optimization
of the code. We will try an optimization reduc-
ing the number of register, moving the data on the
slower dynamic shared memory, in order to increase
the performance also on older hardware.

The radix sort kernel used for for the hash array
is surprisingly e�cient.

6.2 Pressure wave propagation

As a second example, a pressure wave propagates
in a tank �lled with mercury, due to an instanta-
neous temperature rise. The model is a section of
the tank. It is square with a size of 10cm. The
energy increase is located at its center and has a
Gaussian pro�le around the axis with a mean ra-
dius of 4mm. The �uid is simulated with a polyno-
mial equation of state, the lateral surfaces are free,
the simulation is run for 0.1ms to cover the prop-
agation along the domain, including the re�ection
on the free surfaces.

Fig. 2: Pressure wave test case: energy density in
the model

Tab. 3: GPU and CPU performance on the Pres-
sure wave test case

Pressure wave Case 1 Case 2 Case 3

Particles 160801 251001 361201
Time steps 800 1000 1200
CPU time 25m 2s 51m 14s 84m 4s
GPU time 33.5s 55.1s 1m 14s
Speedup 45 53 68

Figure 2 shows the energy density, and Figure
3 shows the pressure wave propagation at several
time steps.
The simulation was run using several particle

spacing values and particle number. The results
are shown in Table 3. As the number of particle
increases, the performance of the GPU is better
when compared to the CPU since the e�ect of mem-
ory transfer betwen the computational devices are
minimized. The speedup factor in this test case
approaches 70.

7 Future developments 7

Fig. 3: Pressure wave test case: pressure wave
propagation at 20, 40, 60, 80µs

7 Future developments

In this preliminary report we have presented the
performance results of the parallelization of the Ar-
mando SPH code on the GPU platform. The re-
sults are very encouraging, since a factor of more
than 60 on the performance of a CPU core is ob-
tained using an NVIDIA Tesla Card. It appears
that GPU acceleration is perfectly suited for the
method and on the basis of the pro�ling analysis
it appears that further margin of improvement is
possible through a more e�cient use of the shared
memory of the card and a reduction in the register
usage, to maximize the operational throughput of
the computational kernels.

In the �nal report, the code will be further op-
timized and applied to more complex problems of
liquid metal �ow and target design.

8 References

1. Gottlieb, S., Shu, C., 1998. Total varation di-
minishing Runge-Kutta schemes, Mathematics
of Computation, Vol. 67, 221, 73-85

2. Green, S., 2010. Particle Simulation using
CUDA, CUDA SDK Samples.

3. Liu, G., Liu, M., 2003. Smoothed Particle
Hydrodynamics: A Meshfree Particle Method.
World Scienti�c.

4. Massidda, L., 2008. ARMANDO, a SPH code
for CERN. Tech. Rep., CERN Geneva.

5. Massidda, L. Kadi, Y., 2010. SPH simulation
of liquid metal target dynamics, Nuclear En-
gineering and Design 240, 940-946.

6. Monaghan, J., Lattanzio, J., 1985. A re�ned
particle method for astrophysical problems.
Astronomy and Astrophysics 149, 135�143.

7. Monaghan, J., 1992. Smoothed particle hy-
drodynamics. Annu. Rev. Astron. Physics
30, 543. 12, 13

8. Monaghan, J., 1994. Simulating free sur-
face �ow with SPH. Journal of Computational
Physics 110, 399�406.

8 References 8

9. Nyland, L., Harris, M., Prins, J., 2007. Fast
N-Body Simulation with CUDA. GPU Gems
3. Addison Wesley, 2007

