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Abstract

The increasing prevalence of obesity and type 2 diabetes in recent decades is ofeenaisedous
public health concern, lowering life expectancy and costing the National HealtlteSENHS)

billions of pounds each year. However, measuring diabetes prevalence proves ciggltbiegbest
estimates are based on the annual Health Survey for England (HSE) and littlenglyc available at

the small area level.

Simulation models are increasingly used in health research to predict futureepceyatost of
treatment, provision of care and the possible outcomes of policy interverfimvious research
shows the relevance of this technique in modelling the outcomes of changes in taxationdand chil
benefit policy, or analysing health inequalities. This paper introduces SimHeadtmalkarea
diabetes prevalence model for Leeds and Bradford, West Yorkshire createdaisapgeneric model
framework. The process of configuring an optimal spatial microsimulation model, buwldiearlier

research, is detailed with the aim of improving and extending existing simulation models.



Table of Contents

1 INEFOTUCTION ..iieiiii ittt e et et e et e e e e e e e e e aaae b aebaaaesnsesensssennssennsssnnssnnserns]arsnrersnns 1
2 Variable SPECITICATIONS ......vvveiiieiiieiiieseeeeeeeesseeesseenseennseenneennseenneenneenneenneeenseeensreensesens]ersnrennnes 5
(2.1 POPUIATION TOTAUS. ...t eeeeeeeeeeeeaeeeeeeeeeeeaeenseeeaaeeefurrreeeees 9
IR e XY T Y Fovvommmn 9
3.1 ValidatioN METNOAS ....uuuiiiiii it e ettt s eeteteeeseesaseasesnnsessesanseseesnsessesnssdusssnneeres 9
3.2 Validation VANADIES ......coiveeiiiiiiiiiiiee e e et eee s eesetesesesbnseesesssseesssnssesessnseshernseens 12
[4  TeSHNG MOUEIS........oeeiiiieieeieeeeeeee et e e e et e e ssenseeeessenneessesaesnessessessneeee|irssneens 13
4.1 Configure constraints to fit specific population distributions ............cccovvveeviiiviieeeiesinns 14
4.2 Improving Model fit USING CIUSTEITNG .........civuuiiieiiieiiiiiiieeieeeieeeieeeeeeeenseeenseeenseeenseeee)eernnns 16
4.3 INEEIOEIISALION ..ttt e ettt e e e eeteeeeseseeeeesneesessnseesesnnsessssnnsesesnnseeeennns|ersrnnnes 20
4.4 HSE-AEfiNEA WEIGNTS ...ttt et e e e e eteeeeseeeeesesnnseesesnseseedeneerenan 23
4.5 Using cross-tabulation t0 iIMProVE Fil............coouuiiieiiiiiiiieiiieiieeeieeeeeeeeeeeeeeeenneeennraendiernnns 28
4.6 Optimal MOdel CONFIGUIATIONS .......cvvvniiieiii e e et eeee e eeeeeeseeenseeenseeensseennseennseeenfersnrees 35
(5 DiSCUSSION ANA CONCIUSION ... .iiuttiiiiiii it ee et ee e it eeesettsessessneesessssaasessneeressnseeeesnssesessnadeesrnnnees 38
List of Figures
1. lllustration of the Flexible Modelling Framework............ccccocouuveiiieuiiiiieniieeiiniieaenes v, 1
2.  Worked example of the first part of the reweighting .............cccoeeeivveiiiiiiiiiiiiiieiii e, 4
3. Diabetes prevalence by ethnicity. Reproduced from YPHO Diabetes Key Facts
(SOUICE: HSE 2004) ....uuiiiiiiiiiiiiii et e et e e et e e e e e eeaaaesernnaesennnsenesdhesseranes 8
4. Example of adjusted constraint variableS.............c.ccccouvuuiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeie e, 9
5. Error measured DY RO.986) ........cccuuuuueeeiieeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaseeeeeenees |eeens 11
6. TAE (actual-simulated PEr OA) ......coouuuiiieieeeeeeeeeeeeeeee e eeeeeeeeeieeeeeeneeeeeahaeeanns 11
7. SAE for AB, Model 2, iINtEOEIISEd ..........ooviuuiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeee e 12
8. Percent error from integerised OULPULS ..........uiiiveneiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeea e e 21
9. Percent error from non-integerised OUIPULS .............coevvuuiiiiiuniiiiiiiiiiiiiieeiiiieeeeeieeeedereeinnn, 21




List of Tables

1. Variables from the HSE and Census datasets ..............ceeevvvvieeivnieeeiiiieeniiieeeeneeeefieeeennnnn, 3
2. Variables in HSE 2003 relevant to thisS StUAY ...........ccocuuviieiiiiiiiiiiiiiiiiiiiiiiieieieiiensfeererannnn 6
3. Chisquare statistics and significance (Cramer’s V). ..o....oeeveuuiiiiuueieeriieeiiiiieeireeeeenneeeens .13

4. Model variable combinations (number of Categori€s) .........ccccuvvveviieiiiieiriiiriinricidivnnns 14
5. Model 1 validation STAtISTICS...........iiiueiiiiiiiiiiiiii i eeieee i ee e eeeieeeeaeeseneesenaesenferannees 15
6. Model 2 validation StALISTICS .........ciiieeiiiieiiiiiiiieeiiieieeeieieeeeeeeeteeeseenseerenneeesenaeeees]iereenns 15
7. Model 3 validation STALISTICS........c..iiieiiiiiiiiiiie e ceeee e ee e eeeeeeeaaeseneesenesenferanaees 16
8. Model 4 validation StAtISTICS .........iiveeeiiiieiiiiiiiieiiiieieeeeieeeieeeeeteeesesnseeresneeesenneeeees]oerennns 16
9. The initial weight assumptions fOr IPF .............c.oviviiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeee b, 17
10. Distances between final ClUSIEr CENIIES.........coivvuuiiiiiiiiiiiiiiiiieeeieeeeeieeeeeeeeeees e 17
11, ClIUSEEr CRATACTEINISTICS ..iivviieeiiiiiiiiei e ee et e e e ee e et e eeeeeeteeeanseennssenseensesensahonesennns 18
12. The cluster 1 population was best modelled using configuration 2................ccooofueeeen. 19
13. Cluster 2 population was best modelled using configuration 4 ..............cccoceeeeeeesevnnnnn. 19
14. Cluster 3 population was best modelled using configuration 4 ...........cccccocvveeveei e, 19
15. The population of cluster 4 was best modelled using configuration 3....................lo....... 19
16. The population of cluster 5 was best modelled using configuration 4....................lo....... 20
17. Cluster 1 unintegersied model COMPAriSON. .........ccovvuieeviviiiiiiiiiiiiieeeieiiieeeeiiieeeeninesfrieennns 22
18. Cluster 2 unintegersied model COMPATISON. ........vveuiieeniiiiiiiiiiieeeieieiieiieeeiseeeereeeasafnreennns 22
19. Cluster 3 unintegersied model COMPAriSON. .........cccuvuieeivviiiiiiiiiiiiiieeiiiiieeeeiieeeeninesfrieennns 22
20. Cluster 4 unintegersied model COMPATNISON. .......couuiieuiiieiiiiieiieiiiiiieiiieeieeesseeenseehiernirees 22
21. Cluster 5 unintegersied model COMPArSON. ........cccvuiiiiuuiiiiiiiiiiiiieieiiiieeeeiiieeeeeiieeeesbieeeennns 23
22. Percent error: mean, median, mode, minimum, MaXimumM ................eeevvvneeereenneeeeidioninnnn. 23
23. Misrepresentation in the HSE. (Source: DOH 2003,2004) ...........ccoevvveeeeeeeenenneeeifueenns 24
24. Percent error: mean, median, mode, minimum, MaXimumM ................oeeveveeeereennreeeidioninnnn. 25
25. Cluster 1 model COMPAIISON..........iiiieeieeieieeeee e eeeeeeeeeeeeeeiteeeeeeeeeeeeneeesesnseeernaeeselieeerenns 26
26. Cluster 2 MOAE] COMPATISON.......ccuu.iieeiiee it eeieeeeeeeeeeeeeeeseeneseenseeensesenseeenseennseennseeliresinees 26
27. Cluster 3 model COMPAIISON.........uiiiieeiieeeieeeeeeeeeeeeeeeeeeeeiteeeeeeeeeeeeneeeeesnseeesnnaeselieeersnns 27
28. Cluster 4 MOAE] COMPATISON.......cuuuiieeiieeiieeeieeeeeeeeeeeeeeaeseensseenseeensesenseeenseennseensseeliresinees 27
29. Cluster 5 model COMPAIISON.........uiiiieuiieeeeeeeeeeeeeeeeeeeeeeeeiteeeeeeeeeeesneeesesneseeesnaaeselieeeeenns 28
30. Cross-tabulation EXaAMPIE ...........iiieiiiiiii ettt eee et e e eeeeeeeeaseenseennssennsecharesnnees 30
31. Cross-tabulation re@SUIL..............oivuiiieiiiiiii et e e e ee e eeenaberneeeans 30
32. Complete model compariSONS, CIUSTEE L..........couuuiiiniiiiiiiiiiiiiiieeeeieieeeeeeeereeeenaenernneenns 31
33. Complete model comparisoNs, CIUSIEr 2.........cccouuuiiiiuuiiiiiiiiiiiieiiiiieeeeee e e 32
34. Complete model comparisoNSs, CIUSIEN 3.........oovvuuiiiiiiiiiiiiieeeieeeeeieeeeeeeeeeeeeeeeeeeeeninnn, 33
35. Complete model comparisons, CIUSIEr 4..............oovvuiiiiuiiiiiiiiiiiiiiiiiiiiieeeiieeieeai e, 34
36. Complete model comparisons, CIUSIEr 5.........ccovvuuiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e, 35
37. Final model comparisons, UNMATTIEA ...........coouuiiiuniiiriiiiiiiiiiiiiieiieeeieeeieeeieeeeaeeeadeasnnenns 37




1 Introduction

This paper outlines SimHealth and the experimental runs created and carrieddeutifp the most
robust method of creating a population microdata set of individuals at the owtputCak) level in
Leeds and Bradford, West Yorkshire.

Although ‘off the shelf” microsimulation software packages are not available, the Flexible Modelling
Framework (FMF) is an application framework that has been developed at the Univeksigds to
enable the development and integration of modelling systems using a modular approaehl{Figur
Currently the FMF consists of a framework that handles all application level commaoniatd
access to databases through a data access layer, and a Spatial Interaction Model (Sdk@rtom
(Harland and Stillwell 2007). The ‘MicroSim’ component is the latest generic social simulation
modelling module that has been developed extending the static deterministic micratisimul
techniques applied by Ballas et @D05). The ‘MicroSim’ component has been configured to run
using 2001 Census and 2003 Health Survey for England (HSE) data, producing the thimiddel

configuration.

Information

Java component

Java component

— — >R

Java component

> MicroSim

Java component

Java component

Figure 1. lllustration of the Flexible Modelling Framework



The deterministic method used to create the synthetic populations is a propoittiogaiefchnique,
similar to the sample weighting already carried out on the HSE to ethsuresults are representative

of the general population and adjusted for individual/household refusal. thieraain model creates
these population estimates by constraining the survey population by variables vehiobt @ross-
tabulated like the examples provided in Ballas et al. (2005); there are no lelatianships between

the variables, such as the number of men under age 50 or the total number of non-whites over 15. This
model selects individuals from the HSE that most closely match the Census-defined grojodlati

area, reweighting individuals against one constraint at a time. The survey must hamig@m
number of variables in common with the Census (typically 3 or 4) in order to carry out the reweighting
and provide confidence in the accuracy of resulting estimates; ideally, there shoaldtimng
correlation between the constraint variables and the health outcomes the model gsrerifd

simulate.

One advantage of a deterministic model (such as Ballas et al., 2005) is thsiirtteged population
distributions will be the same each time the model is run. This allmvenf number of data changes

to be made, with the results from each model being tested against the known popigatiortion

from the Census. If the model and/or the constraint data are changed in any wagukisewill

indicate the relative success of each change in matching the known (Census-based) population
distribution. This characteristic of deterministic models allowsowexplore several variations of the

initial model and identify the optimal reweighting methodology for a range ofthhesdhted
applications.

The ideal use of population simulations for health outcomes is to combine the sagirevalence
estimates with a policy intervention model to predict the prevalence changescal &vel under
proposed policy interventions. The advantage of spatial microsimulation is the usdgmiled
survey data to build up the synthetic populations; each person in the simulated popslagised on
an actual individual in the survey. The 2003 and 2004 HSEs include informataiatpheight and
weight, waist and hip measurements and diabetes status among over 1600 variables iloluithed, a
us to simulate detailed populations for the entire study area. Using thmiditiéc reweighting
methodology, individuals from the HSE that best fit chosen demographic charastdesty., age,
sex, ethnicity, and social grade) from the Census are ‘cloned’ until the population of each small area
(initially, an output area of approximately 250 people) is simulated (Tabl&Hg.reliability of these
synthetic populations can be validated against other census variables to ensure the synthetic population

resembles the actual population (Ballas et al., 2006).



Table 1. Variables from the HSE and Census datasets

VARIABLE HSE 2003/4 NAME CENSUS 2001
TABLE/NAME
Age age CTO003
Sex sex CTO003
Ethnicity allcultl/dmethn04 CTO003
Social grade schrpg6 CS066
Marital status marital uvoo7
Tenure Tenureb uvo43

This reweighting is repeated until each individual has been reweighted to nifleetr probability of
living in each output area. This method ensures that every person has the dpportumiallocated
to every area, however, there may be no ‘clones’ of an individual in an area, or there may be 150
copies of a single person. The criteria is simply how well each person matclesdtraints from
the census. The initial baseline model takes each constraint in isolation, esavihére a higher
chance that many people will have very small weights; if the dataset wesetaotated, there would
be fewer individuals selected, but with larger weights (Figure 2, equation 1).

n=W*s;/ m (1)
where:

N; = the new weight of an individual i

W; = the old weight of an individual i

Sj = is the element s of the small area statistics tableifalividual and attribute j
My = is the elementn of the survey data table fomdividual and attribute j.

(above reproduced from Ballas et al., 2005a)



Survey respondents

ID sex Weight (w;)
001 male 0.9
002 male 1.2
003 female 0.8

Censusoutput area A (s; values)

10 males

15 females

Survey totals (m;j values)

8000 males

8500 females

Survey respondents. new weight calculation

ID sex weight W, * s/ mj = n;

001 male 0.9 0.9 x 10/8000 = 0.00113
002 male 1.2 1.2 x 10/8000 = 0.0015
003 female | 0.8 0.8 x 15/8500 = 0.0014

Figure 2. Worked example of the first part of the reweighting

The reweighting algorithm is very similar to that used by iterative ptigpat fitting (IPF), although
a final process, after the last constraint has been applied, leaves any subgecat@ns of

reweighting unnecessary. The sum of all the new weights after the sex congregmieighted is

calcuated for each OANW,), and should sum to the total population of that OA. Then, the sum of
the new weights for all males is calculated\/,’). The ratio of the number of males reweighted by

the model NW,’) to the reweighted population for that ardd\y/) is used as a scaling factor on all

of the new weights generated by this constraint reweighting process (equatioTl4ig)is needed
because the new weights)(are very small values, and would continue to decrease with each further
constraint reweighting process as outlined by Ballas et al. (2005a) if thespmegeated. Instead,
this adjustment brings the weights back to values which are consistent wigaltiweorld population.

The step is required because the model is selecting from over 15,000 individesisnite a total
OA-level population of approximately 250, with each individual who fits an areagtaptac profile
having some ‘share’ in the population of 250. This is the reverse of Ballas’ situation, where a survey
population of less than 1000 individuals was reweighted to fit wards which havetmmilin the
thousands. In his work, the initial reweighting is repeated up to twenty timéshentew weights

converge (2005a). (see equationg2-4



tot;

nw; = oldwt® x (2)
tot;
NW, = > nw 3)
Ok ()
NW;
where

nw, is new weight for individual in OA o
NW, is total weight for all individuals in OA o

¢ is constraint sub category
tot; is total population in constraint c in OA o (Census 2001 totals used here)

tot: is total population in constraint ¢ in survey data (HSE used here)
oldwt® is initial starting weight for individual.

Initially SimHealth was intended to reweight the 2003 HSE dataset, howeve20@deHSE data
became available in time for it to be included in the process. This pooling of datasets provigs a lar
sample from which to build up the synthetic area populations; data aggregatiss yEars was also
used in a recent model for obesity at the ward, PCT, and regional level (Mogr2€0&). Temporal
aggregation is not a requirement, as many other researchers use singlatgear population
prevalence estimates (Pearce et al., 2003) and other microsimulation modigls éBall., 2005)
however, the inclusion of respondents from two years rather than only ondegravimore diverse

pool of individuals for the synthetic population.

2 Variable specifications

The correct choice of constraints is vital to building a successful spatralsimulation model. Each
of the constraints must be present in both the base survey (here, the H8t amadll-area dataset
(2001 Census output area tables). The four constraints currently in use (age, sex, atlthityial
grade) and the two validation variables (marital status and tenure) are adlhbkev online
(www.casweb.co.uk). The nature of reweighting requires that the variables usedstasints be
highly correlated with each other, so correlation analysis was carried ouute #émet the constraints

were correlated with the health outcomes and the validation variables.



The reason for choosing the HSE dataset is that it includes many varialvigs et to this research.
Many of the variables are diet-related, although there is information about Vaew@ltls conditions as
well (Table 2).

Table 2. Variables in HSE 2003 relevant to this study

VARIABLE DESCRIPTION

Cigstl Cigarette smoking grouped (never, ex-occ, ex-reg, r
Porftvg Grouped portions of fruit and veg eaten yesterday
Fatbanda Fat score (grouped)

IMD2004 Index of multiple deprivation

diabtype Type of diabetes

sprtacty Sport activity level

Shops Ease of getting to supermarket

Transport This area has good local transport

Leisure This area has good leisure things for people like me
Bmivg6 Valid BMI grouped in 6 categories

D7unitg Units drunk on heaviest day in last 7, grouped

The 2003 HSE dataset (used for the trial models) was cleaned prior tantaptite model, with all
people who failed to answer one of the constraint questions or other variables of eel@/sihc
diabetes, etc) removed from the dataset. The final test dataset, after thimemjuimcluded 15,599
respondents. The 2003 and 2004 HSE datasets were pooled to create a more diverse base population
planned for use in the final simulations; the initial merged dataset contained 37,0&iuaidiecords
(respondents). Not all of the variables were consistent between the 2003 and 2004 HSE, datas
although both datasets included questions on diet, BMI, waist/hip ratio, diabdtesysical activity.

The merged dataset thus had a total ethnic population created from the 2003 edlagltt and the
2004 category of dmethn04 (derived ethnicity). The 2004 HSE included a boost samplerif mi
ethnic groups, however, the general population survey for this year did not include aay whit
respondents with type 2 diabetes. If only the 2004 dataset was included for théntiag/gigpcess,

then there would not have been any white diabetics included in the final diseasd¢i@stirin order

to have the disaggregated ethnic groupings included in the 2004 dataset creatbd #068tdataset,

an alternative variable from 2003 was used to approximate ethnic groupings, allduklvariable
asked which culture was dominant in each respondent’s personal life. When cross-checked against the
ethnic groupings (White, Black, Asian and Other) recorded for each respondent in tita3@3, all

of the responses for allcultl corresponded with the respondent’s ethnic grouping in these four

categories.



The basic model uses four constraints: ethnicity, social class, age and sex. The main aim of SimHealth
is to estimate the prevalence of type 2 diabetes at the output area leveh&f6g3 and 2004 HSE

and the 2001 Census data; these constraints are the most relevant risk fattpesZatiabetes that

are available at the individual level in both the Census and the HSE. Table Co00&é& 2001

Census provided the output area counts for the age, ethnic and sex categories. Table CS066 supplied
the social grade classifications by both age and sex, although the age categoriedrdiffetieel ones
available for the ethnic groupings so were not included. Previous diabetes estiotiis have
included some measure of individual deprivation and created more accurate estianatawdels

with only agesexethnicity distributions (Congdon, 2006). Both the aetiology literaturaipéry to

diabetes and this modelling evidence indicate that some measure of deprivatiodeis; meedels

which have not included it acknowledge that this data would increase the model gaufefiiess-
(Forouhi et al., 2006).

The categorisation of constraints is important as well. Some of the conshrauatsvery natural
categories, such as sex (male or female), however, with other constraints thbeesgveral viable
combinations, such as ethnicity. Initially, the ethnic constraint was divided iatoatggories: white
or non-white. However, these early simulations failed to reproduce digdvetedence well (based on
the sample from Bradford). This was likely because the prevalence of typbe?ed among several
non-white groups varies widely, with Asian groups having much higher rate€haese (Figure)3
Because SimHealth uses data from the HSE with disaggregated ethnicity vaiiatsspossible to
further distinguish between White/Irish, Chinese/other, Black African, B@aakbbean, Indian,
Pakistani, Bangladeshi.



Prevalence of doctor diagnosed diabetes within minority ethnic group

4.3
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Figure 3. Diabetes prevalence by ethnicity. Reproduced from YPHO Diabetes Key
Facts (Source: HSE 2004)

Within the ethnic categories, a number of decisions for categorisation were necéfsaapspondent
was classified as white/Asian this was placed in the ‘other’ category. The ‘white’ category includes
only people who have classified themselves as White British, White Irish, or Othéz Whhe
census or HSE. This is the best approximation for the purposes of our simaatimm-whites do
have a higher prevalence of diabetes. Any other ethnic combinations (e.g.,8liack/Wwere also

classified as ‘other’.

BMI is another category which proved difficult to combine. The HSE survey ordylatds BMI for
people aged 16 and over, although the 2004 dataset included BMI estimations for 2-15 yesgenlds
on the UK standard of 1990 percentile curves (ERPHO, 2002). The SPSS syrttéx éstimation
was available; however, it used variables (day, month and age in yearsgtbatot included in the
public dataset so it was not possible to calculate the children’s BMIs from the 2003 dataset. There is
debate over the appropriate age for BMI calculations with some experts arguing thBiidiibuld
only be calculated for people aged over 20 (see section 2.2.4 in the lit regiethe purpose of this
analysis the cutoff of 16 that is used by HSE researchers will be maintaidezhildren aged under

15 will be excluded from analysis for overweight and obesity.

The final 2003-4 dataset was created by selecting only those records vdtanghers for the social

grade, age, sex and ethnicity and people aged over 16 with valid responses for BMIustedatp



total population to 25,478 which includes the under-16s with unclassified BMIs. The remaining
variables critical to the analysis and validation include tenure, marital statuadnetes type. The
tenure and marital status variables are used in validation only; each of theseaareviith tenure
coded as owned (outright or with a mortgage) or other (social or private rehtagdd ownership,
other) and marital status as either currently married or other (single, separatedddivaowed).

2.1 Population totals

The variables in the census need to be normalised by the true population as the differespesnse

rate for each variable lead to different total populations in each ougaytdepending on the variable

in question. SimHealth uses the total population count from table CT003 as the bdatopofou

each output area, as some tables in the census have smaller totals due to non-reapmrssicm.

When the constraint tables are created for each variable, the total populataah ioutput area are
normalised to match the total population in the output area as defined in CT003 @igar€&igure

4, cat 1-4 indicates the population in an OA that falls into one of four etheigocies (white, black,

Asian and other). Adj 1-4 represents the adjusted category populations, calculated by

(catl/sumpop)*realpop.

cat1 ([cat2 |cat3 |cat4 | sumpop |real pop
314 | 3 3 7 327 325

adj1 | adj2 adj3 adj4 adjpop
312 | 2.9817 | 2.9817 | 6.9572 | 325

Figure 4. Example of adjusted constraint variables

3 Validation

Each of the models discussed in this chapter were validated as described below. diirtlieapy
results from the sample dataset (2003 HSE dataset) did not meet the mivalidation criteria, the

model was discarded and another configuration was tested.

3.1 Validation methods

Validation of microsimulation outputs is a vital aspect of the modelling proegawever, very little
literature includes any discussion of validation methods for synthetic populatioatest (Voas &
Williamson, 20@). The nature of microsimulation complicates the validation process, as the model
outputs are estimates of unknown data. One commonly used approach to the validati@g&iaggr

of the simulated data to a geographical level with known values for the consaathedconstrained

variables (Ballas & Clarke, 2001). To validate SimHealth, the individual-leugdut values are



aggregated into OAs and the resulting percentages of population in categaresiméonstrained

variable can be checked against the known values reported in the Census.

Each model created as part of this research is validated against both the eatetcitmconstrained
variables that are present in both the survey and the Census datasets, meeesUratgl Absolute
Error (TAE), Standardised Absolute Error (SAE) and percent error. The error betwegated
populations from SimHealth and the actual census-defined populations is measured usingiEAE in

following equation(5):

TAE = > |U; -T;| (5)
ij

where U, is the observed count for the area i in category |

T, is the expected count for the area i in category j.

SAE is calculated as TAE divided by the total known (non-simulated) populaticradbr area. In
addition to TAE and SAE, percent error is often reported, which is SAE x 100. Voas kiath¥din
(2000) indicate that TAE and SAE are the most appropriate options for validating/evaluatirgegistim
populations. In their discussion on evaluation of fit, the problem of validating microsimulatéian

is highlighted: “...no generally applicable methodology has emerged for measuring bias and

variability.” (Voas & Williamson, 2000 p.353).

The error thresholds for both stages need to be chosen based on the intended tsageodél.
Because diabetes is a relatively rare disease (prevalence estima#é%arkthe general population),

the model needs to be very accurate, with less than 10% error (SAE < @0% iof the OAs for the
constraints, and less than 20% error (SAE < 0.2) in 90% of the output areas fordhstranted
variables. If each of the tested models did not meet the criteria of less thard0% at least 90%

of the areas for the constraint variables, then the model was discarded and anoth&l potent
configuration was testedThese error thresholds are tighter than those usually used; often the models
are expected to fit at least 80% of the areas with less than 20%@ede and Madden, 20R1The

final best-fitting model will create the population estimation from the full 2003 and 2004 H&teda

Other options for error analysis includg Rowever, this method can inadvertently hide errors in some
datasets; in SimHealth, TAE was quite high althougtafpeared to be very good. The high TAE
values can be masked if the simulated population is compared to the actual usingrplaicahd

calculating B, as used by Ballas et al. (2005). The application of this error methsdiseful in
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SimBritain (specifically, SimWales) because there were fewer and geographicgdly éaeas; any
large population loss would be easily identified in the scatterplots of mesldts. SimHealth uses
much smaller and more numerous areas, so the magnitude of population loss wottdbeeedich
greater for it to be reflected in thé Eigure 5)

400
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R2 =0.986

(0] 50 100 150 200 250 300 350 400

simulated

Figure 5. Error measured by4R(0.986)

The ability of R error measures to mask error is clear when compaiqgds 5 and 6. The’Rs
very high, indicating that the model is a good fit. When the TAE is cadcufar the same model
outputs, it reflects the true amount of error in the simulations (Figure 6

output areas

Figure 6. TAE (actual-simulated per OA)
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output areas

Figure 7. SAE for AB, Model 2, integerised

3.2 Validation variables

The validation of the model required the choice of variables with strongorships to the
constraints; if this was not the case, the validation would not be meanin§ome modelling
frameworks require that all of the variables be independent of each other, howevemdhifeasible
for this application (diabetes and obesity are themselves highly correlathd)validation process
needs to include variables which are correlated to the health outcomes ito@ssess the ability of
the model to predict health outcomes; similarly, the constraint variables moigteatorrelated to the

health outcomes.

To assess the relationships between the variables used in the population estims¢éines af
correlation tests were carried out between each of the constraint and ealidaiables. A simple
Chi-squared analysis with each of the variables coded into dichotomous categoriesthbwakaf
the variables were significantly associated with marital status and tenure.@l pvith the exception
of sex and tenure, which is significant at p < (08ble 3. Chi-square is a honparametric statistical
test designed for use with categorical variables that can identify whbéhdifference in distribution
of data from more than one sample is due to chance or if they are significant.aghiéude of any

identified significant relationships can be measured using Cramer’s V (Field 2005).
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Table 3. Chi-square stadtics and significance (Cramer’s V).

Variables (categories) Marital Status Tenure
Sex (male, female) 17.00, (.033) 4.62 (.017)
Ethnicity (white, non-white) | 24.02 (.039) 123.0 (.089)
Social Grade (A-C2, DE) 164.38 (.103) 1036.86 (.258)

Both tenure and marital status were initially selected as validation \esmjaibwever, tenure was
difficult to model. The categories given for tenure in the HSE and Census did ebtupathe only
consistent categoriebetween the two surveys were ‘owned’ (either outright or paying with a
mortgage) and ‘other’ (all other categories). The following section will show that although the more
aggregated constraints estimate the population well, further disaggreégatesed the more precise
the constraint categories are, the more precise the model can be when selecbiey ofale to
populate each area, leading to a more accurate synthetic population for representireglth
outcomes. Marital status validated better against the simulated populations, pbmuzige it was
correlated to the variables constraining the population and is not spread selatieely throughout
the population. Tenure had much higher error but there is less variati@mure tacross the
population nearly 70% of the UK population own their home if the definition used in SimHealth’s
validation is applied, and over 75% of the HSE sample used in this analysis ownemvthéiome
(Census 2001).

4 Testing models

The initial model desigmmatched the description of SimBritain: the model could be run for any
number of geographical output units, with any number of survey respondents, and woudghtrewei
each individual iteratively against univariate constraints. The final ‘new’ weights for each person in
each area, after the last constraint was reweighted, would then be sortechdmgsosler and the
decimal weights would be converted to integers; these final integenteeiguld add up to the total
census-defined population in each geographical unit (Ballas et al., 200%. variables which
constrained the model (age, sex, ethnicity and social class) should reach a neafipeitecthe

reported 2001 Census population distributions.

Five conditions were examined with the intention of optimiSigHealth’s population estimations:
constraint categorisation, area clustering, integerisation of weights, initightajeand creation of
cross-tabulated constraint tables. Each of these conditions was adjusted in Simiigalthe
optimal choice recorded. With each subsequent adjustment, the SAE and percédot #reooutput

areas were calculated and compared against previous SAE/percent error; this extetssigd, de
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testing led to the creation of the best configuration of SimHealth for tidly sirea, and identified
important contributions of this research to the field of synthetic population estimdthe following
sections explain each adjustment and the impact of these changes on the final model design.

The variations on the baseline model specified for comparison include:

Experiment with different constraint configurations: Models 1-4

Run the configured models with clustered OAs

Remove the integerisation step

Adjust the initial weights to all equal 1 rather than the HSE-defined interview weight

o~ 0N PE

Use a cross-tabulation routine to create probabilities for the interrelatiorsdtipeen the
variables: feed these into the deterministic model to select out the dndigtuals from the
HSE

4.1 Configure constraints to fit specific population distributions

The order in which constraints are reweighted in SimHealth influence the acairadleg final
population estimation; the first constraint to be reweighted will be the mastasec The study area
includes many heterogeneous output areas (OAs), with some having older popul&igh
percentages of non-white residents or a mix of different social classes. afibty across the region
makes it difficult to choose one order of constraint reweighting @st maccurately estimate the
population. To overcome this problem, four different constraint orders and categorisatiens wer

created, each to reflect different population characteristics (Table 4).

Table 4. Model variable combinations (number of categories)
‘ Model 1 Model 2/4 Model 3
Sex Male, female (2) Male, female (2) Male, female (2)
Age 0-15, 16-49, 50+ (3)| 0-15, 16-29, 30-49, 50- | 0-15, 16-29, 30-49, 50
pensioner, pensioner+ (5] pensioner, pensioner4
(5)
Ethnicity White, non-white (2)| White, Black, Asian, Othel White, Black, Indian,
4) Pakistani, Bangladesh
Other (6)
Social Grade A-C2, DE (2) AB, C1,C2,D, E (5) AB, C, DE (3)

Model 1 is the simplest configuration, with each constraint having only two ee ttetegories. This
configuration most closely matches the configurations used in SimBritain, as ntheynodre limited
to two or three categories. Model 1 reweights individuals on the basis dfitgtfingt, then social
grade, age and finally sex. Ethnicity was listed first as an acknowledgementirnpdtdance in

predicting diabetes, which is the overall aim of SimHealth.
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Model 2 is intended to be more precise with respect to age and to help best fit beeashe&re is low
ethnic diversity and greater differences in social class (Table 8). Age, stlamdi social grade are
all disaggregated to create more accurate synthetic populations, as more detditashtoategories
will create a more accurate population. Ethnic distribution is disaggegnto white, black, Asian
and other categories to provide a more detailed population profile than simlgtimglithe percent
white and non-white, as in Model 1. Model 2 is identical in constraint gioafion to Model 4,

except Model 4 reweights individuals by age category first.

Model 3 is designed to best represent areas where there is greater ethnicydevedsis important in
accurately predicting type 2 diabetes, as different Asian ethnic groups have very differient nielat

of type 2 diabetes (see Figure 3). Ethnicity is the most disaggregated viartaidamodel and is also
the first constraint to be used in reweighting calculations. Social class idd&sled, although the
age groupings are still divided into five groups. The following section on clustedizates that
output areas with the greatest ethnic diversity are also likely to be lesseds@eially, so the

simplified version of social grade is reasonable.

The initial models are compared on the basis of percent error: the minmaximum, mean, median
and mode for each variable category in every model is compared. It is not possiblecty di
compare the constraint fit for each model because of the varied model configurations, htiveever
unconstrained variable categories were consistent across all models. Thefr@sukach of the
model configurations are reported below (Tables 5-8). NB: in all of the followhblgg, (a) indicates

that multiple modes existed with the reported one being the smallest.

Table 5. Model 1 validation statistics
Model 1  owned = other | unmarried married
M ean 23.06 | 23.05 10.70 10.87

Median 18.57 | 18.40 9.09 9.18
M ode 7.58(a)| 20.00(a) .00 .00
Minimum .02 .00 .00 .00

Maximum | 78.40 78.98 48.74 49.10

Table 6. Model 2 validation statistics
Model 2 | owned | other | unmarried married |
Mean 20.93 | 20.78 9.37 9.33
Median 20.21 | 19.65 7.88 7.95
Mode 25.00 | .00 (a) .00(a) .00
Minimum .00 .00 .00 .00
Maximum | 65.39 | 66.83 39.64 37.55
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Table 7.

Model 3 validation statistics

Model 3  owned | other unmarried married

Mean 23.20 | 22.56 10.54 11.54
Median 18.50 | 17.71 8.59 10.20
Mode 5.26(a)| 18.18 .00 .00
Minimum .00 .00 .00 .00
Maximum | 86.11 | 87.22 46.18 46.44
Table 8. Model 4 validation statistics
Model 4 | owned other | unmarried married
Mean 22.82 | 22.17 7.90 8.29
Median 18.28 | 18.06 6.48 7.03
Mode 7.14(a)| 14.08(a) .00 .00
Minimum .00 .06 .00 .00
Maximum | 79.38 | 84.66 47.84 46.39

If only the unconstrained variables are compared, model 4 seems to provide the best fit, then models 2,
1 and 3 in that order. However, these models may still have signifioans in some of the output

areas, as shown by the very high maximum percent errors in each model configuration.

After this round of simulation experiments, the problems inherent in proportitiimaj {assumptions
that all areas have similar populations) proved too difficult to overcome usiggconstraint re-
categorisation. The decision to identify and group similar areas to stneolaturrently resulted from
literature on cluster analysis; the next model improvement was designed to dearaagierargh
clustering of the output areas, and selecting the optimal model configuraibatel(+4) to simulate

the population in each cluster.

4.2 Improving model fit using clustering

A problem in using proportional fitting is that the calculations begin witlagisemption that all areas
adjusted to fit some pre-defined row and column totals have the same initia{ Vable 9) (Norman,
1999).

assumption may not affect the analysis. Unfortunately, the number and diveesigasfincluded in

With an iterative process, or with many areas which have similar chatecterthis

this study meant that the model attempted to ‘smooth’ the population distributions of each constraint
towards a global mean. This is not a challenge that has been acknowledged in pesveaylging
research, however, one solution is to cluster the output areas to creatataggregps with shared

characteristics.
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Table 9. The initial weight assumptions for IPF

White Non-white | Row totals

Male 1.0 1.0 0.5
Female 1.0 1.0 0.5
Column totals| 0.75 0.25 1.00

All of the cluster analysis was carried out in SPSS 13.0 using 2001 census outpidtarda be
consistent with SimHealth. First, a two step cluster analysis was carried idenhtidy the optimal
number of clusters from the dataset. Because the two step analysis is not theppnogtiate
methods for creating clusters from large datasets, k-means cluster analysiarried out to identify
the final clusters. SPSS allows for two methods of k-means cluster andbrsisve, where the
centres are updated with each iteration, or classification only which doev@&gbgi information on
the cluster centres (preventing a direct comparison of the cluster attribithe) use of k-means
cluster analysis to identify groupings of most similar output areas is anigtstabinethodology in
geodemograhpic research; Vickers et al. (2005) use this clustering technitpgeniational output
area classification for England. The variables used as constraints were chosenctmstimin the
clusters with a maximum of five clusters allowed. The clustersbased on the percent of the
population in each of four categories: social grade D or E, over 50 years of agehiteoand male.
These criteria are based on the risk factors for diabetes, although thitle vaiation between male

and female risk.

Using a 2 step cluster analysis, 5 clusters were identified as being thé clagiexs. An iterative k-
means cluster analysis was then used to create five clusters. The cluster memaeeshipom 302
records to 1,304. The table below shows the distances between the final cluster(claissifisation

centres) (Table 10). Clusters 3 and 4 are the most dissimilar and clusters 2 and 3 are the amost simil

Table 10. Distances between final cluster centres
Cluster T2 3 4 5
1 46.39 33.83 69.13 29.08
2 46.39 18.64 66.04 27.29
3 33.83 18.64 70.64 28.56
4 69.13 66.04 70.64 56.93
5 29.08 27.29 28.56 56.93
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Once the clusters were identified the main characteristics of each wagTebbr 11). The cells

highlighted in yellow indicate the cluster with the greatest percernheftotal population in that

category, with the lowest in blue.

Table 11. Cluster characteristics
Cluster ' % nonwhite % over50 % male
1 62.23 5.39 52.34 44.42
2 22.72 5.76 28.51 49.12
3 29.31 3.02 45.65 47.52
4 51.04 64.61 18.79 48.92
5 49.79 8.22 26.45 47.88
all 37.76 11.07 32.26 48.05

Overall, the clusters can be defined as follows:

Cluster1: High percent in social grade DE and over the age of 50, low ethnic diversity
Cluster 2: Low percent in DE, over 50, ethnic diversity

Cluster3: Low percent in DE, ethnic diversity, higher percent over 50

Cluster 4: Highest ethnic diversity and percent DE, young population

Cluster 5: High percent DE, average ethnic diversity, low % over 50

Dominant cluster characteristics include:

Cluster 1: Aged, deprived

Cluster 2: Affluent

Cluster 3: Low ethnic diversity

Cluster 4: Young, ethnically diverse, more deprived
Cluster 5: similar to 4 but less ethnically diverse

The clustering analysis allowed for the identification of the optm@del configuration for areas with
similar attributes. This was achieved by comparing the mean, minimummuoraxpercent error
along with standard error of the mean for each modetomparison of the unconstrained variable,
marital status, across all of the clusters and model configurations showed that some modetsevere
accurate for each of the clusters. Model 1, when validated using matital $tad high error for all
of the clusters. As expected, the most ethnically diverse area (Cluster #estamnodetd using
Model 3, which has the most disaggregated ethnic categddesall the ‘best’ model configuration

for each cluster was the one with lowest average percent error thatrhadian very close to the
mean, a low value for the mode and low minimum and maximum percent error. ifieim and
maximum values were the least important with the most importance placed ananganedian
percent error. The variation in outputs (percent error for unmafoecgach model configuratiois
shown in Tables 12-16.
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Table 12. The cluster 1 population was best modelled using configuration 2

Unmarried Modell | Model2 | Model3 | Mode4
% error |

Mean 13.64 8.78 13.87  17.14]
Std. Error of A7 .40 .46 .58
Mean

Median 13.18 7.20 13.14 15.85
Mode .00(a) .06(a) .03(a) .15(a)
Minimum .00 .06 .03 .15
Maximum 41.55 32.54 39.12 47.30

Table 13. Cluster 2 population was best modelled using configuration 4

Unmarried Modell = Model2 | Model3 | Model4

% error

Mean 7.87 8.06 7.81 6.75

Std. Error of .19 A7 .20 13

Mean

Median 6.22 6.80 6.11 6.15

Mode 8.33 .00(a) .00 .00(a)

Minimum .00 .00 .00 .00

Maximum 42.30 36.56 43.41 25.74

Table 14. Cluster 3 population was best modelled using configuration 4

Unmarried Modell = Model2 | Model3 | Mode4

% error

Mean 8.32 10.78 8.30 6.70
Std. Error of 21 .23 .20 .19
Mean

Median 7.70 10.56 7.44 5.82
Mode 1.06| 13.97(a)] 1.28(a) .00(a)
Minimum .00 .00 .08 .00
Maximum 30.10 28.41 31.41 47.84
Table 15. The population of cluster 4 was best modelled using configuration 3
Unmarried Modell | Model2 Model3 | Model4
% error

Mean 8.26 6.96 6.98 10.52
Std. Error of .32 .36 .30 .36
Mean

Median 7.59 4.97 6.23 9.98
Mode .00(a) .06(a) .00(a) .02(a)
Minimum .00 .06 .00 .02
Maximum 32.28 33.27 34.35 30.27




Table 16. The population of cluster 5 was best modelled using configuration 4
Unmarried Modell | Model2 = Model3 | Model4

Y eror

Mean 15.31 10.75 1520  6.85]

Std. Error of 27 .24 27 A7

Mean

Median 14.38 9.10 14.48 5.51

Mode 13.65 11.30 .05(a) .00

Minimum .05 .00 .05 .00

Maximum 48.74 39.64 46.18 41.33

The validated populations, using the best fitting model configurations for eachr,cluste a great
improvement over the early model runs with all of the output areas reweighttteiog The next
element of the modelling process to come under scrutiny was the integerisatieninifial decimal

weights whole numbers. Although integerisation was a logical step in SimBtié process may

prove unnecessary for SimHealth.

4.3 Intergerisation

The integerisation process described by Ballas et al. (2005) was selecteske fam SimBritain
following extensive testing. This method is intended to be carried out forgeaghnaphical unit in
turn (Ballas et al., 2005 p.40):
+ Create two variables named counter and cumulative weight and set them to zero
+ Sort all individuals into ascending order of the new weights
+ Increase the cumulative weight by the weight of the next individual
+ If cumulative weight > 1, set the counter to an integer weight equal to the rowedkgt
value and subtract this value from cumulative weight. Increase counter by 1 antbrtiowe
next individual.

+ If counter<total individuals, return to step 3, else quit.

SimBritain was created to reweight entire households from a very smglesaf the population
(using the Britis Household Panel Survey (BHPS)) to Census wards with large populations
(approximately 13,000 individuals); SimHealth uses a large population sample (n=36&9Which
around 250-300 individuals are selected to populate each Census output area. When thengeweighti
process is carried out, the resulting ratio of individuals from tB& M/ho represent the constraint
category from the Census is very small. When the method of integerisation esteddyy Ballas et

al. (2005) was implemented, many of the very small weights were discardedhearmndstiting

populations had very high TAE and SAE (Figures 8 and 9).
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The integerisation process was removed from the code, with positive rdsailtsinstraint variables
all had error rates below 10 (SAE<0.10igures 8-9 compare the percent error (SAE x 100) for
integerised and non-integerised outputs using the Model 2 configuration.

Model 2 White % error (integerised)

40
35
30
25

20

10 1 1 1

% error

1 259 517 775 1033 1291 1549 1807 2065 2323 2581 2839 3097 3355 3613 3871
output area

Figure 8. Percent error from integerised outputs

Model 2 White % Error (non-integerised)

% error
S

1 233 465 697 929 1161 1393 1625 1857 2089 2321 2553 2785 3017 3249 3481 3713

output areas

Figure 9. Percent error from non-integerised outputs

Following detailed comparisons of the clusters with the non-integerised and integersiects/ of
SimHealth, it was found that removing the integersiation step did improve populdiimates in
some of the clusters Tables 17-.2The population estimates were the same for model configurations
2 and 4, and the paired variables (married and unmarried, owned and other) also had pleecssine

error values for each cluster-model grouping.
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Table 17. Cluster 1 unintegersied model comparison.

Cluster 1 ownedl marryl owned2 marry2 own3 | marry3 owned4
_unintegersed_____ I
Mean 32.37| 12.76| 26.22 8.06| 30.36| 10.16| 26.22 8.06
Std. Error of Mean .962 .50 .87 .40 .93 .45 .87 40
Median 32.44| 11.63| 26.06 6.68| 29.95 8.99| 26.06 6.68
Mode J7(@)| .06(a)l .09(a)|] .07(a)|.17(a)| .00(a)| .09(a)| .07(a)
Minimum a7 .06 .09 .07 A7 .00 .09 .07
Maximum 66.70( 47.40| 59.57| 40.86| 64.17| 43.40( 59.57| 40.86
Table 18. Cluster 2 unintegersied model comparison.

Cluster 2 ownedl marryl owned2 marry2 own3 | marry3

unintegersied

Mean 16.30 8.20 17.82 7.64| 16.55 6.73 17.82 7.64
Std. Error of Mean 24 .18 .23 12 .23 12 .23 12
Median 16.95 6.94| 18.83 7.48| 17.15 6.30| 18.83 7.48
Mode .03(a)| .00(a)| .00(a)| .01(a)|.13(a)| .00(a)] .00(a)| .01(a)
Minimum .03 .00 .00 .01 A3 .00 .00 .01
Maximum 67.30| 38.83| 54.49| 26.67|57.81| 28.77| 54.49| 26.67
Table 19. Cluster 3 unintegersied model comparison.

Cluster 3 ownedl marryl owned2 marry2 own3  marry3

unintegersied

Mean 15.79 7.28 18.17 8.96| 16.59 7.20| 18.17 8.96
Std. Error of Mean 27 .18 .30 .18 .29 .16 .30 .18
Median 16.99 6.86 19.79 9.20| 17.94 7.03 19.79| 9.120
Mode .20(a)| .05(a)| .01(a)| .00(a)| .11(a)| .03(a)| .01(a)| .00(a)
Minimum .20 .05 .01 .00 A1 .03 .01 .00
Maximum 50.40( 4252| 43.61| 22.39| 46.63| 34.57| 43.61| 22.39
Table 20. Cluster 4 unintegersied model comparison.

Cluster 4 ownedl marryl| owned2 marry2 own3 marry3 owned4d marry4
unintegerised

Mean 20.35 9.51 14.85 7.17| 14.77 7.60 14.85 7.17

Std. Error of .65 .32 57 .22 .64 .24 57 22
Mean

Median 20.00 9.30 13.21 7.13| 12.23 7.81 13.21 7.13
Mode A1(a)| .08(a)| .03(a)| .08(a)|.01(a)| .12(a)| .03(a)| .08(a)
Minimum A1 .08 .03 .08 .01 A2 .03 .08
Maximum 55.32| 32.99| 51.31| 17.66| 54.85| 18.47| 51.31| 17.66
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Table 21. Cluster 5 unintegersied model comparison.

Cluster 5 ownedl marryl owned2 marry2 own3 marry3 owned4 marry4
unintegerised

Mean 25.11 8.46| 21.67 5.32| 23.11 5.60| 21.67 5.32
Std. Error of Mean 49 .25 42 13 .45 14 42 A3
Median 21.69 5.95| 19.37 4.29| 20.29 4.40| 19.37 4.29
Mode .03(a)| .01(a)| .11(a)| .00(a)| .02(a)| .00(a)| .11(a)| .00(a)
Minimum .03 .01 A1 .00 .02 .00 A1 .00
Maximum 66.72| 41.27| 60.46| 28.58| 63.65| 30.34| 60.46| 28.58

Table 22 shows a direct comparison between the integerised and non-integerised model adjustment
Every cluster is listed with the optimal model configuration and the percent error for rsiztitis|

including mean, median, mode, minimum and maximum (Table 22

Table 22. Percent error: mean, median, mode, minimum, maximum

Optimal | Percent error Optimal | Percent error

model characteristics model characteristics
Cluster1 | 2 8.78; 7.19; 0.6; 0.6; 32.54 2 8.06; 6.68; .07; .07; 40.8
Cluster 2 | 4 6.75; 6.15; 0; 0; 25.74 3 6.73;6.3; 0; 0; 28.77
Cluster3 | 4 6.70; 5.82; 0; 0; 47.84 3 7.2;7.03; 0; 0; 34.57
Cluster 4 | 3 6.97; 6.23; 0; 0; 34.35 4 7.17; 7.13, .08; .08; 17.6
Cluster5 | 4 6.84; 5.51; 0; 0; 41.33 4 5.32; 4.29; 0; 0; 28.58

The version of SimHealth with specified constraint configurations and non-integénasleddights
provided an improved model fit for some clusters when evaluated using TAE, SAE and percent error.

Two additional adjustments still need to be evaluated: initial weights and cross-tabulation

4.4 HSE-defined weights

A potential difficulty with the deterministic reweighting methodologytie use of initial weights
(which represent a probability of each person responding to the initial survekie icalculation
(indicated by win equation 1); is the use of a non-response weight suitable in spatial micrasmulat
since the process of deterministic reweighting inherently chooses and reweighiduaidivo be
representative of the small area? To answer this question, it is importamierstand the methods

used to select respondents and subsequently create weights for the national survey.
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There are certain populations over- and under-represented in each year of tf@B#SE3). The
selection method used in collecting responses can begin to explain the inahilityeighted data to
accurately depict the population; survey interviewers may visit homes durirgltymrking hours,
missing out individuals who work outside of the home. Another potential reason is Hiaipheople

in certain age-sex groups are less willing to complete the survey.

Table 23. Misrepresentation in the HSE. (Source: DOH 2003,2004)

HSE YEAR { Over-represented ~ Under-represented
2003 Men aged over 55 Men aged under 35
Women aged under 25 Women aged over 55
2004 Men and women aged over 55| Men and women aged under

The HSE includes four weights with the interview weight suggested as the appropriate weigt to use
analysis of individual-level data. The interview weight was introduced in2@@8 survey and
continued in the 2004 survey to correct for non-response bias; the population of respisnaleots
adjusted, using the household weight, to fit mid-year estimates of aghssibutions at the level of
Government Office Region (GOR) (DOH 2003, 2004). The probability of responseh wilais
needed to generate the weights in both datasets, was calculated using arbmyistision model
(response/non-response) that included age-sex interaction, age group, sex, GOR,chtymehatd

the social class of the household representative person (HRP) (DOH, 2003potlrorears a
maximum of 3 households for each address were selected for interview, withswaagghtlated for
each household to ensure accurate representation of the age-sex distribution in each GOR, however, all
adults and children in each household are given identical weights: these are thHeusetiold
weights. The 2003 weights, both household and interview, were ‘trimmed’ to remove the weights
below the first and above the ®@ercentile with the intention of removing outliers (DOH, 2003).
(DOH, 2003, 2004).

In both 2003 and 2004, the resulting re-weighted population distribution for the xagess@ings
matched the known population distribution well in all GORs. This is importaretearchers who

are using the datasets to compare across areas, or who intend to compare new dafaeaiairsst

years. The interview weights for 2003 ranged from 0.39 to 3.2, which is reasonable for th&e in
model. The 2004 general population weights range from 6.07-50.67 and the ethnic boost sample
ranges from 0.08 to 20.24, which are much higher than would normally be seen in a mietasimul
model for the starting weightThe combined 2003-4 population (with respondents excluded if they
did answer constraining questions or the BMI measure) includes 25, 457 individualseigtits

ranging from 0.08 to 39.16.
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An alternative option is to set all of the initial weights to 1, creationgitorm starting point for the
reweighting process. Because the deterministic reweighting procedure only choosdsalsdthat

are representative of an area (based on the constraint distrilartithre fsmall area), there should be

no need to use the HSE weights. Returning to the previous studies completdthbyeBal, there is

not a clear reason for the use of survey-produced weights. The earlier studied haweightdthe

BHPS, which utilises a different method of weight calculation with the sameiantetda correct for
non-response (both households and individuals within each household) and account for sampling
design (Ballas et al., 2005). Adjusting all of the initial weightd was a simple changd&he results

were positive, with an improvement on the validation over the previous modelsdtarsla, 3 and 4

(Table 24). This may underestimate the effect on the pooled 2003-4 HSE dataset, however, as the
range of weight values is much greater for 2004, due to the weighting procedure wélytgs may

not be appropriate for the purposes used here, as they could over-bias certain peopéehigtiesh

weights, skewing the resulting simulated population.

Table 24. Percent error: mean, median, mode, minimum, maximum
Non-integerised (weight of 1) Non-integerised (HSE weight)
Optimal | Percent error Optimal | Percent error
model characteristics model characteristics
Cluster1 | 2 7.18; 6.15; .02; .02; 41.270 2 8.06; 6.68; .07; .07; 40.8
Cluster2 | 4 7.35; 6.96; 0; 0; 29.16 3 6.73; 6.3; 0; 0; 28.77
Cluster3 | 1 6.84; 6.25; .02; .02; 41.45 3 7.2;7.03; 0; 0; 34.57
Cluster 4 | 3 5.93; 5.8; .02; .02; 20.16 | 4 7.17; 7.13, .08; .08; 17.6
Cluster5 | 4 5.59;4.41; 0; 0; 30.41 4 5.32; 4.29; 0; 0; 28.58

A comparison between each of the available models for each cluster is showmesn 2&29.
Clusters 1 and 5 were clearly simulated most accurately in one of the modglicatithn
combinations, however, the distinction between model goodness-of-fit was not as obviows for th
remaining three clusters. In these cases the standard deviation of the peocdrareithe mean was

used as a deciding factor.
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Table 25. Cluster 1 model comparison

integerised Modell Model2 Model3 Mode4
Mean 13.64 8.78 13.87 17.14
Median 13.18 7.20 13.14 15.85
Mode 0.00 0.06 0.03 0.15
Minimum 0.00 0.06 0.03 0.15
Maximum 41.55 32.54 39.12 47.30
Std. Deviation 8.09 6.74 7.87 9.12
Mean 12.76 8.06 10.16 8.06
Median 11.63 6.68 8.99 6.68
Mode 0.06 0.07 0.00 0.07
Minimum 0.06 0.07 0.00 0.07
Maximum 47.40 40.86 43.40 40.86
Std. Deviation 8.62 6.94 7.75 6.94
Mean 13.17 7.18 13.97 8.13
Median 12.03 6.15 12.67 6.89
Mode 0.11 0.02 0.08 0.05
Minimum 0.11 0.02 0.08 0.05
Maximum 48.11 41.20 49.35 41.62
Std. Deviation 8.61 5.77 8.89 7.00
Table 26. Cluster 2 model comparison

Mean 7.87 8.06 7.81 6.75
Median 6.21 6.80 6.11 6.15
Mode 8.33 0.00 0.00 0.00
Minimum 0.00 0.00 0.00 0.00
Maximum 42.30 36.56 43.41 25.74
Std. Deviation 6.99 6.29 7.11 452
Mean 8.20 7.64 6.73 7.64
Median 6.94 7.48 6.30 7.48
Mode 0.00 0.01 0.00 0.01
Minimum 0.00 0.01 0.00 0.01
Maximum 38.83 26.67 28.77 26.67
Std. Deviation 6.48 4.48 4.17 4.48
Mean 7.95 7.25 7.54 7.35
Median 6.57 6.50 7.17 6.96
Mode 0.00 0.01 0.02 0.00
Minimum 0.00 0.01 0.02 0.00
Maximum 40.72 29.16 30.08 29.16
Std. Deviation 6.82 4.90 458 4.46




Table 27. Cluster 3 model comparison

Integerised Modell Model2 Model3 Mode4
Mean 8.32 10.78 8.30 6.70
Median 7.69 10.56 7.44 5.82
Mode 1.06 13.97 1.28 0.00
Minimum 0.00 0.00 0.08 0.00
Maximum 30.10 28.41 31.41 47.84
Std. Deviation 5.68 6.39 5.45 5.14
Mean 7.28 8.96 7.20 8.96
Median 6.86 9.20 7.03 9.20
Mode 0.05 0.00 0.03 0.00
Minimum 0.05 0.00 0.03 0.00
Maximum 42.52 22.39 34.57 22.39
Std. Deviation 5.03 5.05 454 5.05
Mean 6.84 8.03 7.85 8.58
Median 6.25 7.31 7.63 8.66
Mode 0.02 0.01 0.01 0.01
Minimum 0.02 0.01 0.01 0.01
Maximum 41.45 41.62 32.26 21.74
Std. Deviation 4.95 5.36 474 4.95
Table 28. Cluster 4 model comparison

Mean 8.26 6.96 6.97 10.52
Median 7.59 4.97 6.23 9.98
Mode 0.00 0.06 0.00 0.02
Minimum 0.00 0.06 0.00 0.02
Maximum 32.28 33.27 34.35 30.27
Std. Deviation 5.92 6.55 5.61 6.68
Mean 20.35 7.17 7.60 7.17
Median 20.00 7.13 7.81 7.13
Mode 0.11 0.08 0.12 0.08
Minimum 0.11 0.08 0.12 0.08
Maximum 55.32 17.66 18.47 17.66
Std. Deviation 12.01 4.14 4.46 4.14
Mean 9.16 6.87 5.93 6.12
Median 8.61 6.69 5.80 5.92
Mode 0.06 0.04 0.02 0.02
Minimum 0.06 0.04 0.02 0.02
Maximum 34.95 21.74 20.16 15.70
Std. Deviation 6.06 4.03 3.78 3.72




Table 29. Cluster 5 model comparison

Integerised Modell Model2 Model3 Mode4

Mean 15.31 10.75 15.20 6.84
Median 14.38 9.10 14.48 5.51
Mode 13.65 11.30 0.05 0.00
Minimum 0.05 0.00 0.05 0.00
Maximum 48.74 39.64 46.18 41.33
Std. Deviation 9.31 8.20 9.13 5.78
Mean 8.46 5.32 5.59 5.32
Median 5.95 4.29 4.40 4.29
Mode 0.01 0.00 0.00 0.00
Minimum 0.01 0.00 0.00 0.00
Maximum 41.27 28.58 30.34 28.58
Std. Deviation 8.54 4.45 481 4.45
Mean 8.99 6.09 6.88 5.59
Median 6.47 5.02 5.68 4.41
Mode 0.01 0.00 0.01 0.00
Minimum 0.01 0.00 0.01 0.00
Maximum 42.80 29.09 35.06 30.41
Std. Deviation 8.93 4.66 5.56 478

From the comparisons of available univariate models, each of the clusters does have one model
configuration and weighting/integerisation scheme which results in the lowestar the validation.

All of the clusters were best simulated using nonintegerised models, sas$seatulated run will

also use nonintegersied methods. Clusters 1and 4 populations were simulated mostyastignatel

an initial weight of 1 was used, rather than the HSE initial weightevalClusters 2, 3 and 5 had a
better fit with the HSE initial weight, but the potential error causethbyhigh weight values in the

2004 dataset needs to be considered further. Model configuration 2 gave the lowest erroefsericlust

and 5 and configuration 3 was best suited to clusters 2, 3 amtledfinal adjustment to the models,

cross-tabulation, will be tested for each cluster using the optimal model configuration.

4.5 Using cross-tabulation to improve fit

The biggest challenge with the current model is the lack of cross-tabulated ttegandividual level,
which would provide better detail about the most suitable individuals from the iF\8& know that
an area has a total population of 200, of which 150 are white, 90 are male, anch&€r éine age of
25, we still do not know how many of those people are white males over the age of 25. We can offer a
guess, but with the current method of deterministic reweighting, each person from the survey who falls

into any of the categories (white, male, over 25) has an equal chance of being selected.

For example, if the first constraint is ethnicity, thietis assume the model predicts with 100%

accuracy and assigns probabilities that add up to 150 white individuals and 50 non-white pesple. T
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will continue with the other constraint variables, with each person given malegeight that is later
converted to an integer. The result is that after integerisation of weifibts the first constraint
variable will match up with great accuracy, but subsequent constraint vandblésve a greater
level of error. This greater error occurs because each constraint variable assigns ovieidivistials
in isolation, so there is no way to account for any inter-relationship (subk age, sex and ethnicity

of each person in an area) even if it is known.

The census tables used to create the constraint tables were not univariateichisd two-
dimensional cross tabulations between constraint variables such as ethnicity by sdwmiaity by

age categories (tables CT003 and CS066 from the 2001 Census). The reweighting method used
initially for SimHealth does not allow for any relationships betweenveh@bles; each variable is
reweighted to fit each output area in isolation. This loss of known inter-varghatenships causes

the model to be less accurate than possible. A method was devised to creapeojmiility

distributions between all four of the constraint variables.

IPF is frequently used to reweight the probabilities of an even occurring ialleisgeographical area
based on known distributions. Some inter-constraint relationships were already koowthé
census tables so the method was simplified from IPF to multiplication of pribpdistributions with
the aim of creating new distributions (equations 2, 3)

P(A) x P(E,S) = P(A,E,S) (2)

P(AE,S) x P(SG) = P(SG,A E,S) (3)

whereP(x) is the probability ok occurring within a given area and
A is the age category

E is the ethnic category

Srepresents the sex of each individual and

SG is the social grade of each respondent.

Using the Census datasets (CT003 and CS066), the probability of any age or ettsgg by
classification was calculated by dividing the number of people in each categoryfde $ex this
would be the number of males or females in the output area) by the total popafldtierarea. In all
cases, the probabilities of P(E,S) and P(A) were then multiplied togethdcutatathe probability of
an individual fitting into any P(A,E,S) distribution. Once P(A,E,S) wasakn for each output area, it
was multiplied by P(SG) to reach the final distribution of P(SG,A,Es8g (Tables 30-1 for an

example).
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Table 30. Cross-tabulation example

probabilities | male female white nonwhite

original

Can be cross-tabulated to produ

Table 31. Cross-tabulation result

‘ male female ‘
White 0.55x0.7] 0.45x0.7
nonwhite 0.55x0.3| 0.45x0.3

The only adjustment made to the census tables was the standardisatidm adresi@int category to

the population of the output area as defined i®@TO01 (“all people”). Table CS066 only included
individuals age 16 and over, so the populations from this table were standardised by lthe tota
population from table CT003, reflecting the proportion of the total population irtindeach social
grade. The final cross-tabulated constraint tables for Models 1, 2 and 3 included 24, 280 and

categories respectively.

The test run of the cross-tabulated data showed that the cross-tabulation did ovx ittm@rability of
SimHealth to accurately predict population characteristics. For each of thes;lbstirthe optimal
model and Model 1 configurations were run, and the results for the unmarried valckiggory
were compared. A comparison of the model outputs shows that the univariate models provided a better

fit with marital status than the cross-tabulated models (Tables 31-35).
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Table 32. Complete model comparisons, Cluster 1

integerised Model 1 Model 2 Model 3 M odel 4

Mean 13.64 8.78 13.87 17.14
Median 13.18 7.20 13.14 15.85
Mode 0.00 0.06 0.03 0.15
Minimum 0.00 0.06 0.03 0.15
Maximum 41.55 32.54 39.12 47.30
Std. Deviation 8.09 6.74 7.87 9.12
Mean 12.76 8.06 10.16 8.06
Median 11.63 6.68 8.99 6.68
Mode 0.06 0.07 0.00 0.07
Minimum 0.06 0.07 0.00 0.07
Maximum 47.40 40.86 43.40 40.86
Std. Deviation 8.62 6.94 7.75 6.94
Mean 13.17 7.18 13.97 8.13
Median 12.03 6.15 12.67 6.89
Mode 0.11 0.02 0.08 0.05
Minimum 0.11 0.02 0.08 0.05
Maximum 48.11 41.20 49.35 41.62
Std. Deviation 8.61 5.77 8.89 7.00
Mean 14.27 13.43 13.17 15.40
Median 13.20 12.27 12.53 14.99
Mode 0.03 0.06 0.09 0.01
Minimum 0.03 0.06 0.09 0.01
Maximum 47.64 48.00 40.73 42.83
Std. Deviation 8.99 8.66 7.60 8.06




Table 33. Complete model comparisons, Cluster 2

Integerised Model 1 Model 2 Model 3 Model 4

Mean 7.87 8.06 7.81 6.75
Median 6.21 6.80 6.11 6.15
Mode 8.33 0.00 0.00 0.00
Minimum 0.00 0.00 0.00 0.00
Maximum 42.30 36.56 43.41 25.74
Std. Deviation 6.99 6.29 7.11 4,52
Mean 8.20 7.64 6.73 7.64
Median 6.94 7.48 6.30 7.48
Mode 0.00 0.01 0.00 0.01
Minimum 0.00 0.01 0.00 0.01
Maximum 38.83 26.67 28.77 26.67
Std Deviation 6.48 4.48 4.17 4.48
Mean 7.95 7.25 7.54 7.35
Median 6.57 6.50 7.17 6.96
Mode 0.00 0.01 0.02 0.00
Minimum 0.00 0.01 0.02 0.00
Maximum 40.72 29.16 30.08 29.16
Std. Deviation 6.82 4.90 4,58 4.46
Mean 8.22 7.98 7.54 7.29
Median 7.18 6.58 5.89 6.24
Mode 0.02 0.00 0.02 0.02
Minimum 0.02 0.00 0.02 0.02
Maximum 33.53 40.46 37.89 27.46
Std. Deviation 5.98 6.81 6.49 5.41
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Table 34. Complete model comparisons, Cluster 3

Integerised Model 1 Model 2 Model 3 M odel 4

Mean 8.32 10.78 8.30 6.70
Median 7.69 10.56 7.44 5.82
Mode 1.06 13.97 1.28 0.00
Minimum 0.00 0.00 0.08 0.00
Maximum 30.10 28.41 31.41 47.84
Std. Deviation 5.68 6.39 5.45 5.14
Mean 7.28 8.96 7.20 8.96
Median 6.86 9.20 7.03 9.20
Mode 0.05 0.00 0.03 0.00
Minimum 0.05 0.00 0.03 0.00
Maximum 42.52 22.39 34.57 22.39
Std. Deviation 5.03 5.05 4,54 5.05
Nonint wt 1 Modd 1 Model 2 Model 3 Modd 4
Mean 6.84 8.03 7.85 8.58
Median 6.25 7.31 7.63 8.66
Mode 0.02 0.01 0.01 0.01
Minimum 0.02 0.01 0.01 0.01
Maximum 41.45 41.62 32.26 21.74
Std. Deviation 4.95 5.36 4,74 4.95
Crosstab nonint ModellHSE Modellwtl Model3wtl Model3HSE
Mean 7.13 6.97 8.89 8.48
Median 6.69 6.46 8.53 7.92
Mode 0.08 0.02 0.01 0.00
Minimum 0.08 0.02 0.01 0.00
Maximum 46.69 41.86 26.63 32.69
Std. Deviation 5.07 4.98 5.59 5.45
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Table 35. Complete model comparisons, Cluster 4

Integerised Model 1 Model 2 Model 3 Model 4

Mean 8.26 6.96 6.97 10.52
Median 7.59 4.97 6.23 9.98
Mode 0.00 0.06 0.00 0.02
Minimum 0.00 0.06 0.00 0.02
Maximum 32.28 33.27 34.35 30.27
Std. Deviation 5.92 6.55 5.61 6.68
Mean 20.35 7.17 7.60 7.17
Median 20.00 7.13 7.81 7.13
Mode 0.11 0.08 0.12 0.08
Minimum 0.11 0.08 0.12 0.08
Maximum 55.32 17.66 18.47 17.66
Std. Deviation 12.01 4.14 4.46 4.14
Mean 9.16 6.87 5.93 6.12
Median 8.61 6.69 5.80 5.92
Mode 0.06 0.04 0.02 0.02
Minimum 0.06 0.04 0.02 0.02
Maximum 34.95 21.74 20.16 15.70
Std. Deviation 6.06 4.03 3.78 3.72
Mean 10.82 7.48 13.93 12.87
Median 10.66 6.40 12.88 12.42
Mode 0.05 0.13 0.03 0.06
Minimum 0.05 0.13 0.03 0.06
Maximum 27.66 35.09 43.27 34.16
Std. Deviation 6.68 6.04 9.10 7.75




Table 36. Complete model comparisons, Cluster 5

Integerised Model 1 M odel 2 Model 3 Model 4

Mean 15.31 10.75 15.20 6.84
Median 14.38 9.10 14.48 5,51
Mode 13.65 11.30 0.05 0.00
Minimum 0.05 0.00 0.05 0.00
Maximum 48.74 39.64 46.18 41.33
Std. Deviation 9.31 8.20 9.13 5.78
Nonint HSE wt Model 1 Moddl 2 Model 3 Mod€d 4

Mean 8.46 5.32 5.59 5.32
Median 5.95 4.29 4.40 4,29
Mode 0.01 0.00 0.00 0.00
Minimum 0.01 0.00 0.00 0.00
Maximum 41.27 28.58 30.34 28.58
Std. Deviation 8.54 4.45 4.81 4.45
Nonint wt 1 Model 1 Model 2 Model 3 Model 4

Mean 8.99 6.09 6.88 5.59
Median 6.47 5.02 5.68 4.41
Mode 0.01 0.00 0.01 0.00
Minimum 0.01 0.00 0.01 0.00
Maximum 42.80 29.09 35.06 30.41
Std. Deviation 8.93 4.66 5.56 4,78
Crosstab nonint ModelIHSE Modellwtl Model2wtl Model2HSE
Mean 7.93 9.22 13.93 12.87
Median 5.78 6.66 12.88 12.42
Mode 0.02 0.02 0.03 0.06
Minimum 0.02 0.02 0.03 0.06
Maximum 36.84 4251 43.27 34.16
Std. Deviation 7.61 8.98 9.10 7.75

The cross-tabulated data did not improve the model validation as expected. This may be a result of the
high specificity of the cross-tabulated constraints; this may have overaioadt the model, and
caused it to be too specific so it was unable to estimate unconstrained resulést this idea, the

Model 1 configuration was run for all of the clustasswell as the ‘optimal’ model, however, the

results were poorer than for the univariate models (Tables 31-35). The univari@ddés may lack
specificity, however, they appear to be more appropriate to model unconstrainecesaaabl by

extension, diabetes and obesity.

4.6 Optimal model configurations

The optimal model configurations for each cluster are the following:

+ Cluster 1: model 2, nonintegerised, initial weight of 1
+ Cluster 2: model 3, nonintegerised, initial weight of HSE int_wt
+ Cluster 3: model 3, nonintegerised, initial weight of HSE int_wt
+ Cluster 4: model 3, nonintegerised, initial weight of 1

+ Cluster 5: model 2, nonintegerised, initial weight of HSE int_wt
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One concern is that the HSE-defined weights are very high for the 2004 datdsetay not be
appropriate for use in the reweighting process. The final dediejamding starting weights (if the
HSE weights should be included) depends on whether 2004 data is necessatydionitt the final
analysis. If the 2004 population is valuable to the dataset by significantly slagréda percent error
for marital status estimations in the optimal models, then the model shouldurefog-clusters 2 ,3
and 5 using a starting weight of 1 with the combined dataset to test for a further decreasercettie p
error. If the 2004 dataset is not used in the final model the HSE startighbtsvéiom 2003 can be
maintained for clusters 2, 3 and 5.

The next test run comped the modelled estimations of marital status against the known census
distributions for the 2003 population and the combined 2003-4 population. All of the Thvster
modelled using the optimal conditions (model configuration and starting weight) sgeditove. The
results varied by cluster, but only Cluster 3 showed a large improvemtrd mean percent error
using the combined 2003-4 input population  (Table 36). Clusters 1, 4 andafl aligher percent
error using the combined dataset. Cluster 2 had similar levels of error imbdtis, but higher
standard deviation and maximum error using the combined dataset. The higher stadimg foei

the 2004 dataset did not appear to have a strong effect on the population estimates, asanddels 2
had similar or better levels of error compared to the 2003 dataset, and ®lhsgb@a higher percent
error. Because clusters 1 and 4 (which used a starting weight of 1) alsolexdénigls of error with

the combined dataset, the higher error is not due to the high HSE starting weights.
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Table 37. Final model comparisons, unmarried

Cluster 1: Model 2weight 1 combined 2003 onl

Mean 8.33 7.18
Median 7.01 6.15
Mode 0.02 0.02
Std. Deviation 7.21 5.77
Minimum 0.02 0.02
M aximum 42.72 41.20
Cluster 2: Moddl 3HSE weight  combined 2003 onl

Mean 6.23 6.73
Median 4.61 6.30
Mode 0.00 0.00
Std. Deviation 5.44 4.17
Minimum 0.00 0.00
M aximum 31.93 28.77
Mean 5.44 7.20
Median 4,14 7.03
Mode 0.01 0.03
Std. Deviation 4.79 4,54
Minimum 0.01 0.03
M aximum 35.25 34.57
Cluster 4. Model 3weight 1 combined 2003 only
Mean 7.97 5.93
Median 7.16 5.80
Mode 0.03 0.02
Std. Deviation 4.75 3.78
Minimum 0.03 0.02
M aximum 22.38 20.16
Cluster 5: Model 2 HSE weight ~ combined 2003 only
Mean 10.32 5.32
Median 10.07 4.29
Mode 0.00 0.00
Std. Deviation 5.76 4.45
Minimum 0.00 0.00
M aximum 32.26 28.58

The aim of this research is to provide the best possible approximation of the real-world poputation.
this end, the best choice is to use the best fitting model to estimate the ungopulation
characteristics (diabetes, obesity) rather than drawing from a larg@population with higher error
for the unconstrained variables. The final version of SimHealth will odipde the 2003 dataset

because it had the lowest error.
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5 Discussion and Conclusion

This paper has set out a series of modifications made to a baseline spatalnmition model
already used extensively in the UK. Here, the exploration of several modificagilowed for
systematic testing and improvement for synthetic population estimation.

The optimal models are unique in several respects. This is the firghatre spatial microsimulation
model has been created which can be adjusted for area-specific characteristicasasddiacsection

4.1. The inclusion of a clustering technique to identify areas which are besttsuit specific model
configuration is another new approach to creating a more accurate micropopulation (section 4.2)
Similarly, the changing of weights from the survey-produced interview weights toptimns of
universal weights of 1 led to an improvement in some of the areas. Each of theggueschas not
previously been introduced into a spatial microsimulation model, and will be the sobfettre
research applications. The final aspect of SimHealth that lends noveftis teesearch is the strict
specifications for the validation process, as discussed in section 3. Thdamlidittg marital status,

with low levels of acceptable error, strengthens our confidence in theilityliab the prevalence

estimates for obesity and diabetes.

Although integerisation was discarded for all of the final models, this iarem where further
investigation is required. The development and adoption of advanced integerisatidhraiyaray

be suitable for later model versions. The crabsdation of constraint variables did not improve
population estimates, however, this may be a result of the base population size and lthe smal

populations within output areas (section 4.5).

This paper is a work in progress, however, the approaches outlined here can iegiot@d
population estimates for a variety of applications. The next important step ialt@mtevhow well
SimHealth can estimate disease prevalence throughout the study area. Althexgghs timo
widespread data on small-area diabetes and obesity prevalence, there is some data available to
evaluate model outputs. The specialisation of SimHealth to estimate specific health oligomes

applying the optimal models for each cluster will form the focus of subsequent research.
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