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Abstract

The aim of this work is the study and the im-
plementation of appropriate visualization tech-
niques for high-order discontinuous finite ele-
ment data in two and three-dimensions. In par-
ticular, we are dealing with field discontinuity
and deformed cells. Such data are produced
for example by chemical simulations, by fluid
dynamics simulations, or, in general, anywhere
high accuracy on boundary domain description
is required.

1 Motivations

Finite element methods are well suited to repre-
sent physical processes in simulation programs.
Several applications in the field of fluid dynam-
ics need to represent discontinuous fields defined
on high-order finite elements cells[1]. Such data
are produced for example as an output from
chemical simulation processes.

The combination of discontinuous finite el-
ement simulation methods, topologically un-
structured grids, and high-order polynomial ap-
proximations of fields and geometries allows
programs to handle a variety of situations in
which standard approaches usually fail[2]. In
particular, structured grids suffer from heavy
limitations when dealing with complicated ge-
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ometry or when trying to adapt to local features
of the solution. Furthermore, discontinuous fi-
nite element methods ensure time accuracy of
the solution to be obtained by using high order
polynomial approximations within each element
(cell), thus being particularly well suited to un-
structured grids. Finally, when high accuracy
in the computational domain boundary descrip-
tion is required by a finite element simulation
program, it is often necessary to deal with ge-
ometrically deformed cells, as the higher-order
shape of these cells may give a better approxi-
mation of the boundaries than a linear one[3].

Common visualization approaches do not of-
fer the possibility to handle discontinuities and
this research area seems to be completely un-
investigated when discontinuities are combined
with unstructured topology.

The aim of our research is to supply gen-
eral purpose visualization tools and techniques
for representing meshes made up of topolog-
ically different cells (a combination of trian-
gles, quadrilaterals, and other generic convex
polygons in the bidimensional case; a com-
bination of tetrahedra together with hexahe-
dra, and generic convex polyhedra in the three-
dimensional case) on which discontinuous scalar
and vector fields are defined. Also, high-order
polynomial parametric description of the geom-
etry must be represented graphically along with
the field values defined over it.
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2 Research Activity

2.1 High order polynomial approxima-
tion

Standard visualization tools and techniques are
optimized for the case when each variable de-
fined over a cell has a linear behavior. In par-
ticular, current graphics hardware only imple-
ments linear interpolation of colors (Gouraud
shading). In order to obtain interactive perfor-
mance, one of the main problems that has to
be faced is to linearly approximate polynomial
functions for rendering purposes.

In our approach, such approximation has
been performed using the Longest Side Mid-
point Insertion mesh refinement algorithm[4].

At each step of the iterative method, a cell
to be refined, with respect to a defined error
estimation and a given threshold, is split along
its longest side in two cell. The same splitting
is recursively applied to any cell adjacent to the
same side (see fig. 1).

Fig. 1. The Longest Side Midpoint Insertion
algorithm. The top cell starts the recursion

This method has been proven to produce
a conforming and good quality mesh[5] and to
converge in a finite number of computational
step to a linear approximation of the function
defined on the original mesh, given a tolerance
value, both in 2D and 3D.

The use of a grid refinement approach makes
it possible to use, on the refined set of cells,
standard visualization methods for linear func-
tions. As the visualization algorithms have to
deal only with linear functions, it is possible to
obtain interactive performance.

Figure 2 shows the isolines representation
of a field defined over a quadratic triangular
element where the refinement alghoritm has
been applied.

Fig. 2. A quadratic field represented by isolines

2.2 Discontinuity Representation

An effective representation of discontinuities is
a major problem to be solved for discontinuous
fields. Discontinuity is a fundamental informa-
tion in the simulation process, as discrepancy in
function values at cell interfaces provides infor-
mation on solution convergence.

Fig. 3. Visualization of discontinuities

To visualize discontinuity we decided to han-
dle each cell as a separate entity by represent-
ing function values at a vertex independently on
each cell sharing that vertex (see fig. 3). This
way to describe the actual solution has then
been combined with the representation of the
average solution for each vertex obtained by the
values of the function in the cells incident on it.
The possibility to describe both the actual and
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Discontinuous Finite Element Visualization

the average solution showed to be a good way
for emphasizing discontinuities. Both solutions
are represented by classical visualization tech-
niques (i.e., by isocontours and color mapping),
as described in the following section.

Another approach for discontinuity repre-
sentation consists in mapping the variance of
the discontinuous solution on the edges of the
underlying grid. In this way discontinuities are
made evident within the mesh and their visu-
alization can be combined with isocontours or
color mapping of either the actual or the aver-
age solution. Figure 4 shows one of these pos-
sible combinations applied to the same dataset
depicted in figure 3.

Fig. 4. Visualization of derived average and
variance fields

2.3 Deformed Geometry

While visualizing this kind of data, we had the
problem to represent deformed cells with com-
puter graphics primitive that are linear. Our
solution is to produce a good approximation of
such cells with a set of linear cells. We ap-
plied the Longest Side Midpoint Insertion al-
gorithm even in this case by considering the
physical coordinates of the mapped cell control
points as fields defined over the cell. This way,
the same finite element interpolation formulas
can be used to compute the geometric mapping
of the referrer cell into the physical space (see
fig. 5).

Figure 6 shows how quadratic boundaries of
a bidimensional dataset are well represented by

referrer space physical space

Fig. 5. Deformation of a P2 cell. All sides are
given by 3 points coordinates in the physical space

using a small amount of additional linear cells
obtained by the refinement process.

Fig. 6. Visualization of quadratic boundaries.
Thick lines represent sides of added elements

2.4 Error estimation

One of the critical points of the method pre-
sented resides in estimating the error introduced
by considering an element as if it was linear.
Such error drives the refinement of the mesh and
it is used to stop the splitting process when the
accuracy reaches a value below a given thresh-
old.

Because the refinement is performed both
for geometric that for field representation, we
used two different error measures.

For each cell, the geometric error is com-
puted as the maximum distance of the control
points in the physical space from the corre-
sponding point of the linearly mapped cell (see
fig. 7).
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Fig. 7. Error estimation: distance C-C’ is the
geometric error for the deformed cell

The global geometric error for a mesh is
defined by the maximum error computed on
each cell. If this is greater than the given
threshold, then the cell with the biggest error is
splitted according to the refinement alghorithm.

The field error, on the other hand, is com-
puted as the maximum absolute difference be-
tween the field values on the control points and
the corresponding linearly interpolated values.
In the case of the second order element showed
in figure 8, the error is computed by the formula

err = max

 |F2 − F1+F3

2
|

|F4 − F3+F5

2
|

|F6 − F5+F1

2
|

 (1)

where Fi is the field value on the i-th control
point.

Here again, the global field error for a mesh
is defined by the maximum error computed on
each cell. If this is greater than the given
threshold, then the cell with the biggest error is
splitted according to the refinement alghorithm.

3 Implementation

The first practical result of our research was the
implementation of a visualization system for the
representation of discontinuous fields defined on
high order finite element grids. The system,
called MIGAVIS, combines different techniques
for representing discontinuities on unstructured

Fig. 8. Error estimation: field error is given
by formula (1)

topologies within a simple parametric user in-
terface.

MIGAVIS has been developed by augment-
ing the object-oriented Visualization Toolkit by
Schroeder, Martin and Lorensen[6] with new
classes for handling high-order finite elements
and discontinuity information. The application
has been completely developed in C++ and the
development platform was an IRIX 5.3 Silicon
Graphics workstation. A parametric user inter-
face implemented in OSF/Motif allows an easy
interaction with data. The system offers the
possibility of visualizing:

• the wire-frame grid on which the solution
is defined;

• the actual discontinuous solution;

• the average solution.

Both the actual and the average solution
can be described by either a scalar represen-
tation (through isocontours or color mapping)
or a vector representation (through glyphs or
hedgehogs). The user can interactively select
the scalar field (i.e., a specific solution corre-
sponding to a variable in the simulation process)
for scalar visualization and/or the scalar fields
for vectorial visualization. The vector visualiza-
tion is obtained combining different scalar solu-
tions.
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The variance of the solution can be mapped
on grid edges whenever desired, thus empha-
sizing discrepant values at cell interfaces just in
correspondence of their location within the grid.
All the visualization methods can be combined
to produce a single image.

The visualization system is integrated with
an interface that gives the possibility to inter-
actively modify the parameters of the visualiza-
tion process:

• parameters for mesh refinement process;

• colormaps for variance and for all solution
and grid representations;

• value ranges for variance and for all solu-
tion representations;

• number of contours;

• glyphs and hedgehogs parameters (height,
scale, etc. );

• parameters for linear and non-linear col-
ormaps;

• scale factor for Cartesian axes;

• offset factor for visualized objects with
respect to cartesian axes.

4 Results

The MIGAVIS visualization system is currently
being used at ENEL Research Department in
Pisa (Polo Termico) as a suitable post-processor
for MIGALE, a discontinuous finite elements
solver for compressible and viscous flows. The
main application of MIGALE is the study of
turbomachinery flows.

The main reason to use MIGAVIS as vi-
sualizer for a specific CFD solver is given by
the particularity of the discontinuous finite ele-
ments method. As a matter of fact, the visual-
ization of solution discontinuities is very useful
in order to highlight computational lack either
in convergence or in precision. The visualiza-
tion of discontinuities is especially important in
3D simulation, that represents the most chal-
lenging task.

As an example, we can consider two 2D
cases recently studied. The first one is the
flow calculation for a first stage steam turbine
nozzle. In this case the computation was aimed
at evaluating the behaviour of a new profile
designed to reduce the blades erosion due to
oxide particles. Figures 9 and 10 show the
Mach isolines for the old and for the new slanted
profile.

Fig. 9. 2811 vertex and 5304 cells

Fig. 10. 3430 vertex and 6486 cells

The second case is an optical probe for den-
sity measurements in the wet steam region of
turbines. The probe consists of a steel cylin-
der having a lenghtwise cavity, the laser beam
emitted from one side of the cavity is collected
by a detector placed on the opposite side. Fig-
ures 11 and 12 shows the fully developed com-
putations of different precisions. Mach contours
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for isoparametric linear elements have evident
discontinuities in the wake and near the solid
boundary. Quadratic elements coupled with
cubic boundaries representation eliminate such
discontinuities.

Fig. 11. 2534 vertex and 4919 linear elements

Fig. 12. 2534 vertex and 4919 quadratic
elements

Figure 13 shows the same dataset refined up
to a 50% added cells to obtain a more accurate
representation of the field under analysis.
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