
Metis
An Object-Oriented Toolkit for

Constructing Virtual Reality Applications

Russell Turner1, Song Li1, Enrico Gobbetti2

1. Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County

1000 Hilltop Circle, Baltimore MD 21250 USA

2. Center for Research, Development, and Advanced Studies in Sardinia
Via Sauro 10

09123 Cagliari, Italy

E-mail
turner@cs.umbc.edu
sli2@cs.umbc.edu
gobbetti@crs4.it

Abstract: Virtual reality systems provide realistic look and feel by seamlessly
integrating three-dimensional input and output devices. One software architecture
approach to constructing such systems is to distribute the application between a
computation-intensive simulator back-end and a graphics-intensive viewer front-
end which implements user interaction. In this paper we discuss Metis, a toolkit
we have been developing based on such a software architecture, which can be
used for building interactive immersive virtual reality systems with
computationally intensive components. The Metis toolkit defines an application
programming interface on the simulator side, which communicates via a network
with a standalone viewer program that handles all immersive display and
interactivity. Network bandwidth and interaction latency are minimized, by use
of a constraint network on the viewer side that declaratively defines much of
dynamic and interactive behavior of the application.

1. Introduction

Metis is an object-oriented toolkit for 3D interactive simulation. The goal is to create a simple, flexible
high-performance software architecture that enables the rapid construction of immersive virtual reality
applications for simulation, utilizing highly interactive techniques such as 3D direct manipulation and
virtual tools (or "3D widgets"). Possible areas of application include robotics simulation, 3D character
animation, surgical simulation, small-scale multi-user shared environments, and any inherently 3D tasks
which require highly interactive user interfaces.

Metis is intended for use in virtual reality applications with varying levels of immersivity, using display
techniques ranging from stereo glasses to head-mounted displays, and input devices such as 3D mice and
data gloves. For such applications to function properly without inducing user fatigue and motion sickness,
they must reliably respond to input and update the display with high frame rates and low latency, all of
which require high-performance rendering and simulation capabilities. Metis was designed with a client-
server software architecture intended to support these kinds of performance requirements. It also specifies
high-level input and output device models so that applications can be developed independently of specific
virtual reality hardware configurations, and provides an architecture for constructing interactive virtual tools
or "3D widgets". One particular such configuration, which we have been using to test the toolkit, is a form
of immersive desktop virtual reality known as "fishtank" VR in which the position of the user's head is
tracked as he views the screen through stereo glasses. By altering the projection of the three-dimensional
scene in response to the user's head position, objects can be made to appear fixed in space in front of thebrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by P-arch

https://core.ac.uk/display/51248963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

screen. Using a three-dimensional pointing device, the user can then interact with these virtual objects
directly using virtual tools.

Metis is also intended for implementing applications that allow small numbers of users to simultaneously
interact in real-time with a computationally intensive simulation. This is achieved using a client-server
architecture in which multiple users, each interacting via a local viewer client, may connect remotely to a
single simulation server. This also has the advantage of allowing the simulation portion of the application
to be run on a separate machine, which may be better suited for computation, than the viewing portion,
which may be better suited for interactive 3D graphics. This type of architecture is well-suited for
implementing time-critical rendering and computation, and constant-time rendering capabilities are expected
to be added to future versions of Metis.

While the purpose of Metis is not to support large-scale distributed virtual environments or internet-based
applications, it could be used to implement Virtual Reality Modeling Language (VRML) browsers. Metis'
run-time object structures have been designed to conform as closely as possible to the VRML2.0 standard
[SGI96], and it is expected that the toolkit will eventually be able to import VRML2.0 files directly.

2. Design Overview

The Metis toolkit provides several key functional components necessary for implementing most virtual
reality applications. These take the form of a renderer for immersive display, a high-level virtual input
device model, and a one-way constraint maintenance system, all integrated together using a object-oriented
client-server software architecture. The Metis software itself consists of an application program interface,
called the Metis API. and a standalone interactive 3D program called the Metis Viewer. Metis application
programmers use the API to construct their own applications, sometimes referred to as simulators, which
can be viewed and interacted with locally or remotely using the viewer.

2.1 Client-Server Architecture

This division of functionality takes the form of a networked client-server architecture (see Fig. 1). The
application simulator, built on top of the API, resides on the server side, while the renderer, constraint
maintenance system and input device model reside in the viewer on the client side. When the simulator is
started, it waits for a viewer to connect to it via a network connection, through which the simulator may
send graphics commands and receive user input.

Metis Simulator

Network

3D Mouse

HMD Helmet

Headtracker

Spaceball

2D Mouse

Metis Viewer

Scene DAG

Constraint Network

VR Devices

Metis
API

Application

Fig. 1. Metis Client-Server Architecture

This architecture is analogous to the client-server design of X-Windows. The Metis viewer is analogous to
an X server in that it provides an interactive graphical interface to the user, while providing output graphics
resources and user input data to the application. A Metis application is analogous to an X client in that it
provides the application functionality and is implemented on top of the Metis API, which is analogous to
the Xlib or Xt API for X. Unlike the X server, however, the Metis viewer provides inherently three
dimensional graphics resources, a high-level input device model geared towards virtual reality devices, and a
constraint system which allows more interactive functionality to be implemented within the viewer itself.

This kind of client-server architecture, based on communication of objects and constraints, has several
important advantages. First of all, the simulation and the viewing process are decoupled: they can therefore
run at different rates and can profit from parallel processing, increasing the efficiency of the application.
This is similar to modern virtual reality toolkits such as MR [Shaw92], AVIARY [West92], DIVE
[Carlsson93] and VIPER [Torguet95]. In contrast to these systems, however, the definition of the behavior
on the viewer side is not accomplished using procedural techniques, but rather by using a declarative
approach, where the Metis simulator communicates to the viewer not only the virtual world's appearance
but also its behavior, specified as a set of time-dependent constraints. Thus, the need for communication
between simulator and viewer is less than that of a static scene description, since no communications are
needed while the constraints on the viewer's side remain valid. The Cognitive Coprocessor Architecture
[Robertson89], and later the TBAG [Elliot94] and VB2 [Gobbetti93] systems, introduced the idea of making
time-dependent functions part of the description of graphical primitives in a 3D software architecture in
order to declaratively describe simple animated and interactive behaviors. Metis exploits this technique to
reduce communication bandwidth and improve load balancing in the context of a client-server VR
architecture. Furthermore, interaction latency is minimized, since interaction code can be executed directly in
the viewer in the form of constraints. A standard interface between simulators and viewers is defined,
specifying the node and constraint types understood by the viewer. This makes it possible to provide a
standard generic viewer suitable for a large number of application, allowing programmers to concentrate
purely on the simulator side.

2.2 Object-Oriented Design

A Metis application specifies scenes directly in three-dimensional space by creating a scene data structure to
specify the geometry, appearance and hierarchical structure, as well as some of the dynamic and interactive
behavior, of the virtual environment. This is done from the simulator API by issuing scene creation and
linking commands to the viewer, which instantiates the scene structure locally in the viewer. The scene can
be accessed from the simulator side by using the instance names of its components, which are simply
strings that represent their corresponding real objects on the viewer side. Fig. 2 gives an overview of the
main classes in the current viewer architecture.

Node DataConsumer

NotifierFunctionChannelDeviceConstant

DataProducerVariable

GroupNode

Scene

NetConnection

Root

Arguments

Output

TransformNode

Fig. 2: OMT Diagram of Metis Viewer Scene Classes

The Metis API consists of a collection of C++ classes. Some of these can be extended through subclassing
to implement application functionality. Most classes, however, are used to instantiate various components
which are assembled through object composition into the simulator-side scene graph which "shadows" the
actual scene graph on the viewer side. Overloaded operators, e.g. <<= and =, are used to provide an intuitive
syntax. A sample program that uses the Metis API can be found in Appendix A.

3. Metis Scene Architecture

The Metis scene graph itself consists of a directed acyclic graph of nodes, which represents the static
graphical state of the scene, and a constraint graph, which maintains dependency relationships between the
nodes and implements dynamic behavior. Unlike VRML 2.0 [SGI96], which relies on procedural script
nodes to extend dynamic and interactive behavior, Metis uses a purely declarative approach that constructs a
network of pre-defined constraints.

3.1 Nodes

A node is an encapsulated data unit that represents some related properties that can be used to describe a
static component of a scene. For example, a Sphere node denotes a visible sphere in space, and a Material
node specifies color and other visual surface properties of an object. The Metis node system is based on the
VRML2.0 node architecture. All externally visible state of a Node is represented by its variables, which are
active objects containing data of various types. Metis variables can be connected together in dependency
relationships using the constraint system. Currently, Metis variables can be one of the following types:
Integer, Real, Vector, Quaternion, Color, Matrix. The Integer, Real, Vector, and Color types are standard
data types used in computer graphics, while the Quaternion represents a rotation about an arbitrary axis and
the Matrix type is a 4x4 homogeneous transformation matrix that is usually used to represent a coordinate
system transformation. A Material node, for instance, is defined as follows:

Material {
 Real intensity;
 Color diffuse;
 Color emissive;
 Real shininess;
 Color specular;
 Real transparency;
}

In Metis, some nodes are distinguish from others by maintaining a group of subnodes. These nodes are
called grouping nodes. One of the most important amongst them is the Transform node, which separates all
its subnodes from the rest of the scene DAG by defining a coordinate system and placing the subnodes in it.
The following C++ prototype defines the Transform node, which contains, in addition to the transformation
parameters, a list of references to the subnodes.

Transform {
 NodeList children;
 Quaternion rotation;
 Vector scale;
 Vector translation;
 Matrix matrix;
}

One advantage of Metis over other similar systems, e.g. VRML [SGI96], is that it supports a large
collection of real three-dimensional devices. In addition to conventional devices like 2D mouse and
keyboard, Metis supports a spaceball, headtracker, 3D mouse and stereo glasses. Every physical device
available on the system corresponds to a device node in Metis, which encapsulates all system-dependent
programming details of the particular devices. For example, the Spaceball node is defined as follows:

Spaceball {
 Quaternion rotation;
 Vector translation;
 Integer button;
}

As in VRML2.0, nodes in a Metis scene can be shared, i.e. multiply-referenced, so that the scene data
structure forms a directed acyclic graph rather than a simple hierarchy. By sharing a node, it is possible to
save a memory usage and create complex structures more easily. However, multiple referencing creates
some difficulties in maintaining transform constraints for shared nodes. Metis attempts to solve these
problems and make node sharing as efficient as possible by using the constraint system to maintain
transformation inheritance relationships. Fig. 3 is an example of a scene graph with multiple referencing.
On the screen, three cubes will be shown, and two of those share the same material properties. The Metis
API code for constructing such a scene graph can be found in the sample program in Appendix A.

Root

SpaceballCamera

TransformVehicle

Transform Transform Transform

Shape Shape

Material Cube Material

Fig. 3. A Scene DAG Viewed Schematically and by the User

3.2. Constraints

While standard graphics formats such as VRML 1.0 [Bell95] simply provide static scene rendering
descriptions, Metis allows much of the interactive and dynamic behavior of the virtual environment to be
defined in the scene graph itself. This is useful for implementing simulation-based VR applications where
the interaction and simulation event response loops need to be decoupled. For example, consider a surgical
simulation application. The user of such a program can control a virtual scalpel with a 3D input device,
which directly controls the three-dimensional position and orientation of a virtual scalpel. Another tracker
attached to the head changes the virtual point of view as the user looks at the scene from different positions.
In the meantime, the elastic deformation of the tissue is simulated continuously using a differential equation
solver.

Unlike other procedural systems such as MR [Shaw92], Metis allows much of this functionality to be
implemented on the viewer side using a declarative method based on the constraint network. Constraint
systems have long been used for maintaining relationships in 2D graphics systems (see [Sannella92] for a
survey). In Metis, constraints are not used to fully program the application behavior, which is defined,
using application specific techniques, in the simulation process, but to reduce the complexity of the
communication between simulator and viewer. By using constraints, application programmers state
declaratively a relation that is to be maintained between values of objects instantiated in the viewer, and are
thus not required to write procedures to maintain the relation themselves on the simulator side. The number
of degrees of freedom under direct simulator control and the bandwidth required for client-server
communication are thus reduced, multiprocessing capabilities are exploited, and the computation load can be
balanced between simulator and viewer processes. Given this particular use of constraints, we have decided
to use one-way local propagation constraints, because they provide a good compromise between generality
and efficiency [VanderZanden96]. Complex update schemes (such as multi-way constraints or physical
simulations) can be implemented on the server side by changing at run time the set of active one-way
constraints based on the system's state.

A constraint in Metis is unidirectional and it is analogous to a function, with one output and a number of
inputs. Every type of constraint does a particular task very well. For example, one constraint calculates
trigonometric functions, another one performs matrix transformation, etc. By linking certain types of
constraints together and attaching their inputs and outputs to variables in the node subsystem, we can build
a constraint network that establishes function dependency relationships between any two variables in the
scene DAG. The Metis constraint solver, which resides in the Metis viewer, evaluates the constraint

network and ensures that values of variables everywhere in the scene conform to the desired dependency
relationships. In general, there may be many interrelated constraints in a given application. While the Metis
application programmer must specify the constraints explicitly, it is left up to Metis constraint solver to
maintain the constraint relationships and determine how and when to evaluate them.

3.3 Metis Constraint Types

To make it possible to program complex virtual environment behaviors using this declarative approach, a
large collection of different types of constraints is necessary There are several categories of constraint types
available in Metis that function very distinctively. A typical Metis application will build a constraint
network containing constraints from the following categories.

• Function Constraint. A function constraint computes its single output value from its input
variable values. For example, an Equality constraint simply duplicates its input value as the output. A
Matrix Transformation constraint, a more complex example, takes its three input variables, for
translation, scale and rotation, respectively, and outputs their product as a homogeneous matrix.

• Channel Constraint. When the simulator program running on the server needs to control some
variables in the scene DAG, it does this through channel constraints. As the only way to affect the
state of the Metis viewer from the simulator, a channel in Metis is actually the abstract of the socket
by which the simulator transfers data to the Metis viewer via the TCP/IP network. Channels, along
with variables in device nodes, are the only external data sources in the whole constraint network.
Every variable in the network is either directly or indirectly dependent on them.

• Notifier Constraint. While channels offer the Metis viewer a way to get input from the simulator,
notifiers report changes in specified variables back to the simulator. By linking variables to a notifier
constraint, the Metis viewer can automatically notify the simulator that some device variable, or an
arbitrary function of that variable, has changed.

While a static Metis scene is defined by a single directed acyclic graph, or scene DAG, the entire constraint
network forms a second directional acyclic graph embedded within the scene DAG. The inputs of this
constraint DAG consist of device variables and channels, while the outputs consists of notifiers and the
node variables that determine the visual appearance of the scene.

Channel Allows the simulator to update variable values.

FunctionNotifier Notifies the simulator whenever the value of a variable is changed.

TimerNotifier Notifies the simulator whenever a timer is alarmed.

Constant Provides a constant value.

Equal Makes values of two variables equal.

SineWave Performs trigonometric computation.

Transform Generates a homogeneous matrix from translation / rotation / scale.

MatInverter Computes the inverse of a homogeneous matrix.

MatMultiplier Computes the product of two homogeneous matrices.

MatRotator Computes the product of a matrix and a quaternion.

MatTranslator Computes the product of a matrix and a vector.

Table 1. Predefined Constraints in Metis

Instead of allowing users to define arbitrary constraint functions at run time, we have taken the alternative
approach of coding a fixed set of primitive constraints and only allowing arbitrary constraint composition at

run-time. The list of constraint functions currently available in Metis is given in Table 1. With this
approach, constraints can be coded so that their instances require only a minimum amount of space at run-
time, since for each constraint the type and parameters need to be chosen only from a limited set of
possibilities. Efficient coding techniques, such as those introduced by Hudson and Smith for their ultra-
lightweight constraints [Hudson96] can thus be employed. The reduced memory overhead and the reduced
communication bandwidth of this solution outweigh in our opinion the reduction in expressiveness with
respect to the use of general user-definable constraints.

3.4 Constraint Evaluation

In order to be efficient enough to support interaction, the Metis constraint solver needs to optimize the way
it evaluates the constraint network. Our algorithm for doing this uses lazy evaluation with a provision for
eager evaluation of notifier constraints. This can significantly reduce the number of constraint evaluations
performed since, unless notifier constraints are involved, evaluation of data from channels and devices is not
necessary until the moment of rendering.

The algorithm requires two boolean flags, candelay and outofdate, for each constraint instance. The candelay
flag will be set to false if and only if the constraint is on a path to a notifier. In this case, immediate
evaluation is required to give the simulator instant feedback. Otherwise, the algorithm simply marks the
constraint out-of-date by setting the outofdate flag to true, indicating this constraint needs to be reevaluated
when its value is needed. Thus, unless the candelay flag is false, the actual computation can be delayed until
it is actually needed, i.e. the time of rendering. At that point, the constraint solver recursively traces back
through the constraint network and performs the evaluation, until it finds a source (i.e. a channel or a
device) or a constraint whose value is up-to-date. The evaluation phase can be further optimized to avoid
unneeded computations when a constraint produces the same value as the one produced by previous
evaluation, as in Hudson's incremental attribute evaluator [Hudson91][Hudson93].

3.5 Constraints vs. Scripts

While Metis uses a declarative constraint network to accommodate the need for building a dynamic virtual
world, some systems deploy procedural methods instead. VRML 2.0, for example, uses events and script
nodes for this purpose. The author of VRML 2.0's virtual world develops short programs in a Java-like
syntax, called scripts, and puts them in special nodes called script nodes. A script is activated and then
executed whenever the node receives an event, fired by a device or other scripts. According to the content
stored in the event, as well as how the script itself is written, the script may fire events to other script
nodes, which handle the event in a similar fashion.

While this procedural approach gives virtual world authors much flexibility to meet their various needs, it
has several disadvantages. Compared to the constraint solution in Metis, a VRML 2.0 browser is more
difficult to develop because a script language interpreter must be implemented. For the same reason, the
virtual world authors are required to learn a programming language. Also, procedural solutions such as
scripts make it much more difficult to apply efficient evaluation algorithms, such as lazy evaluation, in
order to gain a performance improvement. Thus, constraint-based systems such as Metis are very likely to
outperform their procedural counterparts.

4. Scene Examples

4.1 Spatial Input Devices

Three-dimensional devices are represented in Metis as device nodes, whose variable outputs can be linked to
constraint inputs. Whenever a device node's variable changes, such as when a mouse pointer changes its
position, dependent constraints in the constraint network get re-evaluated or marked out of date. In this way,
we can efficiently control many aspects of a node's interactive behavior without directly handling events in
the simulator.

A simple example involves direct manipulation of a geometric object using the spaceball. The spaceball and
the geometric object are represented in Metis by a Spaceball node and a Transform node, respectively. By

linking the Spaceball's rotation variable directly to the Transform's rotation variable using an Equality
constraint, we can use a spaceball to control the orientation of all subnodes in the coordinate system
represented by that Transform node. Similarly, when we link the Spaceball's translation and Transform's
translation together, we can control both its orientation and its position. If we wish to control a translation
variable using the orientation of the spaceball, all we need to do is to replace the Equality constraint
mentioned above with a RotationToTranslation constraint, as in the following diagram:

R

S T

Root

TransformSpaceball

Equality

Transformation
T.scale

S.rotation

S.translation

T.matrix

T.translation

T.rotation

Fig. 4. Constraint Network for a Spaceball

4.2 Coordinate System Transformations

A more sophisticated application of a Metis constraint network is the maintenance of interrelated coordinate
system transformations. Again, we will discuss the example of controlling a geometric object, represented
by a Transform node, with a spaceball. In a fishtank virtual reality system, where the position of the head is
tracked, the virtual camera position must be maintained with respect to a separate “vehicle” coordinate
system, which represents the reference frame of the graphics screen itself in the virtual world. The position
and orientation of the vehicle can be controlled in a manner analogous to driving a vehicle through the
scene. Since the various 3D input devices reside in the same physical space as the screen (they are attached
to the "vehicle"), their tracking data is normally interpreted as being in the vehicle coordinate system. The
scene DAG in Fig. 5 shows how we represent this in Metis by placing a the Spaceball node as a child of
the Transformation node representing the vehicle coordinate system. If we wish to directly manipulate
Transform node T3 using the spaceball, we need to convert the rotation and translation input values of the
Spaceball, which are in vehicle coordinates, into the corresponding translation and rotation values of
Transform node T3 which are in T3's parent coordinate system. We can solve this problem mathematically
by converting each node's local coordinates into global coordinates and setting them to be equal, as
expressed in the following matrix equation:

VS = T1T2T3

where V, S, T1, T2, and T3 are 4x4 homogeneous transformation matrices for the corresponding nodes. We
can determine the transformation matrix, M, to convert the Spaceball's local rotation and translation values
into Transform node T3's local rotation and translation values,

MS = T3

by rewriting the equation as follows:

T2
-1T1

-1VS = T3

M = T2
-1T1

-1V

We can use the Metis constraint system to dynamically calculate the value of M and then use it to
transform the separate rotation and translation components.

R

T2S

T1V

T3

Root

Transform

Transform

Transform

Transform

Spaceball

MatInverter

MatMultiplier

MatTranslator

MatRotator
L

R

L

R

R

L

V.matrix

V.matrix

T
2
.matrix

T
1
.matrix

S.rotation

S.translation

T
3
.rotation

T
3
.translation

Fig. 5. Constraint Network for Maintaining Coordinate System Relationships

There are at least four types of constraints that are required to accomplish this. Among them, we need a
MatInverter constraint, which gives the inverse of the input matrix; a MatMultiplier, which calculates the
product of two matrices, a MatRotator and a MatTranslator, which can transform a quaternion or a vector
respectively by a matrix. Fig. 5 shows how these constraints can be connected to form a constraint path
from the Spaceball to the Transform node that automatically performs this matrix calculation in the Metis
viewer without any processing by the simulator program. Furthermore, since it uses the Metis constraint
solver with lazy evaluation, these calculations will be performed efficiently.

4.3 Three-Dimensional Widgets

In most 2D graphical software, in order to perform 2D operations, such as creating a polygon, moving it
around, changing its color, etc., the user manipulates a 2D device, usually a mouse, to control a 2D cursor,
or 2D widget. Often we would like 3D software to work in a similar fashion, that is, directly manipulating
3D widgets using real 3D devices, in order to make the user interface more intuitive. In Metis, this can be
done by dynamically constructing a constraint network.

Suppose we want to control a three-dimensional cursor with a spaceball. When the cursor is pointing to an
object in the scene, we push and hold down the button to drag it around. After moving it to the desired
position, we release the button. A simple example of how such a three-dimensional cursor widget can be
implemented in Metis is shown in Figures 6 and 7, where C and T are the Transform nodes for the cursor
and object respectively. Fig. 6 shows the constraint network before we click the button. We set
C.translation equal to the S.translation output, and we link two notifiers, one for the spaceball button and
one for the position of the cursor, to let the simulator know the current state of the cursor.

MatTranslator

Notifier

R

S

TV

Root

TransformTransform

Spaceball

C
Transform

C.button CursorButtonNotifier

V.matrix

S.translation

C.translation CursorPositionNotifier

Fig. 6. Constraint Network for a 3D widget: Phase 1

Whenever the button is clicked, the simulator will be notified by the CursorButtonNotifier. It will then
check whether any object is selected by examining the position of the cursor, which is obtained through
CursorPositionNotifier. If an object, say T, is really selected, the simulator will send requests to the viewer
to change the constraint system as in Fig. 7, where T.translation is forced to be equal to C.translation.
Thus, the object represented as T will be dragged by the cursor, which in turn is controlled by the spaceball.

Similarly, when the button is released, the simulator is notified again and it will unlink T.translation and
restore the constraint network to the state depicted in Fig. 6.

C.button CursorButtonNotifier

V.matrix

S.translation

C.translation CursorPositionNotifierT.translation

MatTranslator

Notifier

Equality

Fig. 7. Constraint Network for a 3D widget: Phase 2

5. Implementation

Metis is being developed on an SGI Onyx Reality 2 Workstation. The current version of the viewer and
server API has approximately 17,000 lines of code. Several small demonstration applications such as those
described in Section 4 have already been implemented. Currently Metis uses a Spacetec Spaceball and
Logitek trackers for 3D input and head-tracking and CrystalEyes shutter glasses for stereo viewing. The
viewer front-end is implemented using C++ and the OpenGL graphical library. However, it could be easily
ported to other hardware and graphical libraries, such as PHIGS. The simulator API uses C++ , but other
object-oriented language bindings, e.g. Java and Eiffel, are also planned.

6. Summary and Future Work

The Metis toolkit defines a client/server architecture for building virtual reality applications in which an
application programming interface on the server side communicates via a network with a standalone viewer
program on the client side that handles all immersive display and interactivity. Network bandwidth and
interaction latency are minimized, by use of constraint network on the viewer side that declaratively defines
much of dynamic and interactive behavior of the application, freeing the server-side to devote its resources
to computationally intensive simulations. We believe that this constraint network can work very effectively
for a variety of virtual reality applications, and that the client-server and object-oriented architecture of Metis
gives VR application programmers the ability to construct high-performance VR applications with
computationally intensive simulation. The current implementation of Metis has demonstrated the
usefulness of this approach. Future enhancements planned for Metis include the addition of constant-time
rendering and a time-based constraint system. We also plan to develop more demonstration programs and to
use it to implement a physically-based animation system.

Acknowledgments

We would like to thank the reviewers for their many helpful suggestions. This work was supported by
National Science Foundation Interactive Systems grant number IRI-9503093.

References

[Bell95] Bell G., Parisi A., Pesce M. (1995) The Virtual Reality Modeling Language
Specification, Version 1.0.

[Carlsson93] Carlsson C, Hagsand O (1993) DIVE - A Platform for Multi-User Virtual
Environments. Computers & Graphics 17(6).

[Elliot94] Elliot C, Schechter G, Yeung R, Abi-Ezzi S (1994) TBAG: A High-Level Framework
for Interactive, Animated 3D Graphics Applications. Proc. SIGGRAPH: 421-434.

[Gobbetti93] Gobbetti E, Balaguer JF (1993) VB2: A Framework for Interaction in Synthetic
Worlds. Proc. UIST: 167-178.

[Hudson91] Hudson S (1991) Incremental Attribute Evaluation: A Flexible Algorithm for Lazy
Update. ACM Transactions on Programming Languages and Systems 13(3): 315-341.

[Hudson93] Hudson S (1993) A System for Efficient and Flexible One-Way Constraint Evaluation
in C++. Technical Report GVU-93-15, Graphics, Visualization, and Usability Center,
Georgia Tech.

[Hudson96] Hudson S, Smith I (1996) Ultra-Lightweight Constraints. Proc. UIST: 147-155.

[Robertson89] Robertson GGm Mackinlay JD, Card SK (1989) The Cognitive Coprocessor
Architecture for Interactive User Interfaces. Proc. UIST: 10-18.

[SGI96] Silicon Graphics, Inc. (1996) The Virtual Reality Modeling Language Specification,
Version 2.0.

[Shaw92] Shaw C, Liang J, Green M, Sun Y (1992) The Decoupled Simulation Model for
Virtual Reality Systems. Proc SIGCHI: 321-328.

[Torguet95] Torguet P, Caubet R (1995) VIPER - A Virtual Reality Application Design Platform.
Proc. EG Workshop on Virtual Environments.

[VanderZanden96] Vander Zanden BT, Venckus SA (1996) An Empirical Study of Constraint Usage in
Graphical Applications. Proc. User Interface Software Technology: 137-146.

[West92] West AJ, Howard TLJ, Hubbold RJ, Murta AD, Snowdnon D, Butler DA (1992)
AVIARY - A Generic Virtual Reality Interface for Real Applications. Proc. Virtual
Reality Systems.

Appendix A: A Sample Metis Simulator Program

MeTransform root;
MeTransform vehicle;
MeTransform cursor;
MeTransform object1, object2;
MeCamera camera;
MeShape shape;
MeBox box;
MeAppearance app;
MeMaterial mat;
MeShape curshape;
MeSphere curpointer;
MeSpaceball spaceball;
MeMatTranslator matxlate;

ButtonNotifier curbutnotifier;
CursorNotifier curposnotifier;

root.children <<= vehicle.children <<= camera;
vehicle.children <<= spaceball;
root.children <<= cursor.children <<= curshape.geometry <<= curpointer;
root.children <<= object1;
root.children <<= object2;
object1.children <<= shape;
object2.children <<= shape;
shape.geometry <<= box;
shape.appearance <<= app.material <<= mat;

mat.specular = MeColor (0.7, 0.5, 0.5);
mat.diffuse = MeColor (0.2, 0.2, 0.2);
mat.shininess = 0.9;

vehicle.rotation = MeQuaternion (MeVector (0,0,1), -0.75*PI) *
 MeQuaternion (MeVector (1,0,0), -racos(1.0/rsqrt(3.0)));
vehicle.translation = MeVector (6, 6, 6);

matxlate.matrix <<= vehicle.matrix;
matxlate.translation <<= spaceball.translation;
curbutnotifier.source <<= spaceball.button;
curposnotifier.source <<= cursor.translation <<= matxlate;
curpointer.radius = 0.3f;

setRoot (root);

cout << "Scene creation done." << endl;
cout << endl;

