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On the Reduced Testing of a Primitive Element in Z

Hideo SUZUKT*

The primitive roots in Z¢ are defined and exist iff n = 2,4, p*, 2p®. Knuth gave the definition of
the primitive roots in Zpa, and showed the necessary and sufficient condition for testing a primitive
root in Z;a. In this paper we define the primitive elements in Z)X, which is a generalization of
primitive roots, as elements that take the maximum multiplicative order. And we give two theorems
for the reduced testing of a primitive element in ZX for any composite n. It is shown that the
two theorems, using a technique of a lemma, for testing a primitive element allow us an effective

reduction in testing processes and in computing time cost as a consequence.
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1. Introduction

The primitive roots in Z) are defined and exist iff n = 2,4, p*, 2p®. Knuth[1] gave the definition of the primitive
roots in Z;(,, and showed the necessary and sufficient condition for testing a primitive root in Z;a. In this paper
we define the primitive elements in ZX, which is a generalization of primitive roots, as elements that take the
maximum multiplicative order.

In Section 2, we denote the symbols and functions that are used in this paper. In Section 3, we mention the
theorems and lemmas that are used in the following section.

In Section 4, we give two theorems for the reduced testing of a primitive element in Z) for any composite
n. Actually, some practical applications based on number theory, such as linear congruencial random number
generation algorithm and number theoretic cryptosystems, essentially need testing of a primitive element.

We will show that the two theorems using a technique for testing a primitive element allow us an effective
reduction in testing processes.

2. Notation

In this section, we denote the symbols and functions that are used in this paper. All the numbers which are
dealt are positive integers and zero, since we use the least non-negative residue system in modulo operations.

a|b: adivides b.

a fb: a does not divide b.

allb: albanda® b
lem(ay,az,...) : the least common multiple of ay,as,. ...
ged(ay, ag,...) :  the greatest common divisor of aj, ag,. ...

[a,b) :  theset {z:a <z < b}
Primes :  the set of prime numbers, e.g., p1(:= 2),p2,ps, ..., pi,p € Primes.
Composites :  the set of composite numbers, e.g., n € Composite.
Z, : the ring of integer modulo n, Z, := [0,n).
Z) . the multiplicative group of modulo n,
7y ={x €Ly : gcd(z,n)=1}.
#{-} : the cardinality or the number of elements in a set {-}.
Ordy,(a) :  the multiplicative order or the exponent of an element a in Z),
Ordy(a) := min{z € Zs¢ : a*=1(mod n)} if ged(a,n)=1.
¢(n) :  Euler’s totient function of n or
#{L),
o(n) =#{x €Zy,: ged(z,n)=1},
= o(py"p2®ps®...),
= o(P1)o(pa*)e(w5*) -+
n=pyipytpst -,
where ¢ ¢(1) =1,
o) =p" " pi - ).
A(n) :  Carmichael’s function of n, the universal exponent modulo n or
the maximum multiplicative order modulo 7, (Theorem 3.4)
An) =maz{x:y € Z), x=0rd,(y)},
= A2%'p3°ps® ... ),
— Lem(A@), ABE), ABSY), ),

n=ppyPpst -,
A1) = ¢(1) =1,

¢(21) =207 (a1 =1,2),

where o o
Api) = A2%) = { ") _gm-2 (g > 3)

ADE) = $%) = g2 (s — 1) (i > 2).
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¥n(d) :  the cardinality of elements with a given order d in Z) with a composite n,
and d is a divisors of A\(n),
Yn(d) =#{x €Z) :Ord,(x)=d} (Theorem 3.6).

3. Known results

Here we mention the theorems and lemmas that are used in the following section.

Theorem 3.1 (Chinese Remainder Theorem[1]). — Let n = p{'pg?ps® - - p%r be a positive integer. For a set
of integers uy, us, us, . . ., U, there is exactly one integer u that satisfies the condition

0<u<mn, and (Vie€ll,r])u=u;(mod p;?)],

in other words, for a set {u; : i € [1,7], an element u; in Z,o:}, there is evactly one element u in Z, that
satisfies the condition

(Vie[1,7])|u=u;(mod pg)].

|
Lemma 3.2 According to Chinese Remainder Theorem, for integers a,z,n = p{'py?ps® - p2r,
a®=1(mod n) iff (Vie[l,r])a®=1 (mod p;")],
and conversely,
a®#1 (modn) iff (i€ [Lr])a®#£ 1 (mod pi")].
|
Lemma 3.3 [1] Let p be a prime, « be a positive integer and p® > 2, if
z=1(mod p®), x#1 (modp**)
then
2P =1 (mod p*™), 2P #1 (mod p~+?).
|

Theorem 3.4 (Generalized Fermat-Euler Theorem/[2]-[3]). Let n and a be intergers,
™ =1 (modn) if ged(a,n) =1,

where A\(n) denotes Carmicael’s function of n. A(n) is the least exponent which holds the equation for any
integer a. Then \(n) is called as the universal exponent modulo n or the mazimum multiplicative order modulo

n. |
Lemma 3.5 From Generalized Fermat-Fuler Theorem, for integers n,a,b,

b — ab mod A(n)

a (mod n).

Theorem 3.6 (Cardinality of elements with a given order d in Z) [4]). Let n = pps?ps® -+ (p1=2) be a
positive integer and let 1, (d) be the function for the cardinality of elements with a given order d in Z) with a
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composite n.

U (d) #{x € Z) : Ord,(z)=d},

Combinations(dy,da, ds,...) °

hold
d= lcm(d17d2,d3, .o )

where d; is a divisor of A(p),

W = =

Ppo1 (dr) = Poen (dy) =

S
fin

Ypoi (di) = ¢(di) (i > 2). u

4. Testing of a primitive element

The primitive roots in Z are defined and exist iff n = 2,4, p*, 2p®. In Theorem 4.1, Knuth[1] gave the definition

of the primitive roots in Z;a, and showed the necessary and sufficient condition for testing a primitive root in

7.
D

Theorem 4.1 (Testing of a primitive root in Z;a [1]). The integer g is a primitive root in Z;a iff

(a) forp®=2,9g=1,
for p® =4,9=3,
for p* =8,9=3,5,7,
for p* =2°2% g =3,5 (mod 8),

(b) for an odd prime p and a =1, ged(g,p) =1 and
(Vql(p—1).a#D[g"T #1 (mod p)],
(¢) for an odd prime p and a > 2, g satisfies the condition (b) and
g" ' # 1 (mod p?).
|

Here we define the primitive elements in Z), which is a generalization of primitive roots, as elements that
take the maximum multiplicative order. The definition of the primitive elements in Z) is shown in Theorem
4.2.

Theorem 4.2 (Testing of a primitive element in 7. ). The integer g is a primitive element in Z) if
ged(g,m) =1 and

AC

> # 1 (mod n)].

(v q € Primes,q | \()[ g
Proof.  Obvious since this is the definition. |

Using Lemma 3.2, we show the following two theorems for reduced testing of a primitive element in ZX for any

composite n. As an assumption, the prime factorizations: the modulus n = p{'p32ps® - - p2 (p1,p2,...,pr €

Primes) and the maximum multiplicative order A(n) = qflquqg“ g% (q1,q2,...,qs € Primes) are given.
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Theorem 4.3 (Reduced testing of a primitive element in Z) ). The integer g is a primitive element in 7
if ged(g,n) =1 and

(ViellshDlFiel,r])[g v #1 (mod pi)]].
Proof. According to Theorem 4.2 and Lemma 3.2, this is obvious. |

Theorem 4.4 (More reduced testing of a primitive element in Z ). The integer g is a primitive element in
ZY if ged(g,m) =1 and

An

VielLs) @ie L) g #1 (modp),

where the underlined condition can be replaced to a reduced form in each case as follows:

(a) for ged(q;, A(pi?)) = 1, the condition is ‘false’,

(b) for p; =2,a; =1, the condition is ‘false’,

(c) forpi =q; =2,0; =2 and B; = 1, the condition is replaced to [ g = 3 (mod 4)],

(d) for p; =q; =2,0; =2 and B; # 1, the condition is ‘false’,

(e) forp; =q; =2,0; =3 and B; = 1, the condition is replaced to [ g = 3,5,7 (mod 8)],
(f) forpi =q; =2,a; =3 and B; # 1, the condition is ‘false’,

(g) forpi =q; =2,0; > 4 and B; = oy — 2, the condition is replaced to [ g = 3,5 (mod 8)],

(h) forp; =q; =2,a; > 4 and B # o5 — 2, the condition is ‘false’,

e,
(i) for p; =q; > 2 and B; = o; — 1, the condition is replaced to [ g7 # 1 (mod p?)],
(j) for pi =q; > 2 and B; # a; — 1, the condition is ‘false’,

A(n)

(k) for otherwise, the condition is replaced to [gp?rl“f # 1 (mod p;)].

In the above B; and a; relations in (d), (f), (k) and (j), "#” can be replaced to 7>".

Proof.

(a) From ¢; | A(n), A(p{") | A(n), and the assumption ged(g;, A(pj*)) = 1, we take ¢;A(p{") | A(n),
Ap) | %;l), and %7) mod A(pi?) = 0, successively. From Lemma 3.5, the Lh.s. of the underlined
condition is o o .

gy =g 9 mod A(p) g° =1 (mod p).

(b) From A(pj) = A(2) = 1, and the assumptions p;* = 2 and ged(g,n) = 1, we get ged(g,p;*) = ged(g,2) =
1. For any integer k,

k = gk mod A(2)=1 = gO =1 (mod 2)7

g
A(n) A v
gy =g % od 1 ¢° =1 (mod pf).
¢) From the assumptions p; = ¢; = 2,a; = 2 and §8; = 1, 2||A(n). And then A0 s an odd integer. From
j J 2

ged(g,n) =1, ged(g,4) = 1. Thus g is also an odd. If the underlined condition

A(n)

g 2 #1 (mod 4)

is satisfied, g = 3 (mod 4).



46 On the Reduced Testing of a Primitive Element in Z; Hideo SUZUKI
(d) From q]’ [IA(n), 2% || A(n), and the assumptions p; = q; = 2,a; = 2 and B; > a;, we obtain 2% ~1|] @,
201 | @ and @ mod A(2%) = @ mod 2% 71 = 0, successively. Therefore
gw = gw mod A(2%) = 60 = | (mod 22).

(e) From the assumptions p; = ¢; = 2, = 3 and §; = 1, 2|| A(n). Then @ is an odd integer. From
ged(g,n) = ged(g,8) =1, g is also an odd. If the underlined condition

(mod 8)

is satisfied, g = 3,5, 7 (mod 8).

(f) From qﬁj |A(n), 2% || A(n), and the assumptions p; = ¢; = 2, a; > 3 and 3; > a; — 1, we obtain 2% 71| @

Then 242 | Mn) . Successively, we obtain (”> mod A(2%) = @ mod 2%~2 = (. Further

(g) From the assumptions p; = ¢; = 2,a; > 4 and B; = a; — 2, 257 || A\(n). Then 2%~2||\(n). Thus Ll)z is
an odd integer. From ged(g,n) = 1, ged(g,2%) =1, g is also an odd. Therefore the underlined condltlon

can be written as
A(n) k2% —2 k2°‘

g =g 2
)

where k = ;;g—?z, an odd integer. From Lemma 3.3, this condition is reduced to

Y21 (mod 2%),

g% #1 (mod 16).
If this condition is satisfied, g = 3,5 (mod 8).
(h) This is same as (f)
(i) From qj] IA(n), ¢ H Mn), and the assumptions p; = ¢; > 2 and 3; = a; — 1, p?* "' ||A(n). We obtain
CY172|| ") . Let )‘(") = kp®~2. The underlined condition can be written as

A(n)

;-2 )
g9 =g " #£1 (mod p).

From Lemma 3.3, this condition is reduced to

A(n) A(n)

g"#1 (mod p?), gun #1(modp?), g¢¥  #1 (mod p?).

(j) From q’aﬂ | A(n), and the assumptions p; = ¢; > 2 and §; > «, qu [[ A(n). Then we get qfrl I %,
J

prt A;:l) and ’\é?) mod A(p§?) = %?) mod p@*~! = 0, successively. Therefore

A A =
gy =g % od Alp; )Egozl(modpia").

(k) From g; | A(n), p{*~' | M(n), and the assumptions ged(g;, N(p$*)) # 1, p; # g; and both p; and g¢; > 2, we
take ¢;p ' | A(n). Let A(n) = kp*~'. The underlined condition can be written as

a;—1

A(n) kp,

gu =g 5 #1(modp).

From Lemma 3.3, this condition is reduced to

a;—1
kp;* A(n)

k. o= ey
g% #1(mod p;), gui #1(modpi), gu #1(mod py).
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5. Conclusion

The primitive roots in Z)° are defined and exist iff n = 2,4, p*, 2p®. In this paper we have defined the primitive
elements in Z), which is a generalization of primitive roots, as elements that take the maximum multiplicative
order.

In the article[4], we have given the function ,,(d) for the cardinality of elements with a given order d in Z
for any composite n where d is a divisor of the maximum order A(n). Using this function, the function 1, (A(n))
computes the cardinality of primitive elements in ZX.

‘We have concluded that the two theorems 4.3 and 4.4, using a technique of lemma 3.2, for testing a primitive
element allow us an effective reduction in testing processes and in computing time cost as a consequence.
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