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ABSTRACT

Context. Research over the past three decades has revolutionized cosmology while supporting the standard cosmological model.
However, the cosmological principle of Universal homogeneity and isotropy has always been in question, since structures as large
as the survey size have always been found each time the survey size has increased. Until 2013, the largest known structure in our
Universe was the Sloan Great Wall, which is more than 400 Mpc long located approximately one billion light years away.
Aims. Gamma-ray bursts (GRBs) are the most energetic explosions in the Universe. As they are associated with the stellar endpoints
of massive stars and are found in and near distant galaxies, they are viable indicators of the dense part of the Universe containing
normal matter. The spatial distribution of GRBs can thus help expose the large scale structure of the Universe.
Methods. As of July 2012, 283 GRB redshifts have been measured. Subdividing this sample into nine radial parts, each contain-
ing 31 GRBs, indicates that the GRB sample having 1.6 < z < 2.1 differs significantly from the others in that 14 of the 31 GRBs
are concentrated in roughly 1/8 of the sky. A two-dimensional Kolmogorov-Smirnov test, a nearest-neighbour test, and a Bootstrap
Point-Radius Method explore the significance of this clustering.
Results. All tests used indicate that there is a statistically significant clustering of the GRB sample at 1.6 < z < 2.1. Furthermore, this
angular excess cannot be entirely attributed to known selection biases, making its existence due to chance unlikely.
Conclusions. This huge structure lies ten times farther away than the Sloan Great Wall, at a distance of approximately ten billion
light years. The size of the structure defined by these GRBs is about 2000–3000 Mpc, or more than six times the size of the largest
known object in the Universe, the Sloan Great Wall.
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1. Introduction

The cosmological origin of gamma-ray bursts (GRBs) is well
established (e.g. Mészáros & Gehrels 2012). Assuming that the
Universe exhibits large-scale isotropy, the same isotropy is also
expected for GRBs. The large-scale angular isotropy of the sky
distribution of GRBs has been well studied over the last few
decades. Most of these studies have demonstrated that the sky
distribution of GRBs is isotropic (Briggs et al. 1996; Tegmark
et al. 1996; Balázs et al. 1998, 1999; Mészáros et al. 2000;
Magliocchetti et al. 2003; Vavrek et al. 2008).

Some GRB subsamples appear to deviate significantly from
isotropy, however. Balázs et al. (1998) reported that the angular
distributions of short and long GRBs are different. Cline et al.
(1999) found that the angular distributions of very short GRBs
are anisotropic, and Magliocchetti et al. (2003) reported that
the short GRB class in general deviates from angular isotropy.
Mészáros et al. (2000) and Litvin et al. (2001) wrote that the an-
gular distribution of intermediate duration GRBs is not isotropic.

In this work we examine the angular distribution of GRBs,
and we combine this information with the burst radial distri-
bution. Our goal is to search the GRB distribution for evi-
dence of large-scale Universal structure. Since all GRB classes
(long, short, and intermediate) are tracers of galaxies and mat-
ter, our sample consists of all GRBs with known redshift. As of
July 2012, the redshifts of 283 GRBs have been determined1.

1 http://lyra.berkeley.edu/grbox/grbox.php

This GRB sample occupies a huge volume, which can presum-
ably provide valuable information about Universal large-scale
structure. To learn more about the properties of the Universe, we
examine the Copernican principle (homogeneity, isotropy) for
this sample.

2. GRB spatial distribution

By studying the angular distribution of GRBs as a function of
distance, one can determine sample homogeneity as well as
isotropy. This sample of GRBs can be subdivided by redshift,
resulting in distance groupings for which angular information
can also be obtained. Although sample size 283 GRBs limits our
ability to set high-angular resolution limits, it can be used for
lower-resolution studies. We subdivide the sample into five, six,
seven, eight, and nine different radial subgroups that have suffi-
cient size to justify a statistical study.

Because of the heterogeneous collection of data in this sam-
ple, the sky exposure function is poorly-characterized for these
GRBs, making it difficult to test whether all bins have been sam-
pled similarly. However, if one assumes similar sampling to first
order, then one can test whether the two distributions are dif-
ferent or not. One common test for comparing two distributions
is the Kolmogorov-Smirnov (KS) test. However, this test is de-
signed to work with one-dimensional data sets; it is hard to use
it with data having more than one dimension (such as the angu-
lar position data described here), since there is no trivial way to
rank in higher dimensions.
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Table 1. Results of the 2D KS tests comparing the GRB groups.

zmin gr2 gr3 gr4 gr5 gr6 gr7 gr8 gr9
gr1 3.60 9 9 15 11 13 9 12 8
gr2 2.73 10 18 7 15 11 9 12
gr3 2.10 14 9 11 14 9 10
gr4 1.60 15 10 15 17 11
gr5 1.25 13 13 8 10
gr6 0.93 10 13 8
gr7 0.72 10 10
gr8 0.41 11

Notes. Boldface means there are significant (more than 2σ) differences
between the sky distributions of the two groups.

A very good summary of how to deal with this problem is
given by Lopes et al. (2008). For 2D data, Peacock (1983) sug-
gests that one should use all four possible orderings between or-
dered pairs to calculate the difference between the two distribu-
tions. Since the sky distribution of any object is composed of two
orthogonal angular coordinates, we chose to use this method.

Subdividing the sample by z produces GRB groups whose
members are at similar distances from us; in other words, their
photons come from similar Universal ages. This is not true if
any group originates from a wide range in z. Therefore, the dis-
persion in z needs to be small. However, our sample only con-
tains 283 GRBs, so the best way to minimize z dispersion is to
subdivide the data into a larger number of radial bins. For that
reason we subdivide this sample into five, six, seven, eight, and
nine parts.

When the five groups are compared, following the method
discussed in the next section, there is a weak suggestion of
anisotropy in one group. When the six groups are compared,
there is little sign of any differences between the sky distribu-
tions of the groups. This is also the case for the samples in-
volving seven and eight groups, but this is not the case when
considering the sample containing nine groups. Therefore, we
focus this analysis on the nine redshift groups containing GRBs
at different redshifts. Each redshift group contains 31 GRBs. The
minimum redshifts zmin that delineate the 9 groups are 0.00 (gr9),
0.41 (gr8), 0.72 (gr7), 0.93 (gr6), 1.25 (gr5), 1.60 (gr4),
2.10 (gr3), 2.73 (gr2), and 3.60 (gr1).

3. Two-dimensional Kolmogorov-Smirnov tests

We used the Peacock methodology to compare the largest abso-
lute differences between two cumulative angular distributions.
Our samples are the angular separations between the mem-
bers in each quadrant in each redshift group2. When comparing
two groups with 31 members there are 62 × 62 = 3844 divi-
sion points, and so there are 4 × 3844 numbers in each group.
For these 15 376 pairs, one has to find the largest of their dif-
ferences. Comparisons of the nine groups to each other using
the 2D K-S test are shown in Table 1. Comparing the two far-
thest groups (gr1, gr2) the largest numerical difference is 9.
Comparing the two nearest groups (gr8, gr9), the largest nu-
merical difference is 11. For the moment, we do not know the
precise significance of these numbers; however, we can compare
them with one another. Table 1 contains the largest number in the

2 Typical angular uncertainty for the bursts with observed z less than
an arcsecond, very few have 2–3′′ . With our data size (283 GRBs) the
typical angular separation for close GRBs is much bigger then a few
degrees, so the angular position errors are negligible in our analysis.

quadrants for each comparison. Larger numbers indicate larger
differences between the two groups being compared. Of the six
largest numbers, five belong to group4. Out of the eight largest
numbers, six belong to group4. In other words, six of the eight
numbers (out of 36) measuring the largest differences between
group pairs belong to group4.

One can calculate approximate probabilities for the differ-
ent numbers using simulations. We ran 40 thousand simulations
where 31 random points are compared with 31 other random
points. The result contains the number 18 twenty-eight times
and numbers larger than 18 ten times, so the probability of hav-
ing numbers larger than 17 is 0.095%. The probability of having
numbers larger than 16 is p = 0.0029, of having numbers larger
than 15 is p = 0.0094, and of having numbers larger than 14 is
p = 0.0246. For a random distribution, this means that numbers
larger than 14 correspond to 2σ deviations and numbers larger
than 16 correspond to 3σ deviations. The probability of having
numbers larger than 13 is p = 0.057, or 5.7%, which we do not
find to be statistically significant.

As can be seen in Table 1, we have two 3σ angular
anisotropy signatures. In both cases group4 is involved. We
also have eight 2σ signatures. In six cases group4 is involved.
However, we do not have a 3σ signature since we had 36 differ-
ent pairs to compare. Among 36 different tests one expects 1.64
2σ signatures and no (expected number is 0.09) 3σ signatures.
Except for cases involving group4 we find numbers similar to
these random distributions (two 2σ signatures and no 3σ signa-
tures). However the 36 comparisons are not independent since
we have only nine groups to compare.

4. Nearest-neighbour statistics

One can also look for anisotropies using nearest-neighbour
statistics. Assuming again that the sky exposure is independent
of z, one can compare the distributions with one another. Since
we are not focusing on close pair correlations we should calcu-
late not only the nearest-neighbour distances, but also the sec-
ond, third, etc., nearest neighbour distances. For all nine groups
we calculated the kth (k = 1, 2, ..., 30) nearest neighbour distance
distributions. Since these are one-dimensional distributions, a
simple Kolmogorov-Smirnov test can be used to determine sig-
nificances. For eight groups we do not find significant devia-
tion, but a KS test for group4 shows significant deviations from
angular isotropy starting with the sixth-nearest neighbour pairs
(Fig. 1, top, shows the 10th-neighbour distributions).

The KS probabilities also can be seen in Fig. 1. For com-
parison we also plot the group5 probabilities. One can see
that 21 consecutive probabilities in group4 reach the 2σ limit
and 9 consecutive comparisons reach the 3σ limit. Of course
this does not mean a 27σ limit, because the comparisons are not
independent. One can calculate bimodal probabilities. For exam-
ple 14 out of the 31 GRBs in this redshift band are concentrated
in approximately 1/8 of the sky (Fig. 3). The binomial probabil-
ity of finding this a deviation is p = 0.0000055.

5. Bootstrap point-radius method

Using a bootstrap point-radius method, we calculated signif-
icances that the GRB distribution with 1.6 ≤ z ≤ 2.1 is
anisotropic assuming that the sky exposure is essentially inde-
pendent of z. We chose 31 GRBs from the observed data set and
compared the sky distribution of this subsample with the sky dis-
tribution of 31 GRBs having 1.6 ≤ z ≤ 2.1.
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Fig. 1. Top: tenth-neighbour distribution for the first four groups, red
is group4. Bottom: K-S neighbour probabilities for group4 (red) and
group5 (blue).

To study the selected bursts in 2D, we selected a random lo-
cation on the celestial sphere and find how many of the 31 points
lie within a circle of predefined angular radius, for example,
within 10◦. We built statistics for this test by repeating the pro-
cess a large number of times (ten thousand). From the ten thou-
sand Monte Carlo runs we selected the largest number of bursts
found within the angular circle.

This analysis can be performed with the suspicious 31 GRB
positions and also with 31 randomly chosen GRB locations from
the observed data. There are some angular radii for which the
maximum with the 31 GRBs with 1.6 ≤ z ≤ 2.1 is quite signifi-
cant. We repeated the process with 31 different randomly chosen
burst positions, and we repeated the experiment 4000 times in
order to understand the statistical variations of this subsample.
We also performed the same measurement using angular circles
of different radii. The frequencies are shown in Fig. 2.

Figure 2 clearly shows that the 15–25% of the sky identi-
fied for 1.6 ≤ z ≤ 2.1 contains significantly more GRBs than
similar circles at other GRB redshifts. When the area is cho-
sen to be 0.1125 × 4π, 14 GRBs out of the 31 lie inside the
circle. When the area is chosen to be 0.2125 × 4π, 19 GRBs
out of the 31 lie inside the circle. When the area is chosen to
be 0.225× 4π, 20 GRBs out of the 31 lie inside the circle. In this
last case only 7 out of the 4000 bootstrap cases had 20 or more
GRBs inside the circle. This result is, therefore, a statistically
significant (p = 0.0018) deviation (the binomial probability for
this being random is less than 10−6).
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Fig. 2. Results of the Monte-Carlo bootstrap point-radius method. The
horizontal coordinate is the area of the circle in the sky relative to the
whole sky (4π). The vertical coordinate is the logarithm of the fre-
quency found from the 4000 runs. The two lines show the 2σ and
the 3σ deviations.

6. Sky exposure effects

It is important to verify that sampling biases have not contributed
to the previously mentioned angular anisotropies. There are two
principle causes of angular sampling biases: 1) GRB detectors
often favour triggering on GRBs in some angular directions
over others (sky exposure) and 2) GRB redshift measurements,
made in the visual/infrared, are inhibited by angularly-dependent
Galactic extinction (e.g. Hakkila et al. 1997).

Anisotropic sampling can be produced when a pointed
spacecraft observes some sky directions more often than others,
or when the field of view is blocked (e.g. from Earth occulta-
tion, avoidance of the Sun to protect instrumentation, or trig-
ger disabling such as over the South Atlantic Anomaly). Each
GRB instrument samples the sky differently, which makes the
summed sky exposure difficult to identify for our heterogeneous
GRB sample that has been observed by many instruments since
the late 1990s. However, 214 of the 283 GRBs in our sample
(75.6%) have been observed by Swift, as have 23 of the 31 GRBs
in group4 (74.2%). Thus, we assume to first-order that Swift’s
sky exposure is a reasonable approximation of the sky exposure
of the entire burst sample. Swift’s sky exposure has recently been
published (Baumgartner et al. 2013); its primary characteristic is
that the regions near the ecliptic poles (|β| ≥ 45◦, where β is the
ecliptic latitude) have been observed roughly 1.83 times more
frequently than the region surrounding the ecliptic equator.

Extinction due to dust from the Milky Way disk causes
another angularly-dependent sampling bias. GRBs included in
our sample have not merely been detected, but have also had
their redshifts measured. Redshift measurements involve visual
(and/or infrared) spectral observations made during the burst’s
afterglow phase. Extinction can reduce afterglow brightness by
several magnitudes or more, making spectral line measurements
more difficult. Close to the Galactic plane, the afterglow may
not even be detected. The details of the process by which red-
shift measurements are affected are difficult to model, as they
depend on the intrinsic luminosity and decay rate of the after-
glow, the telescope and spectrograph used, the redshift of the
burst, the observing conditions at the time of detection, and of
course the Galactic latitude and longitude of the burst.

Our first-order model of angular biasing in the sample as-
sumes that GRB detection rates are enhanced by a factor of 1.83
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Fig. 3. Sky distribution of 283 GRBs with red-
shift in Galactic coordinates (blue squares),
overlaid by modelled angular biases. The
Galactic equator region (lightly mottled) is
under-sampled because of Galactic extinction
effects on redshift measurements. The eclip-
tic polar regions (pink mottled) are oversam-
pled relative to ecliptic equator regions because
of Swift’s sky exposure. The anisotropic dis-
tribution of the 31 GRBs at 1.6 ≤ z ≤ 2.1
(red crosses) is largely unaffected by these bi-
ases; sampling biases have not favoured their
detection.

at high ecliptic latitudes (those with |β| ≥ 45◦) compared to those
near the ecliptic equator. Second, we account for the spottiness
of redshift observations near the Galactic plane by assuming that
the fraction of low Galactic latitude (b < 20◦) GRBs in group4
is the same as that found in the other groups (12.9%), and that
this value is a reasonable representation of the true redshift mea-
surement rate. These assumptions seems to be reasonable for the
total sample of 283 GRBs. The resulting skymap is shown in
Fig. 3.

We test the hypothesis that Swift’s sky exposure and Galactic
extinction might be responsible for the group4 burst cluster-
ing by examining the predicted numbers of GRBs in the best-
sampled regions near the ecliptic poles (b ≥ 20◦ and |β| ≥ 45◦)
compared to those in the well-sampled regions near the ecliptic
equator (b ≥ 20◦ and |β| < 45◦) and to those in the poorest-
sampled region (b < 20◦).

The expected numbers of GRBs in each group are 5.41 (best,
north), 5.41 (best, south), 8.09 (good, north), 8.09 (good, south),
and 4.00 (poor), whereas the actual counts are 11 (best, north),
1 (best, south), 8 (good, north), 6 (good, south), and 6 (poor).
This results in a χ2 probability of p = 0.025 that this is due
to chance. This probability indicates that more GRBs were de-
tected in the well-sampled northern region and fewer were de-
tected in the well-sampled southern region than were expected
owing to sky exposure and extinction effects. The 2.5% proba-
bility refers only to the fact that extinction and exposure effects
cannot explain the group4 anisotropy and do not describe the
strong clustering of GRBs within the well-sampled northern re-
gion. Finally, we note that the southern depletion is not surpris-
ing if the northern clustering is real: if the cluster is real, then
our choice of requiring equal GRB counts per radial bin allows
us to detect group4 bursts in the cluster at the cost of detecting
them elsewhere.

7. Summary and conclusion

Here we report the discovery of a possible large-scale Universal
structure at a distance of approximately ten billion light years
(redshift z ≈ 2). The 2D KS test shows a 3σ deviation. The
bootstrap point-radius method confirms this significance. The
nearest-neighbour statistics also reach the 3σ level several times.
Sampling biases cannot explain the clustering of GRBs at this
redshift.

Even though it is widely accepted, the cosmological prin-
ciple of Universal homogeneity and isotropy has always been
questioned, since structures as large as the survey size have
been consistently found as the survey size has increased. In the

late 1980s Geller & Huchra (1989) mapped the Universe to
z ≈ 0.03 and found a 200 Mpc size object, which they called the
Great Wall. In 2005 an object twice this size was reported and
was named the Sloan Great Wall (Gott et al. 2005). Recently,
Clowes et al. (2013) have found a large quasar group with a
length of 1000 Mpc. In this study we have found a potential
structure, mapped by GRBs, of about 2000–3000 Mpc size. It
is interesting to note that the universal star formation, and thus
also the GRB rate, peaked between redshifts 1.6 ≤ z ≤ 2.1
(Hayes et al. 2010). Since GRBs are a luminous tracer of mat-
ter, they should be even better tracers at these distances, where
they are more common. In other words, if one wants to search
for evidence of the largest clumps of matter in the universe using
GRBs (or any luminosity indicator that correlates with the star
formation rate), then one should search in this redshift range.

This cluster is not apparent in the larger angular distribu-
tion of all detected GRBs. This is not surprising since the clus-
ter occupies a small radial region coupled with a large angular
one. In the coming years, additional GRB detection by Swift and
new missions such as SVOM, UFFO, and CALET, coupled with
successful follow-up redshift measurements, should provide the
statistics to confirm or disprove this discovery.
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