1

Virtuality Builder I1
On the Topic of 3D
Interaction

Jean-Francis Balaguer
Enrico Gobbetti

Computer Graphics Laboratory
Swiss Federal Institute of Technology, Lausanne

1.1 INTRODUCTION

Most of today's user interfaces for 3D graphics systems still predominantly
use 2D widgets, even though current graphical hardware should make it
possible to create applications in which the user directly manipulates aspects
of three-dimensional synthetic worlds. The difficulties associated with
achieving the key goal of immersion has led the research in virtual
environments to concentrate far more on the development of new input and
display devices than on higher-level techniques for 3D interaction.

It is only recently that interaction with synthetic worlds has tried to go
beyond straightforward interpretation of physical device data (NSF, 1992),
(Balaguer and Mangili, 1992). The design space for 3D interaction tools and
techniques remains mostly unexplored, while being far larger than in
standard 2D applications. Moreover, as stated by Myers, "the only reliable
way to generate quality interfaces is to test prototypes with users and modify
the design based on their comments" (Myers, 1989). The creation of
complex interactive applications is an inherently iterative process that
requires user interface tools, such as toolkits or frameworks.

The lack of experience in 3D interfaces makes it extremely difficult to
design 3D interface toolkits or frameworks. We believe that offering the
possibility to rapidly prototype and test novel interaction techniques should
be the primary goal of such tools. It is therefore more important for these
tools to provide a wide range of interaction components, than to enforce a
particular interface style.

In this paper we present the Virtuality Builder II (VB2) framework developed
at the Swiss Federal Institute of Technology for the construction of 3D
interactive applications. First, we'll give an overview of the design concepts
of VB2. Next, we'll concentrate on how users interact with dynamic models
through direct manipulation, gestures, and virtual tools. More details on the
rendering and modeling clusters are found in (Gobbetti et al., 1993), and
more detailed explanations of the dependency maintenance algorithms, as
well as on their use to implement tools behavior, are found in (Gobbetti,
Balaguer et al., 1993).

1.2 DESIGN CONCEPTS

VB2 is an object-oriented framework designed to allow rapid construction of
applications using a variety of 3D devices and interaction techniques. As
shown in figure 1, VB2 applications are composed of a group of processes
communicating through inter-process communication (/PC). A central
process manages the model of the virtual world, and simulates its evolution
in response to events in the form of /PC messages coming from the
processes that encapsulate asynchronous input devices. Sensory feedback to
the user can by provided by several output devices. Visual feedback is
provided by real-time rendering on graphics workstations, while audio
feedback is provided by MIDI output and playback of prerecorded sounds.

DataGlove O
~a
Spaceball O_>

Application

Figure 1. Overall structure of VB2

In order to obtain animated and interactive behavior, the system has to
update its state in response to changes initiated by sensors attached to
asynchronous input devices such as timers or trackers. The virtual world can
be seen as a network of interrelated objects whose behavior is specified by
the actions taken in response to changes in the objects on which they depend.

To model this kind of behavior, three different aspects have to be
considered:

* the state of the system;

e the long-lived relations that have to be maintained between the different
components of the state;

e the sequencing relations between states.

In VB2, each one of these aspects is modeled using different primitive
elements: active variables are used to store the state of the system, reactions
to maintain object's properties, hierarchical constraints to declaratively
represent long-lived multi-way relations between active variables, and
daemons to react to variable changes for imperatively changing between
different system states. A central state manager is responsible for adding,
removing, and maintaining all active constraints as well as managing the
system time and activating reactions and daemons. This way, imperative and
declarative programming techniques can be freely mixed to model each
aspect of the system with the most appropriate means, much as in the
programming language Kaleidoscope (Freeman-Benson, 1990).

1.2.1 Information modules

All VB2 objects are instances of classes in which dynamically changing
information is defined with active variables related through hierarchical
constraints. Grouping active variables and constraints in classes permits the
definition of information modules that provide levels of abstraction that can
be composed to build more sophisticated behavior.

1.2.2 Active variables

Active variables are the primitive elements used to store the system state. An
active variable maintains its value and keeps track of its state changes. Upon
request, an active variable can also maintain the history of its past values. A
variable's history can be accessed using the variable's local time, which is
incremented at each variable's state change, or using the system's global
time, which is incremented at each atomic constraint operation. This simple

model makes it possible to elegantly express time-dependent behavior by
creating constraints or daemons that refer to past values of active variables.

1.2.3 Reactions and Transactions

In VB2, modifying some active variables of an information module requires
that a transaction on this module has been opened. Transactions are used to
group changes on active variables of a same module. Reactions register
themselves with a set of active variables and are activated at the end of a
transaction. They are used to enforce object invariants as well to maintain
any kind of relation between a set of active variables. The reaction code is
imperative and may result in the opening of new transactions on other
modules as well as in the invalidation of the value of modified variables. All
the operations performed during a transaction are considered as occurring
within the same time slice.

1.2.4 Hierarchical Constraints

Multi-way relations between active variables are specified in VB2 through
hierarchical constraints, introduced in ThingLab (Borning et al., 1987,
1989) for the construction of two-dimensional user interfaces.

Constraint objects are composed of a declarative part, which defines the type
of relation that has to be maintained, together with set of concerned active
variables, and an imperative part, which is a list of possible methods that
could be used to maintain the constraint. Constraint variables are located
either directly or through symbolic paths. A symbolic path is an indirect
reference to a variable described by the sequence of names of the active
variables that have to be traversed to reach the referenced variable.
Constraint methods are general procedures of any complexity that ensure the
satisfaction of the constraint after their execution by computing certain of the
constrained variables as a function of some of the others. A priority level is
associated with each constraint to define the order in which constraints need
to be satisfied in case of conflicts: this way, both required and preferred
constraints can be defined for the same active variable.

A central constraint solver is activated each time a constraint is added to the
graph or removed from it, and each time an active variable changes its value.
Its goal is to maintain symbolic paths, and to decide which constraints
should be satisfied, which method should be used for each constraint, and in
what order these methods should be invoked. All the operations that the
constraint manager performs to address these needs are considered as
occurring at the same time and do not modify the system time.

We based our solver on the DeltaBlue algorithm (Freeman-Benson and
Maloney, 1989), which we extended to perform lazy evaluation and deal
with constraints composed of methods having multiple outputs. Constraints
using symbolic paths are handled by transforming them to fixed reference
constraints that are automatically removed from the network and reconnected
to the correct variables each time a component of a symbolic path changes,
as in the user-interface toolkit Multi-Garnet (Sannella and Borning, 1992).

1.2.5 Daemons

Daemons are the imperative portion of VB2. They are the objects which
permit to define the sequencing between system states. Daemons register
themselves with a set of active variables and are activated each time their
value changes. The action taken by a daemon can be a procedure of any
complexity that may create new objects, perform input/output operations,
change active variables' values, manipulate the constraint graph, or activate
and deactivate other daemons. The execution of a daemon's action is
sequential and each manipulation of the constraint graph advances the global
system time. A priority level is associated which each daemon to define the
activation order.

1.3 INTERACTION TECHNIQUES

In most typical interactive applications, users spend a large part of their time
entering information, and several types of input devices, such as 3D mice
and DataGloves, are used to let them interact with the virtual world. Using
these devices, the user has to provide at high speed a complex flow of
information, and a mapping between the information coming from the device
sensors and the actions in the virtual world has to be devised.

The definition of this mapping is crucial for interactive applications, because
it defines the way users communicate with the computer. Ideally, interactive
3D systems should allow users to interact with synthetic worlds in the same
way they interact with the real world, thus making the interaction task more
natural and reducing training.

1.3.1 Direct manipulation

In most systems, the interaction mapping is hard coded and directly
dependent on the physical structure of the device used (for example, by
associating different actions to the various mouse buttons). This kind of
behavior is obtained in VB2 by attaching constraints directly relating the

sensors' active variables to variables in the dynamic model, as in the example
of figure 2. These constraints define the interaction metaphor, and their
activation and deactivation are triggered by daemons.

("

(

TZJ_

Figure 2. Graphical objects grabbed by user with constraints

Such a direct mapping between the device and the dynamic model is
straightforward for tasks where the relations between the user's motions and
the desired effect in the virtual world is mostly physical, as in the example of
grabbing an object and moving it, but needs to be very carefully thought out
for tasks where user's motions are intended to carry out a meaning. In this
latter case, hardwiring virtual world actions to specific sensor values forces
commitments that risk reducing device expressiveness and can make
applications difficult to use (Fels and Hinton, 1990).

In order to overcome these problems, mediator objects can be interposed
between sensors and models to transform the information accordingly to
interaction metaphors. Two major types of mediators are used in VB2:

* adaptive pattern recognizers, to enhance sensor data with classification
information, hence increasing the expressive power of the input
devices;

e virtual tools, encapsulations of visual appearance and behavior, to
present selective views of models' information and offer the interaction
metaphors to control it.

Information transformation is obtained by propagation through the
mediators' internal constraint networks. Multiple mediators can be
simultaneously active to allow manipulation of several models at the same
time or of a single model with different interaction metaphors.

1.3.2 Hand gestures

VB2 uses a gesture recognition system linked to the DataGlove. The gesture
recognition system has to classify, on the basis of previously seen examples,
movements and configurations of the hand in different categories. Once the
gesture is classified, parametric information for that gesture can be extracted
from the way it was performed, and an action in the virtual world can be
executed. This way, with a single gesture, both categorical and parametric
information can be provided at the same time in a natural way (Rubine,

1991). A visual and an audio feedback on the type of gesture recognized and
on the actions executed are usually provided in VB2 applications to help the
user understand system's behavior.

VB2's gesture recognition is subdivided into two main portions: posture
recognition, and path recognition. The type of gesture chosen is compatible
with Buxton's suggestion (Buxton, 1986)(Buxton, 1990) of using physical
tension as a natural criterion for segmenting primitive interactions: the user,
starting from a relaxed state, begins a primitive interaction by tensing some
muscles and raising its state of attentiveness, performs the interaction, and
then relaxes the muscles. In our case, the beginning of an interaction is
indicated by positioning the hand in a recognizable posture, and the end of
the interaction by relaxing the fingers.

The posture recognition subsystem is continuously running and is
responsible for classifying the user's hand finger configurations. Once a
configuration has been recognized, the hand data is accumulated as long as
the hand remains in the same posture. This data is then passed to the path
recognition subsystem to classify the path. A gesture is therefore defined as
the path of the hand while the hand fingers remain stable in a recognized
posture.

The gesture recognition system is a way to enhance the data coming from the
sensors with classification information and thus provides an augmented
interface to the device. The ability to specify the mapping through examples
makes applications easier to adapt to the preferences of new users, and
therefore makes them simpler to use.

(a) (b) ()

Figure 3a, 3b. Creating a cylinder by gestural input
Figure 3c. Grabbing the cylinder through posture recognition

1.3.3 Virtual tools

The amount of information that can be controlled on a three-dimensional
object and the ways that could be used to control it are enormous. Gestural
input techniques and direct manipulation on the objects themselves offer
only partial solutions to the interaction problem, because these techniques
imply that the user knows what can be manipulated on an object and how to
do it. The system can guide the user to understand a model's behavior and
interaction metaphors by using mediator objects that present a selective view
of the model's information and offer the interaction metaphor to control this
information. We call these objects virtual tools.

Figure 4. Examples of simple virtual tools

VB2's virtual tools are first class objects, like the widgets of UGA (Conner et
al., 1992), that encapsulate a visual appearance and a behavior to control and
display information about application objects.

The visual appearance of a tool must provide information about its behavior
and offer semantic feedback to the user during manipulation. In VB2, the
visual appearance of a tool is described using a modeling hierarchy. In fact,
most of our tools are defined as articulated structures that can be
manipulated using inverse kinematics techniques, as tools can often be
associated with mechanical systems.

The tool's behavior must ensure the consistency between its visual
appearance and the information about the model being manipulated, as well
as allow information editing through a physical metaphor. In VB2, the tool's
behavior is defined as an internal constraint network, while the information
required to perform the manipulation is represented by a set of active
variables.

In VB2, virtual tools are fully part of the synthetic environment. As in the
real world, the user configures its workspace by selecting tools, positioning
and orienting them in space, and binding them to the models he intends to
manipulate. Multiple tools may be attached to a single model in order to

simultaneously manipulate different parts of the model's information, or the
same parts using multiple interaction metaphors.

Instances Constraints and active variables

| Constraint |—)(out_variable)

—___J
N o)

Figure 5. Notation

Information display

Information control

Figure 6. Model and virtual tool

1.3.3.1 Virtual tool protocol

The user declares the desire to manipulate an object with a tool by binding a
model to a tool. When a tool is bound, the user can manipulate the model
using it, until he decides to unbind it.

bind

unbind

Figure 7. Tool's state transitions

When a bind message is sent to a tool, the tool must first determine if it can
manipulate the given model, identifying on the model the set of public active
variables requested to activate its binding constraints. Once the binding
constraints are activated, the model is ready to be manipulated. The binding
constraints being generally bi-directional, the tool is always forced to reflect
the information present in the model even if it is modified by other objects.

When a tool is bound to a model, the user can manipulate the model's
information through a physical metaphor. This iterative process composed of
elementary manipulations is started by the selection of some part of the tool
by the user, resulting in the activation of some constraint like, for example, a
motion control constraint between the 3D cursor and the selected part. User
input motion results in changes to the model's information through
propagation of device sensor values through the tool's constraint network,
and so until the user completes the manipulation, deselecting the tool's part.
Gestural input techniques can be used to initiate and control a tool's
manipulations, for example by associating selection and deselection
operations to specific hand postures.

The unbind message is sent to a tool to detach it from the object it controls.
The effect is to deactivate the binding constraints in order to suppress
dependencies between the active variables of the tool and model. Once the
model is unbound, further manipulation of the tool will have no effect on the
model.

(a). (b) ©) (d)

Figure 8a. Model before manipulation
Figure 8b. A scale tool is made visible and bound to the model
Figure 8c. The model is manipulated via the scale tool
Figure 8d. The scale tool is unbound and made invisible

1.3.3.2 Composition of virtual tools

Since virtual tools are first class dynamic objects in VB2, they can be
assembled into more complex tools much in the same way as simple tools
are built on top of a modeling hierarchy. The reuse of abstractions provided
by this solution is far more important than the more obvious reuse of code.

An example of a composite tool is Dr. Map, which is a virtual tool used to
edit the texture mapping function of a model by controlling the parallel
projection of an image on the surface of the manipulated model. The tool is

10

defined as a plane on top of which is mapped the texture and a small arrow
icon displays the direction of projection. In order to compute the mapping
function to be applied to the model, the tool needs to know the texture to be
used, the position and orientation of the model in space, and the position and
orientation of the tool in space. The textured plane represents the image
being mapped, and a Dr. Plane tool allows manipulation of the plane in
order to change the aspect ratio of the texture's image. Pressing the grabber
button allows the user to position and orient the tool in the 3D space, hence
specifying the direction and origin of the texture projection.

(Dr MAP)
’V ‘SHAPE_3D \ 'Dr PLANE
SHAPE 3D (parent)

texture (texture)(—)E(—) texture
\ fl global transf) (global_transf)

. / ;I c_mapping PLANE G. /
mapping (Cmapping) | s(wiah) (widh)

L (gt) (height)
global_transf) (shape_transf }——1 \ %

\§

Figure 9. Dr. Map's simplified constraint network.

(2) (b)

Figure 10a. View of Dr. Plane
Figure 10b. View of Dr. Map

Similarly, the material editing tool is built out of color tools and the light
tool is built out of a cone tool. By reusing other tools we enforce consistency
of the interface over all the system, allowing users to perceive rapidly the

11

actions they can perform. Building tools by composing the behavior and
appearance of simpler objects is relatively easy in VB2: for example, Dr.
Map tool was built and tested by one person in about a couple of hours. The
fast prototyping abilities of the system are very important for a framework
aimed at experimenting with 3D interaction.

Figure 13 Synthetic environment

1.4. CONCLUSIONS AND FURTHER WORK

We have presented the VB2 framework for the construction of three-
dimensional interactive applications. In VB2, multiple devices can be used to
interact with the synthetic world through various interaction paradigms. VB2
is implemented in the object oriented language Eiffel (Meyer, 1992) on
Silicon Graphics workstations, and is currently composed of over 300
classes.

12

Interaction techniques range from direct manipulation to gestural input and
three-dimensional virtual tools. Adaptive pattern recognition is used to
increase input device expressiveness by enhancing sensor data with
classification information. Tools, which are encapsulations of visual
appearance and behavior, present a selective view of the manipulated
model's information and offer the interaction metaphor to control it. Since
tools are first class objects, they can be assembled into more complex tools.
much in the same way simple tools are built on top of a modeling hierarchy.
New three-dimensional tools are easily added to the system, and their
number is rapidly growing.

Hierarchical constraints, active variables, reactions and daemons are used to
uniformly represent system state and behavior. The use of an incremental
constraint solver based on an enhancement of DeltaBlue makes it possible to
run, at interactive speeds, complex applications composed of thousands of
variables and constraints. The redraw time of the hardware is still the
limiting factor on interaction speed.

We believe that VB2 provides a good platform for prototyping and
integrating a large variety of three-dimensional interaction metaphors to
control all the different aspects of synthetic environments. We are currently
extending the framework with time-varying constraints and tools for
animation control in order to build a virtual reality animation system.

ACKNOWLEDGMENTS

We would like to thank Michel Gangnet, Geoff Wyvill and Russell Turner
for reviewing this paper, and Angelo Mangili for his participation to the
implementation and design of an early version of VB2.

BIBLIOGRAPHY

Balaguer JF, Mangili A (1992) Virtual Environments. In Thalmann D,
Magnenat-Thalmann N (Editors) New Trends in Animation and
Visualization, John Wiley and Sons: 91-105.

Borning A, Duisberg R, Freeman-Benson B, Kramer A, Woolf M (1987)
Constraint Hierarchies, Proc. OOPSLA: 48-60.

Buxton WAS (1986) Chunking and Phrasing and the Design of Human-
Computer Dialogues. In Information Processing. North Holland.
Elsevier Science Publishers.

Buxton WAS (1990) A Three-state model of Graphical Input. In Diaper D,
Gilmore D, Cockton G, Shackel B (Editors) Human-Computer

13

Interaction: Interact, Proceedings of the IFIP Third International
Conference on Human-Computer Interaction, North-Holland, Oxford.

Conner DB, Snibbe SS, Herndon KP, Robbins DC, Zeleznik RC, Van Dam
A (1992) Three-Dimensional Widgets. SIGGRAPH Symposium on
Interactive Graphics: 183-188.

Fels SS, Hinton GE (1990) Building Adaptive Interfaces with Neural
Networks: The Glove-Talk Pilot Study. In Diaper D, Gilmore D,
Cockton G, Shackel B (Editors) Human-Computer Interaction:
Interact, Proceedings of the IFIP Third International Conference on
Human-Computer Interaction, North-Holland, Oxford: 683-687.

Freeman-Benson BM (1990) Kaleidoscope: Mixing Objects, Constraints,
and Imperative Programming, Proc. ECOOP/OOPSLA: 77-87.

Freeman-Benson BM, Maloney A (1989) The DeltaBlue Algorithm: An
Incremental Constraint Hierarchy Solver. In Proceedings of the Eighth
Annual IEEE International Phoenix Conference on Computers and
Communications, March.

Gobbetti E, Balaguer JF, Thalmann D, (1993) VB2: A Framework for
Interaction in Synthetic Worlds. Submitted to SIGGRAPH.

Gobbetti E, Balaguer JF, Mangili A, Turner R (1993) Building an Interactive
3D Animation System. In Meyer B, Nerson JM (Editors) Object-
Oriented Applications, Prentice-Hall.

Meyer B (1992) Eiffel: The Language. Prentice-Hall.

Myers BA (1989) User-Interface Tools: Introduction and Survey. IEEE
Software. 6(1): 15-23.

NSF (1992), Research Directions in Virtual Environments, NSF Invitational
Workshop, UNC at Chapel Hill, March 23-24: 154-177.

Rubine DH (1991), The Automatic Recognition of Gestures, PhD Thesis,
CMU-CS-91-292, Carnegie Mellon University.

Sannella M, Borning A (1992) Multi-Garnet: Integrating Multi-way
Constraints with Garnet, TR-92-07-01, Dept. of Computer Science,
University of Washington.

14

