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ABSTRACT

Context. We present a method for determining the background of the gamma-ray bursts (GRBs) of the Fermi Gamma-ray Burst
Monitor (GBM) using the satellite positional information and a physical model. Since the polynomial fitting method typically used
for GRBs is generally only indicative of the background over relatively short timescales, this method is particularly useful in the cases
of long GRBs or those that have autonomous repoint request (ARR) and a background with much variability on short timescales.
Aims. Modern space instruments, like Fermi, have some specific motion to survey the sky and catch gamma-ray bursts in the most
effective way. However, GBM bursts sometimes have highly varying backgrounds (with or without ARR), and modelling them with a
polynomial function of time is not efficient – one needs more complex, Fermi-specific methods. This article presents a new direction
dependent background fitting method and shows how it can be used for filtering the lightcurves.
Methods. First, we investigate how the celestial position of the satellite may have influence on the background and define three
underlying variables with physical meaning: celestial distance of the burst and the detector’s orientation, the contribution of the Sun
and the contribution of the Earth. Then, we use multi-dimensional general least square fitting and Akaike model selection criterion
for the background fitting of the GBM lightcurves. Eight bursts are presented as examples, of which we computed the duration using
background fitted cumulative lightcurves.
Results. We give a direction dependent background fitting (DDBF) method for separating the motion effects from the real data and
calculate the duration (T90, T50, and confidence intervals) of the nine example bursts, from which two resulted an ARR. We also
summarize the features of our method and compare it qualitatively with the official GBM Catalogue.
Conclusions. Our background filtering method uses a model based on the physical information of the satellite position. Therefore,
it has many advantages compared to previous methods. It can fit long background intervals, remove all the features caused by the
rocking behaviour of the satellite, and search for long emissions or not-triggered events. Furthermore, many parts of the fitting have
now been automatised, and the method has been shown to work for both sky survey mode and ARR mode data. Future work will
provide a burst catalogue with DDBF.
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1. Introduction

NASA’s Fermi Gamma-ray Space Telescope has an orbit of alti-
tude ∼565 km and period of ∼96 min. It carries two main instru-
ments on board. The Large Area Telescope’s (LAT) energy range
(20 MeV−300 GeV) overlaps the energy range of the Gamma-
ray Burst Monitor (GBM, 8 keV−40 MeV). GBM consists of
two types of detectors: 12 sodium iodide (NaI) and 2 bismuth
germanate-oxide (BGO) detectors (Meegan et al. 2009).

The primary observation mode of Fermi is sky survey mode.
This enables the LAT to monitor the sky systematically, whilst
maintaining an uniform exposure. In this mode, the entire sky is
observed for ∼30 min per 2 orbits. If a sufficiently bright GRB is
detected by GBM, an autonomous repoint request (ARR) may be
issued. This will cause the satellite to slew, so that the burst’s co-
ordinates (calculated by the GBM) stay within the field of view
of the LAT for ∼2 h (Fitzpatrick et al. 2011). However, this repo-
sitioning right after the trigger results in rapid and high back-
ground rate variations of the GBM lightcurves – sometimes even
during the burst, which is the most important time of the obser-
vation. Therefore, it is crucial to have a filtering method, which
is capable of correcting for the background variations caused by
the ARR.

To date, GBM has triggered on 1000 GRBs (GCN 2013),
(Fermi-Timeline-Posting 2013). Only a small fraction
(∼70 GRBs) resulted an ARR (Paciesas 2013, priv. comm.).
The relatively low rate of ARR’s is due to the GBM trigger that
has to meet certain criteria (such as high peak flux) before an
ARR occurs. When we started to analyse GRBs detected by
GBM, we found that several non-ARR bursts have a background
variation of the same order of magnitude as the burst itself.
As we will show, one can find connection between these
background rates and the actual position and orientation of
the satellite. Therefore it is necessary to use the directional
information to filter the background not only for ARR but also
for many non-ARR cases.

Here, we present the effect of the slew and how it is rep-
resented in the measured data of the GBM. We summarize why
the usual background subtraction methods are inefficient in most
cases, especially for the long bursts, as seen in Sect. 2. Then, we
introduce variables based on the position of the satellite related
to the Earth and the Sun (Sect. 3) and use them with the time
variable to fit a general multi-dimensional linear function to the
background (Sect. 4). Our method is called direction dependent
background fitting (DDBF).
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Fig. 1. Lightcurve of the Fermi burst 091030.613 measured by the 3rd
GBM-detector without any background filtering with 1-s bins. The grey
line is a fitted polynomial function of time of order 3 for the ranges of
[−200:−20] and [38:200] s, which does not seem to be a correct model
for this whole background. Reduced chi-square statistics are given in
the top right corner (Szécsi et al. 2012a).

We also present examples where we compute the duration
(T90 and T50) from our background-filtered lightcurves and show
that the DDBF method can be used for both the Sky Survey and
ARR observations (Sect. 5). Confidence levels and a comparison
to the GBM catalogue are given in Sect. 6.

2. Difficulties with the Fermi background

2.1. Lightcurves with unpredictably varying background

The lightcurve for GBM trigger 091030.613 is shown in Fig. 1
in the energy range ∼11–980 keV. This burst did not result in an
ARR (GCN 2013). We decided to use the sum of the channels
except for the highest and lowest, where the detector’s efficiency
drops, so the signal is statistically stronger. Since we are only
interested in the duration information of the bursts, we use the
high time resolution data (CTIME, see Sect. 3 for the detailed
description) and sum of the channels. We note that, however, the
analysis can be done using either different channels or the high
spectral resolution data files (CSPEC), so spectral information
can be obtained (see Szécsi et al. 2012b).

In Fig. 1, the burst is clearly visible above the background,
but the background is varying so rapidly and to such an extent
that one can question the usefulness of fitting and subtracting
a simple polynomial function of order 3 (grey line in Fig. 1).
This situation is typical in the case of Fermi, as can be seen in
the examples in Sect. 5.2. Especially when a long burst occurs,
the background rate can change too quickly for analyses with-
out some knowledge about the satellite position and the gamma
sources on the sky. In the following, we are investigating for
possible background sources. We will see that one can find a
correspondence between the gamma background and the celes-
tial orientation of the satellite. Furthermore, both the Sun and the
Earth limb have a contribution, given that they move in and out
of the field of view because of the rocking motion of the satel-
lite. Based on these physical conditions, we are constructing a
background model and a fitting algorithm, both of which give
us a more effective method for filtering the motion effects. Since
the method is based on the actual directional information of the
satellite, it is possible to analyse bursts for which an ARR was
issued.

2.2. Previous methods

In the BATSE era, it was sufficient to fit a low-order polynomial
in the function of time for most cases. It was because BATSE
has had a fixed orientation and has not been able to change it
during a burst. As a result, sources moving in and out of the field
of view could not play an important role on a shorter timescale,
and all the backgrounds could be subtracted by fitting a time-
dependent low-order (up to 3) polynomial (Koshut et al. 1996;
Sakamoto et al. 2008; Varga et al. 2005).

In the Fermi era, this situation has however fundamentally
changed. To present this on our example above, we fitted a sim-
ple 3rd-order polynomial function of time shown with a grey
line in Fig. 1. The fitting was done by using only a selected
short time interval around the burst, which is a common method
of the BATSE era. This fit may be sufficient around the burst
prompt emission, but is sufficient only there. It is clear that the
background cannot be well modelled with this simple function
over a long timescale. Moreover, an incidental longtime emis-
sion would be overlooked.

Fitting higher order polynomials of time could be suggested.
We rule out this solution because of two reasons. First, these fit-
tings show polynomial instabilities in the burst interval, as we
have seen it in our early experiments; namely, we got high or-
der, low amplitude oscillations of these fittings during the in-
terval of the burst. Second, we wanted to take into considera-
tion that the main cause of the complicated background is well
known (namely the rocking motion of the satellite). Indeed, we
use physically defined underlying variables, as we will show in
Sect. 4, and with them, we fit higher order multidimensional
functions. As a conclusion, time-dependent polynomial fittings
may have been sufficient for the BATSE data but Fermi-data can-
not be analysed that way due to the rapid motion of the satellite:
we need a Fermi specific method.

Such a method was presented by Fitzpatrick et al. (2011).
They estimated the background successfully with the rates from
adjacent days, when the satellite was at the same geographical
coordinates. This solution is only applicable when the satellite is
in sky survey mode and cannot be used if an ARR occurred. If
an ARR is accepted, this technique cannot be employed.

3. Investigation of possible background sources

3.1. Orientation of NaI detectors

As we mentioned above, Fermi uses a complex algorithm to opti-
mize the observation of the gamma-ray sky. In sky survey mode,
the satellite rocks around the zenith within ±50◦, and the point-
ing alternates between the northern and southern hemispheres
each orbit (Meegan et al. 2009; Fitzpatrick et al. 2011).

The set-up of the instruments on-board is well known from
the literature (Meegan et al. 2009). The 12 NaI detectors are
placed in such a way that the entire unocculted sky is observable
with them at the same time, as seen in Fig. 2. Fermi has a proper
coordinate system, whose Z axis is given by the LAT main axis.
From now on, we only analyse the data of the NaI detectors; the
BGO detectors will be considered in a future work.

The Fermi data set is available from the web for the GBM’s
12 NaI detectors1. The positional information of the spacecraft is
contained in the LAT data (called Spacecraft Data2). The GBM

1 The High Energy Astrophysics Science Archive Research Center
(HEASARC): legacy.gsfc.nasa.gov
2 LAT Photon, Event, and Spacecraft Data Query: http://Fermi.
gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
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Fig. 2. Setup of the 12 NaI detectors of GBM given in the Spacecraft
Coordinates (see Meegan et al. 2009). The zenith angle of the detectors
in degrees is marked. This design is built in order to cover the whole
visible part of the sky with the GBM. (The figure is based on Table 1.
of Meegan et al. 2009. Notations “a” and “b” mean the 10th and 11th
NaI detectors, respectively.)
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Fig. 3. Orientation of the 12 NaI detectors on the sky (in the second
equatorial system), during the pre- and post-1000 s around the burst
091030.613. To show the direction with time, we marked the starting
points of every line with a small star. The Sun’s position is marked with
big sphere. The burst position is marked with diamond.

data, which we use in our analysis (called CTIME), are avail-
able at 8 energy channels with 0.064-s and 0.256-s resolution
(for triggered and non-triggered mode, respectively). The posi-
tion data is available in 30-s resolution.

The 30-s Spacecraft Data were evenly proportioned to 0.256-
s and 0.064-s bins using linear interpolation, to correspond to the
CTIME data of non-triggered and triggered mode, respectively.
We created a 3D-plot from this data using the known orientation
of the 12 NaI detectors given in the Spacecraft coordinate sys-
tem. Figure 3 shows the detectors’ orientation (path) on the sky
during the pre- and post-1000 s around the trigger of 091030.613
(lightcurve was shown in Fig. 1).

The catalogue location for the GRB is shown with a dia-
mond (α = 260.72◦, δ = 22.67◦, see Paciesas et al. 2012). Since
we wanted to know the position of the detectors on the sky, we
needed to transform the proper coordinate system of the Fermi
shown in Fig. 2 to the general (second) equatorial system, since
the burst’s position was given in the latter. In addition, we plot
the celestial angle between the 3rd detector (black line in Fig. 3)
and the burst 091030.613 (marked with a diamond in Fig. 3)
against time in Fig. 4.

At this point, we have to mention the effect of the NaI detec-
tors’ characteristics. Figure 12 from Meegan et al. (2009) shows
the angular dependence of a NaI detector effective area: the an-
gular response for the flat crystal is approximately cosine. For
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Fig. 4. Celestial distance of the 3rd GBM detector and the Fermi-burst
091030.613 as a function of time. It is worth comparing this figure to
Fig. 1.

this reason, we define our first underlying variable as the cosine
of the celestial angle between the detector and the burst (as it
is shown in Fig. 4). We will find further underlying variables in
Sects. 3.2 and 3.3.

However, the NaI characteristics are also energy dependent:
The dependence of the transmissivity on the angle of incidence
is more important at higher than at lower energies. Furthermore,
a detector has two small sensitivity peaks around −150 and
150 degrees, which means that they can detect photons com-
ing under the plane of the crystal. We consider these features by
allowing higher orders when performing the fits seen in Sect. 4.

If we compare Figs. 4 to 1, it is clear that the unpredictable
variation in the background is connected to the orientation of
the detector in question. We can also examine other bursts (see
Sect. 5.2. for more examples). However, we cannot state a clear
relation between the angle and the lightcurve.

3.2. Earth

The satellite’s Z axis (the direction of the LAT) is pointing to
the opposite direction of the Earth, when it is possible. Due to
the rocking behavior, GBM detectors’ orientation are, however,
towards the Earth-limb from time to time.

The Earth-limb is notable from the board of Fermi. At an al-
titude of ∼565 km, it corresponds to an aperture of ∼134◦ when
fully in the FoV. Therefore, we have to consider the effect of
the Earth-limb when analysing the data of the GBM detectors.
There are terrestrial gamma-ray flashes (brief bursts of gamma-
radiation that are thought to be associated with lightning in the
upper atmosphere); furthermore, gamma-rays of the GRB’s scat-
ter on the atmosphere. The main contributor in our background
model is the latter. Terrestrial gamma-ray flashes have a duration
of only tens of milliseconds (Briggs et al. 2010) and are too short
to have a significant effect.

We presume therefore that the detected background also de-
pends on how much sky the Earth-limb shields from the detec-
tor’s FoV. To measure this, we define the Earth-occulted sky rate
as the rate of the Earth-covered sky correlated to the size of the
FoV. As Fermi has a proper motion, the Earth-occulted sky rate
is a function of time, satellite position, and orientation. Based
on spherical geometrical computations given in Appendix A, we
can get the Earth-occulted sky rate as a function of the aperture
of the Earth-limb and the maximum altitude of the Earth seen

A8, page 3 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321068&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321068&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321068&pdf_id=4


A&A 557, A8 (2013)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-1000 -800 -600 -400 -200  0  200  400  600  800  1000

E
a
rt

h
-o

c
c
u
lt
e
d
 s

k
y
 r

a
te

time

Fig. 5. Earth-occulted sky rate for the 3rd GBM detector as a function
of time during the GRB 091030.613. (The Earth-occulted sky rate is
zero, if the Earth-limb is out of the FoV.)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1000 -800 -600 -400 -200  0  200  400  600  800  1000c
o
s
in

e
 o

f 
c
e
le

s
ti
a
l 
a
n
g
le

 b
e
tw

e
e
n
 d

e
te

c
to

r 
a
n
d
 S

u
n

time

Fig. 6. Celestial distance of the 3rd GBM detector and the Sun as a
function of time during the GRB 091030.613. The dashed line shows
the 0 level (under this the Sun and the detector close in an angle larger
than 90◦). It is worth comparing this figure to Fig. 1.

from the Fermi. The Earth-occulted sky rate is plotted in Fig. 5
as a function of time.

We can see the same effect like above: there is some notice-
able connection between the lightcurve in Fig. 1 and the Earth-
occulted sky rate in Fig. 5.

3.3. Sun

One of the main contributors of the gamma-ray sky is the Sun.
Flares and other eruptive solar events produce gamma rays in
addition to those created by cosmic rays striking the Suns gas.
If we are looking for a complete model of the background, we
need to consider the contribution of the Sun as well.

The Sun’s position is known from ephemeris tables for the
day of the burst. We do not need more precise data than one day,
because the time interval around the burst is only 2000 s in our
analysis, and the position of the Sun does not change signifi-
cantly during that time.

We compute the celestial distance (i.e. the angle) between
the detector’s direction and the Sun’s position. This parameter is
shown in Fig. 6. The Sun’s position is also shown in the Fig. 3
with a yellow circle.

Comparing Figs. 1 to 6, one can see a connection between
them. It is interesting to take notice of the fact that when the
Sun’s angle is larger then 90◦ (the cosine is lower that 0) around
600 s, the background rate in Fig. 1 drops. It shows a further cor-
respondence of the background and the direction of the satellite
towards to the Sun.

3.4. Other gamma sources

It is known today that the gamma-ray sky is not dark
(Ackermann et al. 2012). Apart from the gamma-ray bursts, the
terrestrial flashes, and the Sun’s activity, there are also additional
gamma-ray sources. Some examples include the gamma-rays
produced when cosmic rays collide with gas in the Milky Way
and the contribution from individual galactic sources, such as
pulsars and other transient sources. As an extragalactic counter-
part, we see collective radiation from galaxies that we are not
detecting directly and gamma-rays from jets of active galaxies.

All this gamma-background has to be paid respect to. Rather
than consider each contributing source individually, we intro-
duce them into our model by allowing higher order terms when
constructing the basis function of the general least square prob-
lem in Sects. 4.1 and 4.2. Furthermore, we use the method of
singular value decomposition and Akaike model selection de-
scribed in Sects. 4.3 and 4.4 for choosing the contributing ones,
since the net effect of all these sources is hard to compute at
every second.

4. Background subtraction

In Sect. 3, we have found three variables, which contribute to the
variation in the background (see Figs. 4–6). They may help ex-
tend the polynomials of time that are only usable in some short
intervals around the bursts. These three variables contain phys-
ical information of the background, because they are suggested
by the actual position and orientation of the satellite.

However, we cannot quantify the contribution from the var-
ious sources at any given time. As we know that they have an
influence on the background, we can fit a theoretical function of
these physical underlying variables. Therefore, we fit and sub-
tract the background using the three defined variables (burst po-
sition, Sun, and Earth) and the time variable, on a higher degree.

At this point, the following question may arise: why is the
burst location needed? If a curve contains no burst for sure, there
is no sense of using the burst position as an underlying variable.
In that case, we would probably need to use only the Sun and
the Earth (maybe implement the position of some other gamma-
sources as well).

The reason why we use the burst position when there is a
burst in the data is that the burst itself is a gamma source. Of
course, it does not produce gamma photons at a constant level,
but transiently. It is possible, nevertheless, that a not yet iden-
tified long emission would be enhanced (or weakened) because
the satellite moved toward (or away of) the burst. To analyse (or
sometimes even detect) emission coming from the astrophysical
source outside of the main burst interval, it is needed to identify
the fluctuations of the background rate caused by the change in
the distance between the detector and the burst.

Next, we summarize the method of general least square for
multidimensional fits, the algorithm of singular value decompo-
sition, its numerical solution, and the Akaike model selection
criterion for choosing the best model. Since we use underlying
variables, which are calculated based on the actual direction and
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orientation of the satellite, we call this method direction depen-
dent background fitting (DDBF).

4.1. General least square

For simplifying the explanation, we will use the following
notation:

yi = counts per bin;

x(1)
i = celestial distance between burst and detector orientation

(Fig. 4);

x(2)
i = celestial distance between Sun and detector orientation

(Fig. 6);

x(3)
i = rate of the Earth-uncovered sky (Fig. 5);

x(4)
i = time.

We have a set of datapoints (xi, yi), where the components of xi

are xi = (x(1)
i , x(2)

i , x(3)
i , x(4)

i ), while i = 1 . . .N.
We use the general least square method (Press et al. 1992) for

a multidimensional fit (since xi has more than one component).
The theoretical value of y(xi) can be expressed with functions
of xi, known as the basis functions Xk(xi):

y(xi) = ΣM
k=1akXk(xi), (1)

where the weights ak are the model parameters that we need to
estimate from the data (k = 1...M). Note that the basis functions
Xk(xi) can be nonlinear functions of xi (this is why the method
is called generalized), but the model depends only linearly on its
parameters ak.

The maximum likelihood estimate of the model parame-
ters ak is obtained by minimizing the quantity

χ2 = ΣN
i=1

yi − ΣM
k=1akXk(xi)
σi

2

, (2)

which is known as the chi-square statistics or chi-square
function.

One can write the chi-square function in a matrix equation
form as well. For that, it is useful for defining the design matrix
A (N × M, N ≥ M) of the fitting problem. Since the measured
values of the dependent variable do not enter the design matrix,
we may also define the vector b. The components of A and b are
defined to be the following:

Ai j =
X j(xi)
σi

, bi =
yi

σi
. (3)

From now, we set σi = const.
In terms of the design matrix A and the vector b, the chi-

square function can be written as

χ2 = (A · a − b)2, (4)

and we need an a that minimizes this function, so the derivatives
of χ2 with respect of the components of [a]k = ak are zeros. That
leads us to the equation for a:

a = (ATA)−1ATb, (5)

where AT means the transpose of A, and the expression
(ATA)−1AT are called generalized inverse or pseudoinverse of A.
The best technique of computing pseudoinverse is based on
singular value decomposition (SVD), which we describe in
Sect. 4.3. We first specify the general method written above for
the case of the Fermi GBM lightcurves in the following section.
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Fig. 7. The 2-dimensional hypersurface of a 3rd degree fitting to a Fermi
lightcurve is shown. The fitted variables (x(1)
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i ) are along the hori-

zontal axes, while vertical axis represents the counts of the lightcurve yi
(shown by the black curve on the fitted grey plane).

4.2. Multidimensional fit

Equation (1) describes a hypersurface, and it is a generalization
of fitting a straight line to the data. Very simple backgrounds
may be fitted well with first degree hypersurface (hyperplane) of
the four variables described as xi = (x(1)

i , x(2)
i , x(3)

i , x(4)
i ):

y(xi) = a1 · x
(1)
i + a2 · x

(2)
i + a3 · x

(3)
i + a4 · x

(4)
i , (6)

where the basis functions are Xl(xi) = x(l)
i , respectively, and

the design matrix simply consists of the components of xi

with Ai j = x( j)
i .

For the most complicated Fermi backgrounds, higher de-
gree of the variables are needed, however. One can illustrate the
lightcurve data yi and the fitted hypersurface y(xi) using the two
variables x(1)

i and x(3)
i , which are both of 3rd degree on a 3D plot,

as seen in Fig. 7. The design matrix of this problem is

A =


x(1)

1 (x(1)
1 )2 x(3)

1 (x(3)
1 )2 x(1)

1 · x
(3)
1 1

x(1)
2 (x(1)

2 )2 x(3)
2 (x(3)

2 )2 x(1)
2 · x

(3)
2 1

...

x(1)
N (x(1)

N )2 x(3)
N (x(3)

N )2 x(1)
N · x

(3)
N 1

 . (7)

Since we would like to have a method for all the cases of Fermi-
bursts (whether it is simple, complicated, non-ARR, or ARR),
we define our model to be comprehensive. Let us have y(xi)
as the function of xi = (x(1)

i , x(2)
i , x(3)

i , x(4)
i ) of order 3, so the

basis functions Xk(xi) (and columns of the design matrix) con-
sist of every possible products of the components x(l)

i up to or-
der 3. That means that we have M = kmax = 35 basis func-
tions and a1, a2...a35 as free parameters. We are sure that we
do not need so many free parameters to describe a simple back-
ground, and although a complicated or ARR background may
require more free parameters, 35 is too much in every practi-
cal case. Therefore, we decrease the number of free parameters
using SVD in the next section.

4.3. Singular value decomposition

In Sect. 4.1, we showed that the least square problem can be
solved by computing the pseudoinverse of the design matrix A.
For this purpose, we used Singular Value Decomposition (SVD),
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since SVD is robust and very stable numerically (Long 2005;
Press et al. 1992).

The SVD takes an N × M matrix A and factors it into
A = USVT. In this expression, U and V are N × N and M × M
orthogonal matrices, respectively, and S is an N × M diagonal
matrix. The columns of U and V are the eigenvectors of AAT

and ATA, respectively. Furthermore, S contains the square roots
of the eigenvalues of AAT and ATA (both have the same eigen-
values, but different eigenvectors). These eigenvalues (diagonal
elements in S) are called the singular values, si.

In overdetermined cases (N ≥ M), the last N − M singular
values, however, are zeros, so we may consider only U as an
N × M matrix, V as an M × M matrix, and S as M × M (it is
called economic SVD).

If U and V enter the SVD decomposition of A as described
above, one can show easily (using the orthogonalithy of U
and V) that the pseudoinverse of A can be obtained as

pinv(A) = (ATA)−1AT = VS−1UT. (8)

SVD is implemented in several numerical software. In our work,
we used O’s SVD function3, known as the svd, and pseu-
doinversion function, known as the pinv (Long 2005).

Computing the pseudoinverse, we need the reciprocal of the
singular values in the diagonals of S−1, and there is a problem
with this. The size of a singular value tells you exactly how
much influence the corresponding rows and columns of U and
V have over the original matrix A. We can find the exact value
of A by multiplying USVT. If we, however, remove (for exam-
ple) the last columns of U and V and the final singular value,
we are removing the least important data. If we then multiplied
these simpler matrices, we would only get an approximation to
A but one which still contains all but the most insignificant infor-
mation. This means that SVD allows us to identify linear combi-
nations of variables that do not contribute much to reducing the
chi-square function of our data set.

The singular values are usually arranged in the order of size
with the first being the largest and most significant. The cor-
responding columns of U and V are therefore also arranged in
importance. If a singular value is tiny, very little of the corre-
sponding rows and columns get added into the matrix A when it
is reconstructed by SVD. If we compute the pseudoinverse of A,
the reciprocals of the tiny and not important singular values will
be unreasonably huge and enhance the numerical roundoff errors
as well.

This problem can be solved defining a limit value, below
which reciprocals of singular values are set to zero. It means
that the resulted matrix is an approximation of the real pseu-
doinverse, but we only omit information of the less interest.

With Eq. (1), we can define models of any number of vari-
ables and of arbitrary degree. In our case, we define models
with four underlying variables of degree 3. Therefore, we have
M = 35 free fitting parameters, as described above in Sect. 4.2.
We do not know how many and which ones of these parame-
ters have real importance in the variation in the background, but
SVD can give us the answer trivially: pseudoinverse should be
done by omitting the singular values which do not contribute so
much.

The only question that remains is where this limit should be
when singular values are not so important. We find an answer to
that question in Sect. 4.4 using model selection criteria.

3 GNU O: http://www.gnu.org/software/octave/

4.4. Model selection

Model selection is usually based on some information criterion.
We use the Akaike information criterion (AIC) method to dis-
tinguish between different models to the data (Akaike 1974).
However, we note here that AIC has to be used with caution,
especially in the most complicated cases of backgrounds (see
examples in Sect. 5.2).

We first assume that we have M models so that the kth model
has k free parameters (k = 1...M). When the deviations of the
observed values from the model are normally and independently
distributed, every model has a value AICk so that

AICk = N · log
RS S k

N
+ 2 · k, (9)

where RS S k is the residual sum of squares from the estimated
model (RS S = ΣN

i=1 (yi − y(xi, k))2), N is the sample size, and k
is the number of free parameters to be estimated. The first term
of Eq. (9) measures the goodness of fit (discrepancy between ob-
served values and the values expected under the model in ques-
tion), the second term penalizes the free parameters. Given any
two estimated models, the model with the lower value of AICk is
the one to be preferred. Given many models, the one with lowest
AICk will be the best choice: It has as many free parameters as
needed but not more. Note that we do not use AIC for deciding
how good the fit is but only for choosing one model over the
another. The goodness of fit is given by the chi-square statistics
defined by Eq. (2).

So far, we defined a complex model with 35 free parame-
ters and, therefore, the design matrix A has 35 singular values
(see Sect. 4.2). However, we know that we can omit some of the
tiny singular values when computing the pseudoinverse of A –
the ones, which are not necessary to the best fit of the gamma
background. Thus, we take a loop over the pseudoinverse op-
eration and decrease the omitted number (that is, increase the
used number) of singular values in every step. Furthermore, we
also compute the AICk in every step with k being the number of
singular values not omitted. In that way, the number of singu-
lar values, which minimize the AICk as a function of k will be
the best choice when calculating the pseudoinverse, so we get
the most useful estimation of the model parameters a (let us re-
member that singular values are sorted in decreasing order, so
the last and not important ones will be penalized by the second
term of AIC).

At this point, we return to the Fermi’s GRB 091030.613
presented in Sects. 2 and 3 and follow the method of general
least square, as described above. We compute AICk for every
k = 1...35. This function is shown in Fig. 8.

Based on the AIC, the model with 14 singular values is the
best choice. We present the result of the fitting with this model
in Sect. 5.

4.5. Features of DDBF

One cornerstone of the fitting algorithm DDBF described above
is the definition of the boundaries that decide the interval of the
burst and the intervals of the background. In this work, we fol-
low the common method of using user-selected time intervals
(Paciesas et al. 2012).

Unlike in Paciesas et al. (2012), usage of the position data
gives us the possibility of fitting the whole background of
the CTIME file instead of selecting two or three small frac-
tions around the burst. This notable feature has two important
consequences.
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Fig. 8. Akaike information criterion for model selection. Model with
14 singular values is selected. (First and last five singular values are
usually too high, so we do not show them.)

First, the user has to select only the two boundaries before
and after the burst; the other boundaries of the background in-
tervals are inherently at the beginning and at end of the CTIME
datafile. This reduces the error factor put into the DDBF method
by the user compared to the method of Paciesas et al. (2012).

Second, one can easily detect a possible long emission com-
ing from the astrophysical source. Since this emission has noth-
ing to do with the direction and orientation of the satellite,
the signal consequently has to be present in the lightcurve af-
ter the background filtering. (The opposite is also true: a signal
after the burst could be considered a long emission when the user
defines two short background intervals, although it was caused
by the motion of the satellite. One example for this case is pre-
sented in Sect. 5.2.2.)

In the case of the GRB 091030.613, we used a burst-interval
between −20 and 38 s before and after the burst, respectively
(see Sect. 5, Fig. 9). This means that the data of this time interval
were omitted when fitting to the background. Other than that, the
whole CTIME lightcurve were fitted.

It is one of our future plans to create a self-consistent
method, which can automatically define these intervals based
on a self-consistent iteration algorithm, so the user’s pres-
ence would be unnecessary and the method would be totally
automatic.

5. Results

5.1. Direction dependent fit and T90 for GRB 091030.613

In this section, we present the result of the DDBF for the
GRB 091030.613 (the one that we showed in Fig. 1 and noted
that there are difficulties with its background fitting).

The DDBF method is a good alternative for the polynomial
fitting of time for two reasons. First, the background model con-
sists of astrometric computations of astrophysical objects, and
the fitting variables have physical meanings. This property is
missing when one uses simple polynomial fitting of time; how-
ever, Fermi’s complex motion prefers to have a more detailed
model for the background sources.

Second, using the polynomial fitting of time, one has to de-
fine two short time intervals before and after the burst, which
can be well described by a polynomial function (see Sect. 4.5).
Usually, these intervals have to be short enough and defined pre-
cisely to get a correct fit. DDBF can fit all the 2000-s data of the
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Fig. 9. Fitted background of the lightcurve of the Fermi burst
091030.613 measured by the 3rd GBM detector. Fitting was done by
DDBF method (Szécsi et al. 2012a,c), using 14 non-zero singular val-
ues according to AIC. Reduced chi-square statistics is shown in the top
right corner.
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Fig. 10. Cumulative lightcurve of the Fermi burst 091030.613 by the
3rd GBM detector. Horizontal lines are drawn at 0% and 100% of total
cumulated counts; dots mark every 5%. (Model with 14 singular values
was selected, as seen in Fig. 8.)

CTIME (and CSPEC) files. Therefore, we are also able to study
long emissions or precursors.

Figure 10 shows the cumulative lightcurve from which we
computed the durations (Szécsi et al. 2012b). Horizontal lines
were computed by averaging the cumulated background levels
before and after the burst: These are the levels of 0% and 100%
of total cumulated counts.

We note that these levels were selected by the user for the
Fermi GBM Catalogue. Since they only fitted some short in-
tervals around the burst using time-dependent polynomials, this
step could not been automatised (Paciesas et al. 2012). With
DDBF, however, we fit all the 2000 s of the CTIME file (ex-
cept for the burst in the middle) using direction dependent un-
derlying variables. Our method gives us cumulative lightcurves,
where the resulting levels are tightly distributed around a con-
stant value, and therefore, the automation (calculating the aver-
age of the levels) is possible.

Between the levels of 0% and 100%, 19 equally heightened
points mark every 5% of their cumulated counts (the first and last
are fixed where the lightcurves step over and below the levels
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before and after). T90 is computed by subtracting the value cor-
responding to 5% from the value corresponding to 95%.

The Fermi GBM Catalogue reports T cat
90 = 19.200 ± 0.871 s.

Our result is T90 = 22.609+13.518
−4.522 s. We always give confidence

intervals instead of error bars with the T90 values, since the
DDBF method is complicated: the error estimation needs further
considerations. See Sect. 6 for details.

This result does not depend on the spectrum or the detec-
tor response matrix, because we summed up the channels of the
CTIME files. However, the DDBF can be used for every channel
separately (as it was done in Szécsi et al. 2012b) and can also be
used with CSPEC data to obtain spectral information.

5.2. Examples

We began with the observation that many of Fermi bursts (even
in non-ARR cases) have a varying background corresponding
to the actual direction of the satellite. Thus, our idea was to use
this directional information in the filtering algorithm. We created
a method, which is able to separate this background from the
lightcurves. Now, we want to demonstrate the effectiveness of
our method, so we present examples here, with each having an
extreme background.

These examples were purposely chosen to demonstrate how
powerful DDBF can be and to give an overall impression about
the cases for which it can be used in and the advantages and the
difficulties it carries. Two of the examples below are ARR bursts
(Sects. 5.2.5 and 5.2.7). In general, we would like to draw at-
tention to the connection between the direction dependent un-
derlying variables and the variability features of the lightcurve:
the correlation between them are undeniable in every single case
(even in no-ARR cases).

In each example, we present figures of the original
lightcurves for one of the triggered detectors, summarizing the
counts of the effective range of channels of CTIME file. On these
lightcurves, we plot the fitted theoretical background with a solid
line and the reduced chi-square statistics in the top right corner.
Then, we show the absolute value of the direction dependent un-
derlying variables (in one graph), and the AICk as a function of
used singular values.

As a final result, we show the cumulative lightcurves, which
we used to compute the T90 values. We also give the prelimi-
nary T pre

90 from the gamma-ray coordinates network (GCN 2013),
and the T cat

90 from the catalogue computed and published by the
GBM team (Paciesas et al. 2012). We give confidence intervals
of the computed T90s (and T50s as well). The description of how
these confidence intervals were computed is in Sect. 6.

It is important to note, however, that only long GRBs were
analysed here. The reason of this is that short bursts usually are
not influenced by the fast motions of the satellite. During one
short burst, the background does not change so much that DDBF
should be used. Furthermore, short bursts are better analysed us-
ing the time tagged events (TTE) data type instead of CTIME
(and CSPEC), and therefore, they are not presented here.

Since we want to present how effective our method is, we
show the detector having the highest background variability
without filtering in every case. However, it is possible to com-
bine the same analysis for a number of bright detectors for each
burst to reduce the error. It will be a part of a future work to cre-
ate a catalogue of the durations of the Fermi bursts using DDBF,
in which we will use more than one detector’s data. Here, we
present the method with only one triggered detector for each
case.
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Fig. 11. Top: lightcurve of the Fermi GRB 090102.122 as measured by
the triggered GBM detector “a” and the fitted background with a grey
line. Burst interval (s): [−5:35]. Bottom left: underlying variables (ab-
solute values). See Sect. 3. Bottom right: Akaike information criterion.
See Sect. 4.4.
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Fig. 12. Cumulative lightcurve of GRB 090102.122. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark
every 5%.

5.2.1. GRB 090102.122

GRB 090102.122 is an example where no fast motion was car-
ried out, and therefore, no high background rate variation is
taken place. This burst had no ARR. The lightcurve is simple in
the sense that a time dependent polynomial function could possi-
bly be used to fit it properly. However, we present DDBF results
only to show that the method works in these simple cases as well.
The AIC chose 9 singular values, and one can see in the infor-
mation criterion plot that more values than this are punished by
the AIC: Too many free parameters would cause the fitted curve
to have unnecessary loops fitted to the noise of the background.
The Fermi catalogue reports T cat

90 = 26.624 ± 0.810 s (Paciesas
et al. 2012). Detector “a” was analysed here.

Around −150 s in the lightcurve, there is a peak, which
cannot be explained by the physical underlying variables. This
causes a little hump in the cumulative lightcurve in Fig. 12.
(Furthermore, the same peak can be seen in the lightcurves of
the other triggered detector.) It is out of the scope of this ar-
ticle to decide whether it is a pre-burst or another instrumen-
tal effect, however, we emphasize again that DDBF can also
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be used for finding pre-bursts or long emissions. We measured
T90 = 29.756+2.971

−1.198 s.

5.2.2. GRB 090113.778

The Fermi catalogue reports T cat
90 = 17.408 ± 3.238 s (Paciesas

et al. 2012) and this is a no-ARR case. Detector “0” was analysed
here (Szécsi et al. 2012c). This lightcurve in Fig. 23 has some ex-
tra counts around 400 and 600 s. Both of them can be explained
with the variation in the underlying variables: around 400 s, the
Earth limb was out of the FoV and then it came back and peaked
at 600 s until the Sun’s position changed significantly. Both of
these could cause the extra counts. The best chosen model with
12 singular values could fit these peaks (see the big and small
loops in the fitted lightcurve at 400 and 600 s). Since the under-
lying variables are based on the motion of the satellite, it follows
that these two peaks are probably not astrophysical effects. They
do not come from the GRB but from the combined effect of the
background sources in the surroundings: the Earth and the Sun.
It is important to note that a statement like that could not be made
using the traditional method of polynomial fitting of time.

After the background subtraction, the cumulative lightcurve
(Fig. 14) is noisy because this burst was not so intense with only
∼1800 counts, while other examples have 10 000−20 000 counts.
Our result is T90 = 19.679+10.883

−6.421 s.

5.2.3. GRB 090618.353

The Fermi catalogue reports T cat
90 = 112.386 ± 1.086 s (Paciesas

et al. 2012). No ARR was taken.
The data from detector “7” were analysed here. Nevertheless,

we should note that detector “4” has so many counts that almost
any kind of background model seems to be good enough to com-
pute T90 when using detector “4”. We still choose to present de-
tector “7” here, because we can show our method working in a
more complicated case.

Now we may be used to the fact that quickly varying un-
derlying variables (which correspond to fast motion of the satel-
lite) cause a quick change in the lightcurve background at the
same time. This burst had no ARR, but the satellite started
to rotate according to the fast change of the underlying vari-
ables after the trigger. At this point, the lightcurve is changing
more quickly than before. The fitted grey line (chi-square statis-
tics are 1.009) pursue this change, and results in a duration of
T90 = 103.338+3.842

−6.725 s.

5.2.4. GRB 090828.099

GRB 090828.099 was detected by the GBM on 28 August 2009
at 02:22:48.20 UT (GCN 2013, 9844). The first GBM catalogue
reported T cat

90 = 68.417 ± 3.167 s (Paciesas et al. 2012). This is a
non-ARR case. The data from detector “5” was analysed here.

The AIC gives us the model with 7 singular values. This is
also a simple background. Only the first 300−400 s are influ-
enced by the fast motion, but DDBF could filter this effect. The
duration computed with the DDBF is T90 = 63.608+1.467

−1.652 s.

5.2.5. GRB 091024.372 and .380

This case deserves attention because an ARR was caused by
this burst. The GBM was triggered twice on GRB 091024: the
first time at 08:55:58.47 UT (GRB 091024.372) and the second
time at 09:06:29.36 UT (GRB 091024.380). The GCN 10114
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Fig. 13. Top: lightcurve of the Fermi GRB 090113.778 as measured by
the triggered GBM detector 0’ and the fitted background with a grey
line. Burst interval: [−20:40]. Bottom left: underlying variables (abso-
lute values). See Sect. 3. Bottom right: Akaike information criterion.
See Sect. 4.4.
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Fig. 14. Cumulative lightcurve of GRB 090113.778. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark
every 5%.

reports: “This burst was detected by Swift and the Fermi
Gamma-ray Burst Monitor with a first emission interval last-
ing ∼50 s and a second emission interval starting ∼630 s after
trigger and lasting more than 400 s. The spacecraft performed
a repointing maneuver for this burst which resulted in pointed
observation for 5 h starting ∼350 s after [the second] trigger.”
(GCN 2013, 10114).

Additionally, Gruber et al. (2011) performed a detailed anal-
ysis of this burst and its optical afterglow. Here, we show DDBF
duration results separately for the two triggers. Further investi-
gation is needed to analyse the total ∼1020 s of this extreme long
burst as a whole with DDBF. This will be provided in a future
work.

Figure 19 shows the CTIME data of the first trigger (.372)
using the triggered detector “8”. The second burst episode af-
ter 630 s can also be recognized in the lightcurve by the naked
eye (however, the satellite changed its position at the time of
this second trigger, so this emission looks less intensive here in
detector “8”). On the other hand, one can notice that the un-
derlying variables do not show any variability at this time inter-
val. Qualitatively this means that something is happening there
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Fig. 15. Top: lightcurve of the Fermi GRB 090618.353 as measured by
the triggered GBM detector “7” and the fitted background with a grey
line. Burst interval: [−20:130]. Bottom left: underlying variables (ab-
solute values). See Sect. 3. Bottom right: Akaike information criterion.
See Sect. 4.4.
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Fig. 16. Cumulative lightcurve of GRB 090618.353. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark
every 5%.

which is not coming from our modelled sources (Earth or Sun).
This can be shown more quantitatively, if one considers that an-
other local minimum can be seen at 15 which are close to the
global minimum at 20, which AIC determines for this fit. Here
the models with too many free parameters considered the sec-
ond burst as a background noise and tried to filter it with these
polynomial loops. Indeed, the fitted curve shows several loops,
especially at the interval of the second burst.

We can draw two lessons from all of this. First, one has to
use AIC with caution. Sometimes, the preferred singular value
is not the one AIC gives, if there is another one close enough.
In the case of the first emission (.372), there are no loops on the
fitted curve, when one uses only 15 singular values (the second
local minimum of the AIC). Fortunately, the final T90 result does
not change much (less than 1% in this case). Second, one needs
to pay more attention to too many singular values (we would
say more than 20, based on our other examples), especially if
there is an additional local minimum in AIC close to the chosen
one. This can mean that something is happening that cannot be
well modelled and may be an astrophysical process. We already
mentioned that DDBF can be used to detect long emissions: this
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Fig. 17. Top: lightcurve of the Fermi GRB 090828.099 as measured by
the triggered GBM detector “5” and the fitted background with a grey
line. Burst interval: [−10:80]. Bottom left: underlying variables (abso-
lute values). See Sect. 3. Bottom right: Akaike information criterion.
See Sect. 4.4.
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Fig. 18. Cumulative lightcurve of GRB 090828.099. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark
every 5%.

is clearly such a case. Our final result for the first emission (.372)
is T90 = 100.013+7.908

−4.156 s.
The second burst emission is after 630 s in Fig. 19. As we

already mentioned, this second emission resulted a second trig-
ger from the GBM (.380), which is shown in Fig. 21 using the
data of the triggered detector “9”. Here, the first trigger is visible
at −630 s. However, it is less intensive, since detector “9” was
not triggered with the first emission.

This second burst was so long (GBM Catalogue reported
T cat

90 = 450.569 s, Paciesas et al. 2012) that we needed to re-
consider the best model given by AIC. The minimum of AIC as
a function of the used singular values is at 11, but this model has
a large polynomial loop in the burst interval and is, therefore,
useless. Although this is understandable, longer burst intervals
lead to shorter fitted backgrounds (and thus, a large amount of
information can be lost), it implies that the information criterion
has to be used with caution, especially in extreme cases. In this
case, we chose the model with 7 singular values. This model fits
the background considerably well according to our experience,
and is supported by the information criterion: the smallest local
minimum is at 7.
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Fig. 19. Top: lightcurve of the Fermi GRB 091024.372 as measured by
the triggered GBM detector “8” and the fitted background with a grey
line. Burst interval: [−19:119]. Bottom left: underlying variables (ab-
solute values). See Sect. 3. Bottom right: Akaike information criterion.
See Sect. 4.4.
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Fig. 20. Cumulative lightcurve of GRB 091024.372. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark
every 5%.

The ARR was issued at 09:12:14.28 UT, ∼970 s after the
first trigger (.372) and ∼350 s after the second trigger (.380)
(Gruber et al. 2011). A small change in the underlying variables
at 350 s in Fig. 21 can be seen, but the ARR slew was not too
large, since the source was already at 15 degrees from the LAT
boresight. Nonetheless, the effect of the ARR is represented by
the fitted model, as seen by the small knot of the grey line at
350−400 s in Fig. 21. As for the cumulative lightcurve in Fig. 22,
the first emission at −630 s is present with a non-significant sign,
otherwise our result of T90 = 461.371+48.575

−71.535 s agrees with the
GBM Catalogue.

5.2.6. GRB 100130.777

The Fermi GRB 100130B was detected by the GBM on
10 January 2010 at 18:38:35.46 UT. The GBM GRB Catalogue
presented T cat

90 = 86.018 ± 6.988 s (Paciesas et al. 2012). We
analyse the data of triggered NaI detector “8” using DDBF.

Although the background does not change extremely during
the ∼80 s of the burst, it is a good example to present the contri-
bution of the celestial position of the satellite to the actual level
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Fig. 21. Top: lightcurve of the Fermi GRB 091024.380 as measured
by the triggered GBM detector “9” and the fitted background with a
grey line. Burst interval: [−200:600]. Bottom left: underlying variables
(absolute values). See Sect. 3. Bottom right: Akaike information crite-
rion, the smallest local minimum of 7 singular values is used here. See
Sect. 4.4.
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Fig. 22. Cumulative lightcurve of GRB 091024.380. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark
every 5%.

of the background. If one takes a look at Fig. 23, one can see that
the variation in the lightcurve has a connection to the variation
in the underlying variables.

AIC gives us a best model of 17 singular values. After
the background subtraction, the cumulative lightcurve (Fig. 24)
gives us T90 = 87.725+5.311

−4.911 s. For error estimation, see Sect. 6.

5.2.7. GRB 100414.097

This GRB also had an ARR event. Quoting the GCN re-
port 10595: “at 02:20:21.99 UT on 14 April 2010, the
Fermi Gamma-Ray Burst Monitor triggered and located
GRB 100414A. The Fermi Observatory executed a maneuver fol-
lowing this trigger and tracked the burst location for the next 5 h,
subject to Earth-angle constraints.” (GCN 2013, 10595).

In this case, we chose to analyse a non-triggered detector
(detector “5”). Because this burst was so intensive and bright,
the triggered detectors show totally negligible background rate
variations compared to the brightness of the burst. Since we want
to demonstrate that our method works in very complicated cases
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Fig. 23. Top: lightcurve of the Fermi GRB 100130.777 as measured by
the triggered GBM detector “8” and the fitted background with a grey
line. Burst interval: [−30:90]. Bottom left: underlying variables (abso-
lute values). See Sect. 3. Bottom right: Akaike information criterion.
See Sect. 4.4.
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Fig. 24. Cumulative lightcurve of GRB 100130.777. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark
every 5%.

as well, we analyse a lower signal-to-noise detector. Evidently,
DDBF can also fit the data of the bright triggered detectors well.

The GBM Catalogue reports a duration of T90 = 26.497 ±
2.073 s. According to the GCN 10594 and 10610, this burst also
triggered the LAT and the Suzaku Wide-band All-sky Monitor
(WAM) (GCN 2013, 10594, 10610).

As we already mentioned above, singular values that are
too high (>∼20) deserve attention. In this case, the AIC chose
21 singular values. This 21 singular value model describes the
background well. The only exception is the extra count rate
around 600 s, which is also clearly noticeable in the cumula-
tive lightcurve. More detailed analysis of the spectral features
of this event are needed to determine if this event is caused
by the burst or not. Given that there were additional observa-
tions by the LAT and by the Suzaku WAM which do not re-
port long emission, we expect that this was a local event at
the GBM caused by cosmic rays or another possible transient
source, which could be filtered by using different energy chan-
nels. Our result is T90 = 22.195+2.149

−1.421 s.
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Fig. 25. Top: lightcurve of the Fermi GRB 100414.097 as measured by
the non-triggered GBM detector “5” and the fitted background with a
grey line. Burst interval: [−20:30]. Bottom left: underlying variables
(absolute values). See Sect. 3. Bottom right: Akaike information cri-
terion. See Sect. 4.4.
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Fig. 26. Cumulative lightcurve of GRB 100414.097. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark
every 5%.

6. Confidence intervals

The DDBF method described above is too complicated to give a
simple expression for the error of T90 using general rules of error
propagation. We therefore decided to give confidence intervals
corresponding to 68% (approximately 1σ level). For this, we
use Monte Carlo (MC) simulations. We simulate the data with
Poisson noise: assuming that counts are given by a Poisson pro-
cess, we exchange our input data to one coming from a random
Poisson distribution. In the case of a Poisson distribution, which
is parametrised by the mean rate (λ), the expected value is given
by λ. We therefore replace each datapoint with a value drawn
from a Poisson distribution with a mean equal to the datapoint
in question.

DDBF was repeated for 1000 MC simulated data. The distri-
bution of the Poisson-modified T90 and T50 values are shown in
Figs. 27 and 28 for GRB 091030.613, respectively.

Figure 27 shows two significant peaks around 22 and 47 s.
The first peak at 22 s corresponds to the measured T90 value.
However, the measured T90 value is systematically longer in
some cases of the Poisson noise simulation, because this burst
has a little pulse around 47 s (see Figs. 9 and 10), and T90 is
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Table 1. Final T90 and T50 results.

Burst Sing.v. T90 (s) Conf. int. (s) T cat
90 (s) T50 (s) Conf. int. (s) T cat

50 (s)
090102.122 9 29.756 +2.971 −1.198 26.624± 0.810 10.859 +0.531 −0.556 9.728± 0.572
090113.778 12 19.679 +10.883 −6.421 17.408± 3.238 6.408 +0.498 −0.344 6.141± 1.446
090618.353 15 103.338 +3.842 −6.725 112.386± 1.086 22.827 +2.201 −1.530 23.808± 0.572
090828.099 7 63.608 +1.467 −1.652 68.417± 3.167 11.100 +0.198 −0.194 10.752± 0.320
091024.372 26 100.013 +7.908 −4.156 93.954± 5.221 41.896 +2.987 −1.731 39.937± 1.056
091024.380 7 461.371 +48.575 −71.535 450.569± 2.360 283.202 +7.360 −65.306 100.610± 0.923
091030.613 14 22.609 +13.518 −4.522 19.200± 0.871 10.770 +0.388 −0.424 9.472± 0.345
100414.097 21 22.195 +2.149 −1.421 26.497± 2.073 11.468 +0.549 −0.906 13.248± 0.272
100130.777 17 87.725 +5.311 −4.911 86.018± 6.988 30.829 +1.317 −1.928 34.049± 1.493

Notes. Final T90 and T50 results, confidence intervals (see Sect. 6 and Szécsi et al. 2012c), and the number of singular values (Sect. 4.3) found
with Akaike information criterion (Sect. 4.4) for the bursts analysed in this paper (Sect. 5). We also show the duration value of T cat

90 and T cat
50 of the

GBM Catalogue (Paciesas et al. 2012) for comparison (Sect. 6.1).
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Fig. 27. Distibution of the T90 obtained from the MC simulated data for
Fermi burst 091030.613 (Szécsi et al. 2012c).
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Fig. 28. Distibution of the T50 obtained from the MC simulated data for
the Fermi burst 091030.613 (Szécsi et al. 2012c).

sensitive for this kind of uncertainties. In Fig. 28., there is, how-
ever, no sign of this second peak: T50 is more robust and less
likely to be influenced by these fluctuations (Szécsi et al. 2012c).

Final results of T90s and T50s with confidence intervals are
given in Table 1 for the bursts mentioned in Sect. 5.2.

6.1. Comparison with the Fermi GBM Catalogue

In Table 1, we also show the T cat
90 s and T cat

50 s of the Fermi
GBM Catalogue (Paciesas et al. 2012) for comparison.

At this point, we need to give some notes about the differ-
ences between the method of the Catalogue and DDBF. First of
all, we only used one detector when we measured the duration,
whilst the Catalogue used the sum of the brightest detectors.

On the other hand, there are further differences between the
Catalogue’s method and the DDBF. As we mentioned in Sect. 5,
our method solved the problem of automatizing the identification
of the 0% and 100% levels of cumulated counts, so the user do
not need to define them by hand. This disposes of one possible
error source.

Additionally, using direction dependent variables produced
the possibility of fitting the whole CTIME background (only the
burst has to be taken off in the middle). This reduces the error
of the user selected background intervals and, on the other hand,
makes the automatic detection of a long emission possible. See
Sect. 4.5. for more details.

With respect to the error estimation of the Catalogue, they
followed the method developed for the BATSE data by Koshut
et al. (1996), which uses the variance of the 0% and 100% levels
of cumulated counts as a basis for the error estimates (Paciesas
et al. 2012). We decided to avoid this method (as we avoid the
use of time-dependent polynomial methods developed for the
BATSE, as seen in Sect. 2), and give an alternative solution with
Monte Carlo simulation of the data in Sect. 6. This choice is
based on our belief that the DDBF is too complicated, and using
the error estimation of Koshut et al. (1996) would underestimate
the real error of our method.

Furthermore, we give different higher and lower confi-
dence intervals. In our experience, many bursts show different
amounts of uncertainties at the starting point than at the fin-
ishing point. One demonstrative example is the T90 value of
GRB 091030.613: the MC modified distribution in Fig. 27 is
clearly not symmetric. Therefore, it would be an oversimplifica-
tion to give only one value as an error bar or confidence interval.
For more examples, see Szécsi et al. (2012c).

Given all of these facts, it follows that a comparison with
the Fermi GBM Catalogue data is not meaningful in a quan-
titative sense at the moment. It is currently under way to pro-
cess all Fermi bursts with DDBF and publish an alternative cat-
alogue, in which we will use the combined data of the detectors.
Unfortunately, we cannot say anything about the robustness of
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our method until we finish processing a significant number of
bursts. Once it is done, we will provide an overall statistical com-
parison between the two dataset together with our catalogue.

7. Summary and conclusion

Since the commonly used background filtering methods are not
efficient for many cases of the Fermi, we developed a new
technique based on the motion and orientation of the satel-
lite known as the the direction dependent background fitting
(DDBF) method.

The DDBF technique considers the position of the burst, the
Sun and the Earth. Based on this information on position, we
computed physically meaningful underlying variables and fit-
ted a four dimensional hypersurface on the background. Singular
value decomposition and AIC were used to reduce the number of
free parameters. More research may be required to find a more
suitable model dimension reducing criterion.

The background model was subtracted from the measured
data, resulting in background-free lightcurves. These lightcurves
can be used to perform statistical surveys. We showed the effi-
ciency of our DDBF method computing durations of some very
complicated cases. We also calculated confidence intervals for
our duration values corresponding to 1σ level.

We summarized some of the main differences be-
tween DDBF and the background estimation method of the
GBM Catalogue and decided not to give a quantitative compar-
ison at this point. Our plan is to process the combined data of
the detectors with DDBF for every Fermi burst and produce an
alternative catalogue. This future work will also contain the sta-
tistically relevant comparison of the official GBM Catalogue and
the DDFB Catalogue which has yet to come.

The DDBF method has the advantage of considering only
variables with physical meanings and it fits all the 2000 s CTIME
data well as opposed to the currently used method. These fea-
tures are indeed necessary when analysing long GRBs, where
motion effects can influence the background rate in a very ex-
treme way. Therefore, not only Sky Survey but also ARR mode
GRB’s can be analysed, and possible long emission can be
detected.

Furthermore, there seems to be no reason why DDBF could
not be used for other sources than GRBs. The method only con-
siders the background levels before and after the event; there-
fore, the event itself has no influence to the resulted background
model, even if it is very bright. Nevertheless, the duration can
play a role in its applicability. Events that are comparably long to
the 2000 s data file could be problematic. The DDBF is not nec-
essary for short events, as the effects of the motion of the space-
craft are negligible: one may use the time dependent polynomial
fitting for short GRBs. However, DDBF is able to discover long
emissions or prebursts, as we have shown in Sect. 5.2. Therefore,
DDBF could be used to verify the final result in the case of short
bursts as well.

In summary, celestial position plays an important role in the
Fermi data set. If one wants to filter the background more effi-
ciently and in a physically more comprehensible way, one has
to use this information. Utilizing this principle, we have created
the DDBF method. In future work, DDBF will be used to create
a catalogue of the durations of the Fermi GBM GRBs.
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Appendix A: Earth in the FoV

In Sect. 3.2, we defined one of the underlying variables as the
Earth-occulted sky rate – i.e., the Earth-uncovered sky correlated
to the size of the detector’s field of view (FoV). Here, we present
the computations.

Let us have R as the radius of Earth and h as the altitude of
the satellite. (The actual h during the burst is known from the
LAT spacecraft data file.) The aperture σ of the cone constituted
by the Earth-limb seen from the board of satellite is

σ = asin
R

R + h
· (A.1)

Angular dependence of the detector effective area is assumed
to be constant, so the FoV of one GBM detector is 2π sterad.
However, more precise calculations could be done knowing the
real characteristics (Meegan et al. 2009).

When the Earth-limb is totally in the FoV, the Earth-covered
area is computed by integrating on a spherical surface as follows,

Ωtotal(σ) =

∫ 2π

0

∫ σ

0
sin θ dθ dφ = 2π (1 − cosσ) . (A.2)

Equation (A.2) means the solid angle of a cone of aperture σ.
If only a fraction of the Earth-limb is in the FoV, then

Ω = Ω(σ, ρ) is smaller then Ωtotal and is a function of the max-
imum altitude of the Earth-limb ρ as well. In this case, we have
to separate the area in the FoV to two parts, which are marked
with light grey and dark grey in Fig. A.1.

Fig. A.1. Earth limb seen onboard from the Fermi. Detector can only
see the coloured parts above the solid horizontal black line.

We can calculate the dark grey surface the same way as
above. Using 2π − 2κ, instead of 2π when integrating with re-
spect to φ, we find that

Ωdarkgrey(σ, ρ) = 2(π − κ) (1 − cosσ) , (A.3)

where κ is a function of ρ and σ. It is easy to see that the light
grey triangle in Fig. A.1 is a spherical triangle, since its every
side is a geodetic curve. Therefore, κ can be calculated from the
Napiers pentagon:

κ = acos
(

tan (ρ − σ)
tanσ

)
· (A.4)

Then, we calculate the light grey surface. The area of a spherical
triangle is given by the Girard formule:

Ωlightgrey(σ, ρ) = −π + 2κ + 2λ, (A.5)
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Fig. A.2. Equations (A.6) and (A.7) as a function of ρ for σ = π/3.

where λ = acos (cos (ρ − σ) sin κ) from the Napiers pentagon.
Thus, the surface above the black line is the sum of the light

grey and dark grey parts:

Ωσ<ρ(σ, ρ) = 2
[
π − acos

(
tan (ρ − σ)

tanσ

)]
(1 − cosσ)

−π + 2acos
(

tan (ρ − σ)
tanσ

)
+2acos

(
cos (ρ − σ) · sin acos

tan (ρ − σ)
tanσ

)
· (A.6)

Equation (A.6) has to be modified a little bit when ρ < σ: in this
case, the horizontal solid black line is over the half of the circle,
and the light grey triangle has to be subtracted from the integral
calculated from (A.2) with 2κ instead of 2π:

Ωρ<σ(σ, ρ) = 2
[
acos

(
tan (σ − ρ)

tanσ

)]
[1 − cosσ] + π

−2acos
(

tan (σ − ρ)
tanσ

)
−2acos

(
cos (σ−ρ) · sin acos

(
tan (σ−ρ)

tanσ

))
. (A.7)

We plot Eqs. (A.6) and (A.7) as a function of ρ for σ = π/3, as
seen in Fig. A.2. Equations (A.6) and (A.7) give us Eq. (A.2),
when ρ = 2σ, and have no meaning when ρ < σ or ρ > 2σ.
Therefore, we define an underlying variable x(3) (called the
Earth-occulted sky rate, see Sects. 3.2 and 4.1) the following
way:

x(3) =



0, if ρ ≤ 0;
Ωρ<σ(σ, ρ)

2π
, if 0 < ρ ≤ σ;

Ωσ<ρ(σ, ρ)
2π

, if σ < ρ < 2σ;
Ωtotal(σ)

2π
, if 2σ ≤ ρ.

(A.8)

Note that we divided by 2π because we assumed that FoV of the
detector is 2π sterad. In that way, we get the rate of the Earth-
limb to the FoV. We computed expression (A.8) for every second
of the lightcurve and use it as an underlying variable in Sect. 3.2.
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