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Abstract

The simulation of Heavy Liquid Metal Vacuum com-

plex interfaces with Starccm+ from CD-Adapco using

the Volume of Fluid (VOF) framework requires spe-

ci�c care. In a �rst part, we describe how we managed

to deal with the high density ratio and the interface

smearing in the context of three di�erent windowless

spallation targets. The interface smearing is controlled

with a non-conservative condensation term. The sec-

ond part is dedicated to the individuation of the rele-

vant physical process leading to the interface sharpen-

ing and its inclusion in the set of constitutive equations.

The methodology used has been to re-derive the VOF

equations for momentum and phase transport from the

constitutive phase equations. Two candidates for sharp-

ening are individuated: baro-di�usion and surface ten-

sion e�ects. Only baro-di�usion is however likely to

have the required strength in the foreseen applications.

1 Introduction

This document resumes the activity performed at
CRS4 in the framework of the THINS project re-
garding CFD simulations based on the Volume of
Fluid (VoF) implementation in Starccm+ from CD-
Adapco [1]. The applications primarily focus on
the design of windowless spallation targets but also
consider pool-like primary coolant loops of Acceler-
ator Driven Systems (ADS). The heavy phase is a

heavy liquid metal, in practice Lead-Bismuth Eu-
tectic LBE. The light phase is either near vacuum
for the spallation targets, or a neutral gas (Argon)
at about atmospheric pressure. The point of view is
that of a end-user of Starccm+, the primary objec-
tive being to manage to perform sound and infor-
mative simulations. The secondary objective, much
more ambitious, is to enforce the coherence of the
implementation with the general physico-numerical
framework.

To realize the �rst objective, we have to recog-
nize the limits of the VOF implementation in Star-
ccm+. We must stress the fact that the software
has about two new releases each year usually as-
sociated with improvement in robustness and lia-
bility, and with new features. In addition, we, the
end-users, hopefully improve our capacity to deal
with the software. This is to say that the limit
of the software as seen by the end user is contin-
uously changing in time due to software and user
evolution. These limit have been investigated be-
fore and at the beginning of the project (Mars 2010)
and may be partially obsolete at report time and
completely obsolete a few month later.

The Starccm+ VOF implementation is globally
very robust and practical. It works very satisfy-
ingly in many cases, but we have been faced with
three second order drawbacks. First, we could not
stabilise any VOF simulation with a density ratio
largely greater than one thousand. Second, a par-
asite velocity �elds spontaneously develops in the
light phase just above a stagnant zone of the heavy
phase. Third, for �ows combining both interface
shear and oscillations, un-physical smearing of the
interface may occur.
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In the �rst part of the document, we describe
how we have faced these drawbacks in practical ap-
plications. The methodology is quite engineeristic
and pragmatic. It is not entirely satisfying from
the scienti�c point of view.
The second part of the document is motivated

by the following consideration: it is possible that
the VOF limitations are not only due to di�culties
in the numerical implementation, but also comes
from defects in the constitutive equations at the
basis of the VOF algorithm. These equations con-
sider a priori the phases as immiscible while they
cannot always be in a numerical simulation. Think
for example of a case in which a small volume of
gas is entrapped in a liquid and the volume is small
enough to �ll only partially one computational cell.
It could be thus not necessarily a bad idea to in-
quire if we could construct the basis equations for
two phases that can mix but tend to separate. The
second part of the document is dedicated to such a
construction.
Both parts resume a series of much more detailed

documents shortly described in the third part of the
document.

2 Pragmatic implementation

For the practical implementation of simulation of
windowless targets, we have been faced with the
following drawbacks:

1. Density ratio Failure to stabilize a simulation
with a density ratio somewhat greater than one
thousand.

2. Stagnation �ow Parasite �ow in the light
phase just above a stagnant region of heavy
phase.

3. Interface smearing Combination of oscilla-
tory motion with shear stress may lead to un-
physical interface smearing.

2.1 VOF issues

We describe hereafter how we have dealt with the
VOF issues.

2.1.1 Density ratio

The windowless targets were expected to operate
under near vacuum condition in the EUROTRANS

framework and under very low pressure, a few Pas-
cal, in the ESS framework. For application to the
MYRRHA primary coolant loop, the cover gas,
possibly Argon, is foreseen slightly below atmo-
spheric pressure. In all cases, the foreseen coolant
is LBE with a density above ten thousand. And
in all cases, the density of the light phase is order
one or quite below. So, the density ratio is criti-
cally out of the range of stability of VOF simulation
that we found out to be slightly over one thousand,
typical of the water/atmospheric air density ratio.
the density ratio issue has been by-passed by ei-
ther lowering the LBE density by a factor of ten
or increasing the light phase density to about ten.
As our primary interest is in the LBE �ow, and to
have the correct pressure gradient there, the pre-
ferred method has been to modify the light phase
density.
In the case of very low pressure light phase, the

treatment of the light phase as incompressible be-
comes very questionable. We believe that the error
introduced by the wrong light phase incompress-
ibility is much more critical than the error induced
by the increase of density, even by several orders of
magnitude. What is important is that the light
phase remains light in confront with the heavy
phase. Willingly, a ratio of one hundred should
be far enough to capture the main relevant (heavy
phase) �ow features. We have however usually kept
the one thousand ratio.

2.1.2 Stagnation �ow

Parasite �ows develop in the light phase just above
a stagnant region of heavy phase. We suspect that
these parasite �ows are a precursor of the com-
plete �ow instability encountered for density ratios
higher than one thousand.
As we have already renounced to have meaning-

ful information on the light phase behaviour with
the density ratio issue, no speci�c counter-measure
is taken. The parasite �ows however may alter the
quality of some illustrative plots.

2.1.3 Interface smearing

This issue is the most serious of the list. It is
not commonly encountered. In e�ect, the star-
ccm+ VOF implementation is very resistant to
�ows showing a strong shear at the interface. It
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also propagates very well a liquid front. We have
encountered interface smearing only in �ows sub-
ject to oscillatory motion, thus involving interface
acceleration, together with shear stress. The prob-
lem has been encountered twice in the same simu-
lation. In one region of relatively slow motion the
surface oscillation was combined with a convergent
�ow on the surface. The other region was stressed
combining a pulsed behaviour with a swirling down-
coming free-surface. The smearing of the interface
could be put in evidence by plotting some trans-
verse section of the concentration and by making
a double localization of the surface using two dif-
ferent iso-surface of the volume fraction, one with
value 0.1 and the other with value 0.9. In both
cases, the interface smearing was due to the fact
that the portion of stressed smearing interface was
trapped in loco and not evacuated by convection
out of the simulation domain.
The issue has been solved by implementing a

source term, which is in fact a sink term, in the
light phase volume fraction transport equation. As
already mentioned, we have renounced to any pre-
tension on the physical relevance of the light phase
�ow. Therefore, such a source term is only altering
something already wrong. If the alteration reduces
the negative impact of the light phase on the heavy
one, we are happy with it.
The sink term is localized at the interface. As

the interface most simple localisation is the region
where the product of the volume fraction is non
zero, the sink term has been made proportional
to this product. The coe�cient of proportional-
ity, which is the inverse of a characteristic time has
been set so as to induce a small current towards
the interface, whose speed is one order less than
the characteristic speed of the heavy phase when
the interface is reasonably sharp. The advantage
of such a sink term is that it scales proportionally
to the interface width and thus cancels in theory
when the interface is sharp.
Several other terms have been tested, increasing

the polynomial or the derivation order, but always
leading to a lowered e�ciency. The more common
defect being not allowing to correctly clean the light
phase from small heavy phase residuals. In the end,
the simplest term resulted to be the better one.
The introduction of this sink term allowed us to

investigate VOF �ows with a reasonable con�dence
when the heavy phase is in a closed loop.

The introduction of the sink term is not likely to
have a good or neutral e�ect of the heavy phase �ow
accuracy in all con�gurations. In e�ect, it requires
that the consumed light phase is replaced naturally
by fresh new light phase. This is possible only when
all the connected parts of the light phase are in
contact with a boundary of the simulation domain
capable to deliver the new fresh light phase. A
careful examination must be performed on a case
by case basis.

The overall intensity of the sink term is not
known a priori and is likely to evolve in time. A
classical inlet boundary condition is therefore not
suited in this case. A pressure outlet used to give
at least a code warning and numerical counter-
measure when measuring a tentative inlet �ow.
Pressure outlets also tend to be unstable when they
are very large. One possible solution is to add a
light phase source term close to the outlet pressure
boundary with an intensity quite larger than the
sink term (it can be adjusted dynamically). The
other solution we could �nd, which resulted very
convenient, is to set a stagnation inlet pressure.
This is a type of boundary condition thought for
compressible �ows but it works perfectly for our
purpose. The stagnation inlet is complemented
with a relatively small sink term so that the con-
dition is in fact an inlet condition independently of
the size of the interface and even if the contracting
source term is turned o�.

3 Other simulation issues

Running a simulation in the VOF framework be-
comes routine only after a long history of fail-
ures. We present here the main procedures we
have been progressively led to undergo such simula-
tions. Knowing that VOF simulations are necessar-
ily transient even if one expect a �nal stationary be-
haviour, we consider now two critical features: the
initial condition and the reduction of the transient
behaviour to the nominal condition behaviour.

3.1 Initial conditions

Contrarily to many single phase simulations, VOF
simulations depend largely on the initial condition,
even for asymptotic large times. This is particu-
larly true for our applications in which we consider
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a closed loop of LBE. The initial LBE mass will be
conserved during the simulation, unless a speci�c
source term is added.
As soon as the simulation is not completely triv-

ial, the asymptotic position of LBE is not neces-
sarily known and the asymptotic velocity �eld be-
comes quite articulated. We have found more easy
to begin the simulation with a stagnant �ow. The
�ow is then progressively accelerated to reach the
asymptotic pattern. The initial stagnant con�gura-
tion need not be stable. It can be set so as to reduce
the transient time needed to reach the asymptotic
behaviour.
What is very critical is the initial pressure set-

ting. The initial pressure �eld is generally not
known, unless the initial con�guration is stable.
Mainly when the initial interface is everywhere at
the same level and at rest, then the initial pres-
sure �eld is the static pressure �eld. Even in this
case, there are slight but noticeable di�erences be-
tween the theoretical initial pressure �eld and the
discretized pressure �eld. If this di�erence is loaded
on the light phase at the interface, then the simu-
lation diverges on the spot.
The solution we have found out is to start the

simulation at rest but not necessarily in static equi-
librium, using at start some extremely small time
steps with a relatively large number of iterations.
The pressure has thus many iteration to settle and
enforce the incompressibility constraint but the ac-
celeration induced on the �ow is integrated on a
very small time laps and even if the acceleration
is huge, the increase in velocity is small. With a
large enough number of iteration for the �rst time
steps, the pressure has settled before that the �ow
has been disrupted and the simulation diverged.

3.2 Transient acceleration

According to the CFL condition, the limitation on
the time step is very stringent. As we start from the
�ow at rest, the route to the asymptotic nominal
condition takes some physical time. Note that for
many applications, the nominal condition is not the
aim of the simulation but is the start of the interest-
ing part of the simulation. This is particularly true
when investigating incidental or accidental scenar-
ios as well as for example a controlled shut-down
procedure. The fact is that we have usually not
the necessary material time to reach the nominal

condition respecting the rules of the art. The prob-
lem is not solvable through a huge increase of com-
putational power, because the simulations are run
in parallel on several CPUs and the speed up de-
creases very fast under a certain number of compu-
tational cells by CPU. Here, the small time step has
been the main controlling parameter. To limit the
computational time, it is therefore necessary to in-
crease largely the time step and reduce at the maxi-
mum the number of iteration by time-step. Making
exception with the very �rst time steps. The time
step increase is limited only by the stability of the
simulation. However, two particular damages oc-
cur. First, the interface is smeared. Second, the
overall heavy phase is no more perfectly conserved.
The interface smearing can be controlled by the the
sink term previously described. The mass loss has
to be dealt with, specially in pool of loop con�gu-
ration. Otherwise, the mass loss is compensated by
the inlet outlet balance. What we have done has
been to monitor the LBE total mass and inserted a
source term in a region remote from the free-surface
proportional to the deviation of the total mass. The
source term is normally very small because the to-
tal mass varies very little. The characteristic time
of return is problem dependant and could be set
about one second. It is also very convenient to use
to adapt the total mass to the required behaviour
when the "right" value is not known precisely. This
has been particularly true when working on an al-
ternative windowless target for XT-ADS.

4 VOF extension

All the procedures presented allowed to realize
many VOF simulations giving useful insight on the
heavy phase �ow. The main limitation is that al-
most nothing can be said on the light phase �ow.
However, we would be interested also in the light
phase �ow. Of particular relevance would be to
represent evaporation processes. Even in absence
of those, a control of the cover gas temperature
would be welcome. This is clearly impossible using
the former methodology because the light phase is
not conserved.

Writing a conservative sharpening procedure re-
sults however much more delicate than just adding
a sink term. To be conservative, the corrective
terms are likely to be the divergence of some �ux
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cancelling where the �uid is completely separated.
In turn, the end-user has no access to add arbitrary
�uxes in the Starccm+ equations. Only source
term can be added, but a �ux divergence treated as
a source terms does not obey any discrete form of
the divergence theorem due to a larger method of
discretisation. A �ux divergence is treated numeri-
cally in a very speci�c way. And so, it is impossible
for a end-user to implement a conservative sharp-
ening method. An alternative is to convince the
CD-Adapco developers to give access to �ux diver-
gence terms or make themselves the implementa-
tion. It is necessary to provide them the �ux to
be implemented, their utility and their theoretical
justi�cation. What we do in the following is thus
the theoretical derivation of the necessary �ux to
be implemented.
The methodology has been the following:

• Postulate single phase equations consistent
with the global momentum equation.

• Identify the e�ects of the forces applied to the
single phase equations.

• Select the forces likely to have a sharpening
e�ect.

• Relate the forces to the corrective �ux in the
phase transport equations.

4.1 Notations

We are dealing with two phases, possibly mixing.
One is named A and the second B. While not nec-
essary we will think of A as the heavy phase. The
physical quantities associated with A will have sub-
script a except the volume fraction which will be
exactly a. Same thing for B. The global physical
quantities will not have any subscript. The princi-
pal notations/de�nitions are:

• Density: ρ = aρa + bρb.

• Mass velocity: u = ρ−1(aρaua + bρbub).

• Volume velocity: v = aua + bub.

• Shared pressure: P .

• Extra-stress tensor: τ .

• Gravity acceleration: g.

• Generic force: F = Fa + Fb.

• Generic residual force: F0 = ρ−1(bρbFa −
aρaFb)

• Correction �ux: φ = −ab(ub − ua).

4.2 Constraints

The physical constraints are the mass conservation
of both phases , the incompressibility of the phases,
and the obligation for the mixture to �ll the space.

• ρa and ρb are constant in space and time.

• ∂taρa +∇ · aρaua = 0.

• ∂tbρb +∇ · bρbub = 0.

• a+ b = 1.

The global incompressibility of the mixture is easily
deduced, but applies to the volume velocity:

∇ · v = 0.

The "safety" constraint is to not alter the global
momentum equation as given by Landau. We
slightly relax this constraint in the sense that the
surface tension force can be somewhat generalized
to a generic force.

∂tρu+∇ · ρuu+∇P +∇ · τ = ρg + F

4.3 Phase momentum equations

We postulate the general form of conserved mate-
rial properties Xa of phase A from consideration on
an arbitrary �xed control volume, as:

∂taρaXa +∇ · aρauXa +∇ · Φ = Ia + Ṡa

where

• aρauXa is the convection �ux, the approxi-
mated main �ux based on the global mass ve-
locity.

• Φ is the corrective �ux to equilibrate the bal-
ance.

• Ia is the term of exchange of aρaXa with the
other phase

• Ṡa is the source of aρaXa.
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The general equation is then specialized by tak-
ing Xa = ua:

∂taρaua +∇ · aρauua +∇ · a[P + P0(t)I + τ ]
= Ia + aρag + F ′a

In the incompressible framework, the pressure is
de�ned up to a constant. However, this constant is
only constant in space but not necessarily in time.
We will need to precise this time dependence, mo-
tivating the appearance of P0.
To separate the e�ects, we extract from the cor-

rection �ux the terms depending on ∇a and group
them the with the last term F ′a to give Fa.

∂taρaua+∇·aρauua+a∇P+a∇·τ = Ia+aρag+Fa

and for phase B:

∂tbρbub+∇·bρbuub+b∇P +b∇·τ = Ib+bρbg+Fb.

These equations clearly sum to give back the global
momentum equation on the condition that Ia+Ib =
0 normally satis�ed for exchange terms.

4.4 Phase potential terms

There are two terms in the phase momentum equa-
tion that can be interpreted in terms forces derived
from a potential: aρag and a∇P . We would like a
third one, namely Fa to share the same property.
The potentials from which a force is derived are

found by solving ∂tEa = −
�

Ω
Faua where the do-

main of integration Ω is in fact the periodic cube
to allow part integration without boundary terms.
The equation can be solved by using the phase
transport equation. The formula is based on the hy-
pothesis that Newton'law can be applied and that
for an isolated phase driven only by this potential,
the total energy of the system is preserved, and
thus the time variation of the kinetic energy plus
the potential energy is zero.
A hidden hypothesis is the additivity of New-

ton's law to an arbitrary number of particles. The
acceleration of a group of particles is not in general
equal to the acceleration of the single particles. A
noticeable exception is the gravity force which ac-
celerates the particles independently of their mass.
With the incompressibility constraint, the separate
phase treatment and the constant phase density, we
place ourself in a similar speci�c case.

4.4.1 Gravity potential

The gravity potential of phase A associated to aρag
is obviously found to be Ea =

�
Ω a|g|z where z is

the vertical axis.

4.4.2 Pressure potential

The time varying pressure potential associated
to a∇P , is found to be Ea =

�
Ω
a[P + P0(t)]

with the time dependant part de�ned as P0(t) =
−(

�
Ω
a)−1

� t(
�

Ω
a∂tP ).

4.4.3 Di�usion potential

A generic force pair in the phase momentum equa-
tion of the form Fa = F∇a and Fb = F∇b identi-
cally cancels in the global momentum equation. We
have however included the term −P∇a in Fa. For
a perfect gas, this term is equivalent to −(nkT )∇a,
with the advantage of this last term to have (nkT )
constant for an isothermal �ow with a volumet-
ric number density n constant. For such a force,
clearly associated to the phase di�usion, the po-
tential would be Ea =

�
Ω

(nkT )alna.

4.4.4 Surface tension potential

Taking E =
�

Ω
σ|∇a|, split as Ea =

�
Ω
σb|∇a| and

Eb =
�

Ω
σa|∇b|, we obtain the Landau surface ten-

sion force F = −σ(∇ · n)∇a, with the normal n
de�ned as n = |∇a|−1∇a however with the phase
forces

Fa = σ[∇(ab∇ · n)− b∇ · n∇a]

Fb = σ[−∇(ab∇ · n)− a∇ · n∇a]

4.4.5 Cahn-Hilliard potential

With the Cann-Hilliard potential E =�
Ω

3σ(δ|∇a|2 + δ−1a2b2) and charging all
the potential on the heavy phase, we have
Fa = 6σa∇[δ∆a− δ−1ab(b− a)].

4.4.6 Surface tension potential (missing part)

The surface tension potential can be completed
with a contracting part E =

�
Ω
σδ−1ab, which is

identically zero in the derivation from Landau in



4 VOF extension 7

which the phases are completely separated. Split-
ting the energy as Ea =

�
Ω
σ
3δab(1 + b) and Eb =�

Ω
σ
3δab(1 + a), we have:

Fa = σδ−1ab∇a.

4.5 Exchange term

The exchange term is usually written in symmet-
rical form and is given for phase A as: Ia =
Rab(ub − ua). This is the simplest consistent for-
mula. The resistance coe�cient R depends mainly
on the phases mass fraction and on some reduced
frequency of collision. The exchange term can be
build by looking at the momentum exchanged dur-
ing a binary collision at the phases mean veloc-
ity and at the collision frequency. The modelling
performed here is rather approximative. The coef-
�cient R is usually taken independent of the vol-
ume fraction and is built on the assumption that
the concentration gradient is small. It is therefore
perfectly possible to assume a saturation e�ect for
strong concentration gradients and take R in a form
such as R = R0(1+ |δ∇a|2). Such a form will prove
to be convenient later on.
A lot of work can be done on R, leading to quite

di�erent expressions. If we look at the Eulerian
two-phase �ows, in the turbulent regime R becomes
proportional to |ua − ub|. A lot of work can be
thus done on R, leading to quite di�erent expres-
sions, according to the case under study or to a
more complex expression if we manage to capture
together the di�erent local con�gurations.

4.6 Dynamic equilibrium assumption

4.6.1 Force splitting

Considering a force pair, we want to split each term
in one part contributing to the acceleration of the
whole mixture and one residual part. We have al-
ready two extreme situations: the gravity which en-
tirely contributes to the global mixture movement
from one side, and the di�usion force having no
e�ect on the mixture acceleration, from the other
side. The splitting is the following:

Fa =
aρa
ρ
F + F0

Fb =
bρb
ρ
F − F0

giving the residual part F0 as:

F0 =
bρb
F a
− aρa

ρ
Fb.

We have:

• Gravity: F0 = 0

• Pressure: F0 = ab(ρa−ρb)
ρ ∇P

• Di�usion: F0 = −(nkT )∇a

• Surface tension: F0 = ab
ρ ∇(ρ∇ · n)

• Cahn-Hilliard: F0 = 6σab∇[δ∆a−δ−1ab(b−
a)]

• Surface tension missing: F0 = σδ−1ab∇a.

4.6.2 Equilibrium assumption

Our equilibrium assumption is the sum of the force
residual part F0 of phase A is equal to the momen-
tum exchange received by phase B. That is:

F0 = Ib.

4.7 Phase transport equation

The equilibrium assumption completely determines
the correction �ux in the phase transport equation.
In e�ect, the phase A transport equation written
in term of the mass velocity is:

∂taρa +∇ · aρau+∇ · ρaρb
ρ

φ = 0

with φ the correction �ux de�ned as φ = −ab(ub −
ua).
In terms of the volume velocity, the equation re-

duces to:

∂ta+∇ · av +∇ · φ = 0,

justifying the name given to φ.
As Ib = Rφ, from the equilibrium assumption we

have:
φ = R−1F0

where F0 stands for all the residual forces one wants
to consider.
Two forces are of particular interest for the VOF

simulations. The �rst is the pressure force, respon-
sible for the baro-di�usion. The second is the sur-
face tension contracting part (the missing part).
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The baro-di�usion is contracting only when the
pressure gradient and the density gradient have a
positive scalar product. It stabilizes a strati�ed
�ow when the heavy phase is under the light phase.
The contracting part of the surface tension is more
likely to have small scale e�ects, working locally at
gathering low volume fractions in small bubbles or
droplets.

In the main foreseen applications, the mesh scale
is order a few centimetres, and surface tension di-
rect e�ects should be discarded. For an applica-
tion with the mesh cell of order one millimetre, the
surface tension contracting term is likely to play a
decisive role in the phase transport equation. The
di�usive term, describing a �ux towards the regions
of greater curvature, tangentially to the interface,
can still be neglected. If the contracting term is
used, however, the gradient correction of the resis-
tance coe�cient R must also be used. Otherwise,
as the phase force becomes unbounded when the in-
terface becomes very thin. the drift velocity ub−ua
would also become unbounded.

The di�usive force has always an intensity higher
than the other forces when the concentration be-
comes very low. To allow a complete separation of
the phase (even with a non-zero width), it is there-
fore compulsory to avoid the corresponding �ux in
the transport equation. This is already clear in the
present VOF implementation.

4.8 Incompressibility constraint

The incompressibility constraint ∇ · v = 0 applies
on the volume fraction velocity. As the momentum
equation is written in terms of the mass fraction
velocity, we must enforce the consistency of the sys-
tem by writing also the incompressibility constraint
in terms of the mass velocity. Simple algebraic ma-
nipulation gives:

u = v +
ρa − ρb

ρ
ab(ua − ub) =

ρa − ρb
ρ

φ

so that the equilibrium assumption allows to write
the incompressibility constraint under the form:

∇ · u = ∇ · ρa − ρb
Rρ

φ,

this last equation completing our construction.

4.9 Equations for large pool reactors

For large pool reactors, such as MYRRHA, the fore-
seen discretisation will be in the centimetre range,
thus not allowing to capture surface tension e�ects.
The system of equations to be solve resumes to:

∂tρu + ∇ · ρuu+∇P +∇ · τ = ρg

∂taρa + ∇ · aρau+∇ · ρaρb(ρa − ρb)
Rρ2

ab∇P = 0

∇ · u = ∇ · (ρa − ρb)2

Rρ2
ab∇P

It is equivalent to a system of 5 scalar equations
in the fundamental variable set (u, a, P ). The re-
maining variables b and ρ are found by elementary
algebraic relations.
There are two critical di�erences with the VOF

equations: �rst a correction �ux in the phase trans-
port equation and second, a correction in the ve-
locity constraint. As these corrections are strongly
related, both must be considered otherwise the con-
sistency is lost. However, as stated before, there is
a large space for modelling the coe�cient R, also
with the objective to stabilize the behaviour of the
equations.

5 Associated documentation

The material presented here is extracted from a
series of CRS4 internal reports which are shortly
resumed here.
In [2], we study the free-fall version of the

MYRRHA spallation target. Simulations are 2D
or with a small slice in the third direction. The
non-conservative sharpening algorithm is �rst used
here. A free fall �ow is obtained, but it has been
impossible to manage to stabilize the reattachment
region. In absence of reattachment region, that is
when the LBE jet directly exits through a pressure
boundary, the Starccm+ (version 4) works perfectly
by itself. It was concluded that the reattachment
region could be investigated only with full 3D sim-
ulations.
In [3], we evaluate a CRS4 windowless spalla-

tion target design occupying three fuel assemblies
and inspired from the channel target developed for
PDS-XADS. It is here that we critically encounter
the limitations of the starccm+ algorithm. The em-
phasis is however on the consistency of the design.
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In [4], we resume the �rst two documents and
try to rationalize on the methodology used or to
be used. This document is the main source for the
�rst part of the current document.
In [5], we describe a proposal for a windowless

spallation target for the future European Spalla-
tion Source (ESS). It is a direct application of the
knowledge just gained on the VOF free-surface sim-
ulations.
In [6], we make an attempt to develop a compre-

hensive representation of two components incom-
pressible Newtonian �ows. It has been the source of
the second part of the document but is much more
exhaustive, mainly with regards to completely sep-
arated �ows and with surface tension related fea-
tures.

6 Conclusion

The VOF algorithm in Starccm+ allows to treat
directly many practical situations. The range of
applications can be somewhat extended by using
the methodology described in the �rst part of the
document, with direct access to the end-user.
To go further on the range of applications, we

think that part of the problem lies in the consti-
tutive equations at the bases of the VOF formula-
tion. In this paper, we have proposed an extension
of these constitutive equations to �uids that are
allowed to partially mix but spontaneously tend to
separate under a pressure gradient. We believe this
extension to be consistent and potentially useful.
There is a great distance between a mathematical
formulation and its sound numerical implementa-
tion. We hope that the material presented here
will convince the developers to undertake such an
implementation.

7 References

The main theoretical references are found in [6]
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