Principi della spettroscopia nel vicino infrarosso e applicazioni per studi diagnostici e funzionali

Sergio Fantini

Department of Biomedical Engineering Tufts University, Medford, Massachusetts, USA

Spettroscopia nel vicino infrarosso

- o Breve introduzione storica
- Principi della tecnica per lo studio di tessuti biologici
- o Ossimetria
- o Mammografia ottica
- o Studio funzionale del cervello

Optical	Mammograp	ohy						
1930	1940	1950	1960	1970	1980	1990	2000	2010
Breast t Surg. G	ransillumination ynecol. Obstet. Diaphanograph Radiol. Electrol Lightsca Diagn. I	n, M. Cutler, 4 8 , 721 (192 ny, C.M.Gros, I. 53 , 297 (197 anning, E.Carl maging 4 , 28	29). J. 72). Isen, Mi (1982). <i>et</i>	ulticenter stud al., Cancer 68	y, A. Alveryd 5, 1671 (1990)	1990's •Time-resolv •Broadband •Optical tom •Co-registra •Photo-acou	-2000's: ved methods; spectroscopy; nography; tion with US, N ustics, acousto- ice contrast age	1RI, CT; ∙optics; ents.
Optical	Oximetry							
1930	1940	1950	1960	1970	1980	1990	2000	2010
Non-puls K.Matthe Pharmac	satile oximeter, es, Arch. Exp. F col. 176 , 683 (1	Pathol. 934). Calibrated Rev. Sci.	HP Oxime Hewlett-F d oximetry, G./ Instr. 13 , 434	eter, E.B.Merr Packard J. 28 , A.Millikan, (1942).	ick <i>et al.</i> , 2 (1976). Pulse oxime Biol. Eng. C	Time abso etry, I. Yoshiya comput. 18 , 27	1990's: e-resolved, qua plute tissue oxir a <i>et al.</i> , Med. 7 (1980).	intitative, netry
1930	1940	iging 1950	1960	1970	1980	1990	2000	2010
Non-Invasive brain study, F Jöbsis, Science 198 , 1264 (1977).			Functional studies: •B.Chance <i>et al.</i> , PNAS 90 , 3770 (1993); •Y.Hoshi and M.Tamura, J. Appl. Physiol. 75 , 1842 (1993); •T.Kato <i>et al.</i> , J. Cereb. Blood Flow Metab. 13 , 516 (1993); •A.Villringer <i>et al.</i> , Neurosci. Lett. 154 , 101 (1993).			t optical signa chophysiolog	2000's: •Co-registration with fMRI, ERF •Modeling of N signals; al, G. Gratton <i>e</i> y 32 , 505 (1995	n >; IRS <i>t al.</i> , 5).

Epithelial tissue

Stratified squamous epithelium

Connective tissue

10µm

Adipose tissue

Blood

Muscle tissue

Skeletal muscle

FIGURE 38–8 Muscle tissue. (a) Skeletal muscle is striated, voluntary muscle (magnification approximately ×1000). (b) Smooth muscle tissue lacks striations and is involuntary (magnification approximately ×450). (c) Cardiac muscle tissue is striated, has branched fibers, and is involuntary. The special junctions between cardiac muscle cells are called intercalated disks.

Smooth muscle

Nuclei

Nuclei

Cardiac muscle

Generalized animal cell

Scattering spectra in various tissues

Figure 7. Scattering spectra of tissues (symbols) vs Mie scattering spheres of various diameter (lines). Volume fraction of spheres held constant at 10%.

Glucose effect on the scattering coefficient in vitro

Glucose effect on the scattering coefficient in vivo

Hemoglobin

Fig. 2.6. The four chains of oxyhemoglobin (from R. E. DICKERSON and I. GEIS, *The Structure and Action of Proteins*, W. A. Benjamin Co., Menlo Park. Copyright 1969 Dickerson and Geis)

Hemoglobin absorption spectra

Dominant tissue chromophores in the near infrared

Hb, HbO₂ from: Cheong *et al.*, IEEE J. Quantum Electron. **26**, 2166 (1990) H₂O from: Hale and Querry, Appl. Opt. **12**, 555 (1973)

Diffusion of near-infrared light inside tissues

high scattering problem

Experimental approach to tissue spectroscopy

Frequency-domain spectroscopy (FD)

Diffusion equation for the photon density U(r, t)

$$\frac{\partial U(\mathbf{r},t)}{\partial t} - v D \nabla^2 U(\mathbf{r},t) + v \mu_a U(\mathbf{r},t) = q(\mathbf{r},t)$$

D = $1/[3(\mu_a + \mu_s)]$ = diffusion coefficient

- μ_a = absorption coefficient
- μ_{s} ' = reduced scattering coefficient
- v = speed of light in tissue
- q = source term (power per unit volume)

frequency-domain Green's function $G(r,\omega)$ for an infinite geometry:

$$G(r,\omega) = \frac{1}{4\pi v D} \frac{e^{-kr}}{r}$$

with
$$k = \left(\frac{\nu\mu_a - i\omega}{\nu D}\right)^{1/2}$$

Straight lines as a function of r (distance from the source)

from the following definitions:

Abs $[G(r,0)] \equiv$ dc intensity (or average intensity I_{dc}) Abs $[G(r,\omega)] \equiv$ ac amplitude Arg $[G(r,\omega)] \equiv$ phase

it follows that (for the Green's function): $\ln(r I_{dc}) = -r \operatorname{Re}[k] - \ln[4\pi vD] \qquad \text{phase} = r \operatorname{Im}[k]$

Measurement of absorption and reduced scattering coefficients with frequency-domain spectroscopy

$$\mu_a = \frac{\omega}{2\nu} \left(\frac{S_{\Phi}}{S_{\rm ac}} - \frac{S_{\rm ac}}{S_{\Phi}} \right)$$

$$\mu_{s}' = \frac{S_{\rm ac}^{2} - S_{\Phi}^{2}}{3\mu_{\rm a}} - \mu_{a}$$

where: μ_a :

μ*s*':

ω:

V:

absorption coefficient reduced scattering coefficient angular modulation frequency

- speed of light in tissue
- S_{Φ} : phase slope

$$S_{ac}$$
: $\ln(r | U_{\omega} |)$ slope

Translating the absorption coefficient into hemoglobin-related parameters

$$\mu_{a}(\lambda_{i}) = \varepsilon_{\text{HbO}_{2}}(\lambda_{i})[\text{HbO}_{2}] + \varepsilon_{\text{Hb}}(\lambda_{i})[\text{Hb}] + \varepsilon_{\text{H}_{2}O}(\lambda_{i})[\text{H}_{2}O]$$

$$Oxy-hemoglobin concentration
$$Deoxy-hemoglobin concentration$$

$$(\text{HbO}_{2}] = \frac{\left(\sum_{i} \mu_{a}(\lambda_{i})\varepsilon_{\text{HbO2}}(\lambda_{i})\right)\left(\sum_{i} \varepsilon_{\text{Hb}}^{2}(\lambda_{i})\right) - \left(\sum_{i} \mu_{a}(\lambda_{i})\varepsilon_{\text{Hb}}(\lambda_{i})\right)\left(\sum_{i} \varepsilon_{\text{HbO2}}(\lambda_{i})\varepsilon_{\text{Hb}}(\lambda_{i})\right)}{\left(\sum_{i} \varepsilon_{\text{HbO2}}^{2}(\lambda_{i})\right)\left(\sum_{i} \varepsilon_{\text{Hb}}^{2}(\lambda_{i})\right) - \left(\sum_{i} \varepsilon_{\text{HbO2}}(\lambda_{i})\varepsilon_{\text{Hb}}(\lambda_{i})\right)^{2}}$$

$$[\text{HbO}_{2}] = \frac{\left(\sum_{i} \mu_{a}(\lambda_{i})\varepsilon_{\text{Hb}}(\lambda_{i})\right)\left(\sum_{i} \varepsilon_{\text{HbO2}}^{2}(\lambda_{i})\right) - \left(\sum_{i} \varepsilon_{\text{HbO2}}(\lambda_{i})\varepsilon_{\text{Hb}}(\lambda_{i})\right)^{2}}{\left(\sum_{i} \varepsilon_{\text{HbO2}}^{2}(\lambda_{i})\right)\left(\sum_{i} \varepsilon_{\text{HbO2}}^{2}(\lambda_{i})\right) - \left(\sum_{i} \varepsilon_{\text{HbO2}}(\lambda_{i})\varepsilon_{\text{Hb}}(\lambda_{i})\right)\left(\sum_{i} \varepsilon_{\text{HbO2}}(\lambda_{i})\varepsilon_{\text{Hb}}(\lambda_{i})\right)}{\left(\sum_{i} \varepsilon_{\text{HbO2}}^{2}(\lambda_{i})\right)\left(\sum_{i} \varepsilon_{\text{HbO2}}^{2}(\lambda_{i})\right) - \left(\sum_{i} \varepsilon_{\text{HbO2}}(\lambda_{i})\varepsilon_{\text{Hb}}(\lambda_{i})\right)^{2}}$$$$

 $THC = [Hb] + [HbO_2]$

Total hemoglobin concentration

$$StO_2 = \frac{[HbO_2]}{[Hb] + [HbO_2]}$$

Hemoglobin saturation (Y)

TISSUE OXIMETRY

Configuration for tissue oximetry

Frequency-domain oximetry

Arterial occlusion \rightarrow oxygen consumption

(measurement on the forearm of subject 1)

oxygen consumption = 3.2 μ mol/100mL/min

Venous occlusion \rightarrow blood flow

(measurement on the forearm of subject 2)

blood flow = 2.5 mL/100mL/min

Measurement on the forehead at different percentages of inspired oxygen

probe geometry

Absorption spectra of the forehead at different inspired oxygen concentrations

after 1 min of

Arterial pulse and absorption coefficient

fft on 256 points

Arterial saturation from pulsatile $\Delta \mu_a$ absorption

Tissue and arterial saturation

OPTICAL MAMMOGRAPHY

The first optical study of the breast: 1929

M. Cutler, "Transillumination of the Breast," Surg. Gynecol. Obstet. 48, 721-727 (1929). (now J. Am. Coll. Surg.)

instrument for frequencydomain optical mammography

x-ray vs. optical mammography

invasive ductal cancer 3cm of diameter

Franceschini *et al.*, Proc. Natl. Acad. Sci. USA **94**, 6468-6473 (1997)

Oxygenation Index images from multi-wavelength optical mammograms

N" images at four wavelengths

690 nm rcc 750 nm. rcc rcc 856 nm rcc

Oxygenation Index image

[S. Fantini et al., Proc. SPIE 4955, 183 (2003).]

Oxygenation Index = $\frac{\Delta [\text{HbO}_2]^*}{\Delta [\text{HbO}_2]^* + \Delta [\text{Hb}]^*}$

A more challenging case: Cancer size < 0.5 cm

(a) N-image

(b) N"-image

(c) Oxygenation image

OPTICAL IMAGING OF THE BRAIN

The basic approach to optical imaging of the brain

From the light source

To the optical detector \leftarrow

Bilateral optical imaging of the brain

NIRS-fMRI compatible helmet

13

"Minority report," year: 2054

Right hand tapping

Right hand tapping

left hand tapping

left hand tapping

Hemodynamic response to brain activation

[S. Fantini, Phys. Med. Biol. 47, N249 (2002)]

Concurrent fMRI and fNIRS

Comparison of BOLD and NIRS mapping

Weighted average of BOLD signal according to photon-hitting density function

Photon-hitting density function

 $k = 0.3 \text{ mm}^{-1}$ ($\mu_a = 0.020 \text{ mm}^{-1}, \mu_s' = 1.5 \text{ mm}^{-1}$)

BOLD_{PMA} and NIRS maps (<u>Right side</u>): Comparison at *t* = 6 s

Left hand tapping

Comparison of BOLD_{PMA} and NIRS Signals: Temporal correlation

Left hand tapping

La spettroscopia nel vicino infrarosso e' una tecnica non invasiva per applicazioni in campo diagnostico e di ricerca:

- Ossimetria tissutale quantitativa
- Rivelazione/monitoraggio del tumore della
 mammella

 Studio in tempo reale della funzionalita' cerebrale

Near-infrared spectroscopy group @ Tufts University

- Yang Yu, PhD Student
- Sergio Fantini, Prof. –
- Angelo Sassaroli, Res. Assoc.
- Yunjie Tong, PhD Student
- Jeff Martin, MS/MD Student
- Debbie Chen, PhD Student
- Ning Liu, PhD Student –

Acknowledgments:

NSF-CAREER: BES93840 NIH-NIDA: DA14178 NIH-NCI: CA95885

