商品選択問題についての多属性効用関数法の応用

岡本眞一*

1. はじめに

消費者が商品を選ぶ際には、その商品が、安 価であること、機能がすぐれていること、安全 であること、など、種々の特性を総合的に判断 して、どの商品を購入するかの決定を下してい る。一般的に、商品の選択は主観的かつ直観的 な判断によることが多いが、これを数量的に記 述しようとすると、多くの困難な問題に直面す る。1つは人の感覚的な好みの問題など数量化 の困難な特性が含まれていることである。他の 問題は、感覚的な選好と価額など測定尺度の異 なる多数の特性を総合的に評価しなければなら ないという点である。

このような問題を扱う手法としての多属性効 用関数法について検討を加えた。この多属性効 用関数法は Keeney^{1), 2)}などにより紹介され、大 規模システムの解析に利用されてきた。たとえ ば、空港建設計画の評価²⁾、水資源計画の評価³⁾、 住居環境評価⁴⁾などである。今日までに紹介さ れている適用事例は地域開発計画などの大規模 システムについてのものが大部分であるが、こ の考え方は、身近かな商品選択の問題について も有効である。

この多属性効用関数法では、意思決定者の選 好を数量的に表現するためにアンケート調査を 実施する。このアンケート調査は、比較的にそ の問題について精通した少数の被験者を対象と する。そして、その被験者の価値構造を明らか にすることにより、その問題についての定量的 *東京情報大学助教授 な解析が可能になる。このためのアプローチの 方法の1つが効用分析である。

2. 効用理論

効用理論では、意思決定者(decision maker) が選択すべき対象を代替案(alternative)と呼 んでいる。判断を求められた意思決定者は、代 替案について、種々の選択基準から検討を加え る。そして、その検討結果に基づいて、総合的 な判定を下し、最も好ましいと思われる選択を 行っている。この際に、評価すべき特質を属性 (attribute)と呼んでいる。1つの意思決定問 題の中には、多数の属性が含まれていることが 多い。

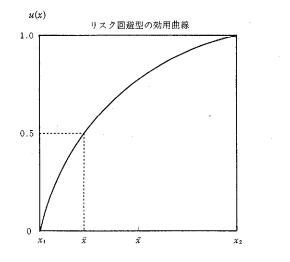
たとえば、消費者の商品選択についての問題 では、低価格であり、かつ高機能なものが選好 される。このときの価格と機能性は「商品選択 問題」における属性であると云える。一般的に、 この低価格と高機能は相反する特質である。こ のため、実際には、ある程度の妥協が必要であ り、両者のバランスを考えて判断が下される。 このような相反する属性間のバランスを解析す ることをトレードオフ分析(trade-off analysis) と呼んでいる。

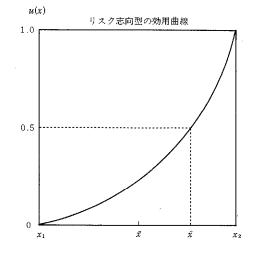
意思決定者が各属性をどの程度に好ましいと 思っているかを明確に示すことは難かしいが、 各属性の値についての相対的な満足度や属性間 の関係についての相対的な選好の程度について の判断を下すことは比較的容易である。このよ 1989年5月19日受理 うな意思決定者の価値判断のプロセスを数量的 に表現する解析手法が効用関数法である。ここ で、代替案を評価するための属性が2つ以上で ある場合を、多属性効用関数(Multiattribute Utility Function; MUF)法と呼んでいる。

いくつかの選択肢の中から1つを選択するプ ロセスを考えてみる。その意思決定者の判断は、 その選択によって、最大の効用が期待できると の考えに基づくものである。しかし、効用の度 合(たとえば投資による利益など)が明らかに なるのは将来のことであり、意思決定を行う際 には、まだ確定値ではない。したがって、意思 決定者の不確実性に対する「考え方」によって、 判断が変ってくる。

ここで、この不確実性を「くじ」で表現する ことにする。この「くじ」に当る確率をP、そ の期待値をまとする。A氏は「くじ」を引くよ りも、確実にまを得る方がよいと考えていると すれば、A氏の選好(preference)はリスク回 避型(risk aversion)であると呼ぶ。B氏は期 待値まを取るよりも、確率は小さくとも、より 高い効用(収益etc.)を求めて、「くじ」に賭け ようと考えている。このB氏の選好はリスク志 向型(risk prone)であるという。また、「くじ」 を引くこととその期待値を受け取ることに差が ないと考えるならば、その選好はリスク中立型 (risk neutral)であるという。

さらに、「くじ」を引くことと、確実に \hat{x} を 受け取ることに差がないと感ずるときに、 \hat{x} を この「くじ」の確実同値額(certainty equivalent) という。したがって、属性xについての効用を u(x)とすれば、リスク中立型の場合について のみ、次式が成り立つ。


$$u(\bar{x}) = u(\bar{x}) \tag{1}$$


リスク回避型ではx < xであり、リスク志向型 ではx < xとなる。このリスク回避型とリスク志 向型の効用関数を図・1に示す。

効用関数u(x)は、属性xの最悪値 x_1 において 最小値 $u(x_1) = 0$ となり、最良値 x_2 において最 大値 $u(x_2) = 1$ となるような関数である。した がって、効用関数の関数型を

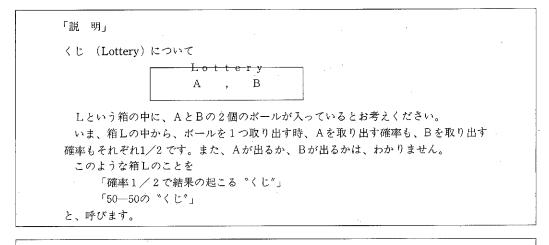
$$u(x) = a - be^{-cx} \tag{2}$$

とすれば、 $u(x_1)=0$ 、 $u(\hat{x})=0.5$ 、 $u(x_2)=1$ を 通る曲線として、係数a、b、cを決定するこ とができる。より詳しい議論は Keeney¹、様木⁴ などに述べられている。ここで、意思決定者の

図1 リスク志向型とリスク回避型の効用関数の例

確実同値額 &を求めるためのアンケート調査用 って定式化される。 紙の一例を表・1に示す。

3. 多属性効用関数法


評価対象がn個の属性により表現できると仮 定すれば、この種の多目的決定問題は式(3)によ

maximize $\{f_1(x), f_2(x), \dots, f_n(x)\}$ (3) х єХ ここで、x:n次元意思決定変数 f_i : 単一目的関数

さらに、式(3)は次の形に表現することができる。

maximize $U\{u_1(x_1), u_2(x_2), \dots, u_n(x_n)\}$ (4) $x \in X$

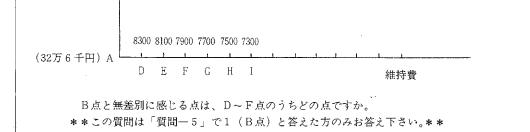
表・1 確実同値額 xを求めるためのアンケート調査用紙の一例

1 「質問-1」 この質問は、家庭用暖房器具を購入する際に、支払わなければならない金額(本体価 格)の選好をきくものです。いま維持費(電気代、石油代)は一定で7200円とします。 M-32.6万 6 万 5.8万 L M 11 万 5.8万 32.6万 -L---M----5.8万 32.6万 15 万 L M-32.6万 21 万 5.8万 Ŀ <u>14</u> 26 万 5.8万 32.6万 L M 5.8万 32.6万 31 万 ここで、箱Mには確実に起る事項が入っており、箱Lには確率½で起る2つの事項が 入っています。すなわち、「50-50のくじ」です。 箱Mと箱Lのいずれを選んでも満足度 が同じであると感じるのは上のどの場合ですか。

ここで、U: 多属性効用関数 $x_i: f_i(x)$ $X: \{x_1, x_2, \dots, x_n\}$ で構成される属性 $u_i: 単一属性効用関数$ Keen

(4)より、単一属性効用関数を統合した形の 多属性効用関数で表現できることに帰着し、評 価対象を効用値で比較検討することが可能とな る。

 u_i : 単一属性効用関数 Keeney⁵によれば、属性空間 $X = \{x_1, x_2, \cdots, Uc がって、対象とする多目的決定問題は式 <math>x_n\}$ において、効用独立および選好独立が成立


表・2 多属性効用関数におけるスケール定数 kiを決定するためのアンケート調査用紙の一例

「質 問5」			
今、購入費が32万6千円、その支払わなければならない	維持費は、一定で、8500円		
という状況(A点)を想像してください。			
つまり、購入費、維持費共に最も高いレベルである状況:	が、あなたに起ころうとし		
ています。			
さて、この両者の内、いずれか一方だけを最も安いレベ			
いレベルにすることができるとすれば、あなたは、どちら			
下図でいえば、B点とC点とを比べると、どちらが好ましいですか、ということです。			
B (32万6千、7200)			
維持費			
	(5.8万、8500)		
A	I		
(32万6千、8500) 購入費	C		

「質 問-11(A)」

先程の質問で、維持費を最良にすることを、購入費を最小にすることより、重要視 することがわかりました。今度は、購入費が最も安く、維持費が最も悪い状況である と想像して下さい。つまり、(8500、5万8千円)という状況(B点)にいると想像し て下さい。さて、購入費が最も安く、維持費が最も悪い点(B点)とD~I点との選 好状況をお尋ねします。

購入費 – B (8500、5万8千円)

すれば、多属性効用関数 u(x)は加法形あるいは 乗法形で表現できることが証明されている。 ⅰ) 加決形効用関数

ii) 乗法形効用関数

$$U(X) = \frac{1}{K} \left[\prod_{i=1}^{n} \{1 + Kk_{i}u_{i}(x_{i})\} - 1 \right], (6)$$

($\sum_{i=1}^{n} k_{i} \neq 1$ の場合)

ここで、Uおよび u_i は0から1までの値をとる効用関数である。また $\sum_{i=1}^{n} k_i \neq 1$ のとき、Kは式(7)の解であり、K > -1かつ $K \neq 0$ である。このKおよび k_i をスケール定数と呼ぶ。

$$1 + K = \prod_{i=1}^{n} (1 + Kk_i) \tag{7}$$

ここで、効用独立(utility independent)とは、 ある属性上の「くじ」に対する条件付き選好が 他の属性のレベルに依存しないことである。

この効用独立の検証およびスケール定数*k*_i、 Kの決定を行うためには、意思決定者に対して、 アンケート調査が実施される。このアンケート 用紙の一例を表・2に示す。

4. 応用例

消費者の商品選択における価値観の定量化に ついての多属性効用関数法の適用例をここに紹 介する。ここで取り上げた事例は、家庭用空調 器具の選択についての問題⁶である。

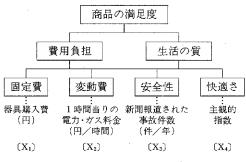


図2 空調器具の選択における各属性の階層構造

一般的な家庭で用いられている冷暖房用器具 として、(i)電気による冷暖房(ヒートポンプ 式ルームエアコン)、(ii)ガスFF式クリーン ヒータ(ガスによる暖房、電気による冷房)、の 2種類を考える。購入時における消費者の価値 判断の構造を多属性効用関数法を用いて解析す ることにより、上記2つの代替案の評価を行っ た。

消費者がこれらの商品を選択する際の目標お よび評価項目を整理した結果、図・2のような 階層構造が得られた。すなわち、空調器具の選 択に際しては生活の満足度を最大にするために、 可能な限り費用を小さくすると同時に、生活の 質の向上を図ることが考えられる。しかし、こ の両者はトレードオフの関係にある。次に、費 用の最小化は固定費の最小化と変動費の最小化 に細分される。一方、生活の質の向上は安全性 の最大化と快適さの最大化に分割される。

また、それぞれの評価項目の具体的な指数(属 性)として、固定費には機器購入費、変動費と しては1時間当りの電力・ガス料金、安全性に は年間の事故発生件数を採用した。快適さには、 安全性を除いた生活の質を総称するものとして 意思決定者が0~100の数値で評価する主観的 指数を採用した。これらの各属性の最良値と最 悪値を表・3のように設定した。

この問題の背景としては、一般的な家庭を対

表・3 家庭用空調器具の選択問題における 各属性の最良値と最悪値の設定値

属性	最悪値	最良値
X ₁ 器具購入費(円)	450,000	200,000
X2 電力・ガス料金(円/時間)	70	30
X ₃ 事故件数(件/年)	60	0
X4 快適さの指数	0	100

表・4 意思決定者の背景についての設定値

項目	設定値
	年収400万円程度 4 人(主人41才)
家屋	1 戸建木造家屋

象としており、その状況を表・4のように設定 した。この表・4に示す状況を意思決定者に想 定させて、面接によるアンケート調査を実施し た。

4人(ここでは、A、B、C、Dとする)に ついて行った面接調査結果より、各被験者の選 好構造を記述した効用関数を同定した。一例と して、A氏についての効用関数を表・5に示す。 この表において、 $u_1(x_1)$ は固定費、 $u_2(x_2)$ は変 動費、 $u_3(x_3)$ は安全性、 $u_4(x_4)$ は快適さのそれ ぞれの効用値を表わす単一属性効用関数である。 次に、 $U_{12}(x_1, x_2)$ は固定費と変動費を統合した 費用についての多属性効用関数、 $U_{34}(x_3, x_4)$ は 安全性と快適さを統合した生活の質の多属性効 用関数である。さらに、 U_{1234} はすべての属性を 統合した満足度に対する多属性効用関数である。

単一属性効用関数 u₁(x₁)、u₂(x₂)、u₄(x₄) は 4 人ともに、直線あるいは線形に近い曲線であ り、4 人の被験者すべてが、これらの属性のリ スクに対して中立的であることが明らかになっ た。一方、安全性についての効用関数は、A、 C、Dの3氏が下に凸の曲線であり、リスク志 向型である(図・3参照)。

ここで求められた被験者A、B、C、Dにつ いての多属性効用関数に2つの代替案(ヒート ポンプ式ルームエアコンとガスFF式クリーン ヒータ)についての属性の値を代入して、比較 した結果が図・4 である。

この結果を見ると、費用についての効用値は FF式クリーンヒータの方が高いが、生活の質 についての効用値ではルームエアコンの方が高 くなっている。全体としての効用値、すなわち、 満足度はルームエアコンの方が高い値となって いる。これは、被験者4人がともに安全性を重 視したためであり、多少は他の属性を犠性にし ても安全性に対して強い選好を示していると判 断できる。

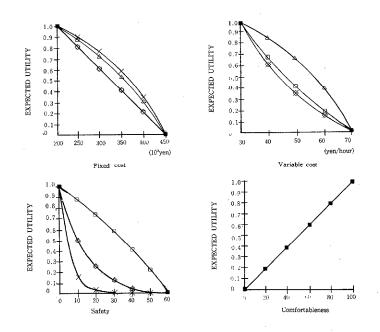
5.おわりに

多属性効用関数法は、始めに社会開発などの 大規模システムを解析するための手法として提 案されたが、その考え方は我々の身近な商品選 択など、あらゆる価値判断を求められている問 題に適用することが可能である。

その解析結果は、複数の選択肢についての優 劣を評価する際に、定量的な理解を容易にする 点において有効である。

しかし、この手法を適用する際には、いくつ かの注意事項があり、これらについては、文献 1、4などにも述べられている。とくに、アン ケートの作成については工夫が必要であり、こ の段階での検討(属性の決定など)が全体の成 否を左右する場合もある。

また、この多属性効用関数法には、多くの問 題も残されている。例えば、この方法は個々の 意思決定者の価値観を定量化したにすぎず、集 団としての意思決定のプロセスについては配慮 されていないこと、などである。


今後、これらの問題点が解明されるようにな れば、その利用範囲はなお一層広がるものと考 えられる。

謝辞

最後に、本稿をまとめるにあたって、御指導

表・5 A氏についての?	劝用関数
--------------	------

$u_1(x_1) = 10.508[1 - \exp\{0.000004(x_1 - 450000)\}]$
$u_2(x_2) = -0.547 [1 - \exp\{-0.026(x_2 - 70)\}]$
$u_3(x_3) = -0.157[1 - \exp\{-0.033(x_3 - 60)\}]$
$u_4(x_4) = x_4/100$
$U_{12}(x_1, x_2) = -1/0.555[\{1-0.199u_1(x_1)\}\{1-0.444u_2(x_2)\}-1]$
$U_{34}(x_3, x_4) = 1/0.880[\{1+0.528u_3(x_3)\}\{1+0.231u_4(x_4)\}-1]$
$U_{1234}(x_1, x_2, x_3, x_4) = -1/0.863[\{1-0.777 U_{12}(x_1, x_2)\}\{1-0.388 U_{34}(x_3, x_4)-1]$

図3 単一属性効用関数;被験者A(◇)、B(□)、C(△)、D(×)について

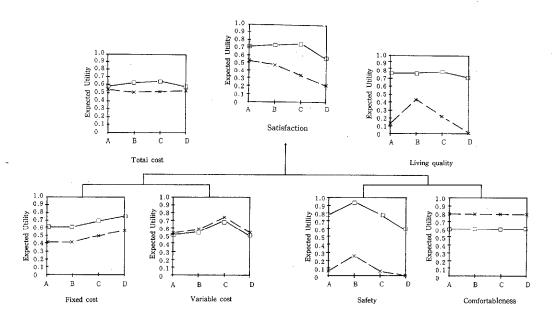


図4 被験者A、B、C、Dによるルームエアコン(ロ)とクリーンヒータ(×)についての効用値の比較

並びに御協力をいただいた早稲田大学理工学部

・塩沢清茂教授及び塩沢研究室の方々に感謝の
意を表します。

参考文献

- Keeney, R.L. and Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Trade offs, New York: John Wiley & Son. (1976)
- Keeney, R.L., "A decision analysis with multiple objectives : the Mexico City Airport", Bell J. Economics and Management Sci., 4, pp. 101-117 (1973)
- 3)瀬尾芙巳子:近畿総合地域開発プロジェクト;地域 開発に関するシステムズ・アプローチ・テキスト, pp. 79-92,日本自動制御協会 (1979)
- 4) 椹木義一,河村和彦編:参加型システムズ・アプロ ーチ・手法と応用,日本工業新聞社(1981)
- 5) Keeney, R.L., "Multiplicative Utility Functions", Operations Research, **22**, pp.22-34 (1974)
- 6)開沼泰隆,橋本克之,岡本眞一,塩沢清茂:価値観 の定量化に関する研究,早稲田大学理工学研究所報告 115, pp.13-22 (1986)