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Abstract: In this paper, we propose new resampling models in data envelopment analysis (DEA). 

Input/output values are subject to change for several reasons, e.g., measurement errors, hysteretic 

factors, arbitrariness and so on. Furthermore, these variations differ in their input/output items and 

their decision-making units (DMU). Hence, DEA efficiency scores need to be examined by 

considering these factors. Resampling based on these variations is necessary for gauging the 

confidence interval of DEA scores. We propose two resampling models. The first model utilizes 

historical data, e.g., past-present, for estimating data variations, imposing chronological order weights 

which are supplied by Lucas series (a variant of Fibonacci series). The second one deals with future 

prospects. This model aims at forecasting the future efficiency score and its confidence interval for 

each DMU. We applied our models to dataset composed of Japanese municipal hospitals.  

Keywords: Data variation; resampling; confidence interval; past-present-future DEA; hospital 

 

1 Introduction 

The treatment of data variations by statistical 

methods has taken a variety of forms in DEA. Banker [1] 

and Banker and Natarajan [2] show that DEA provides a 

consistent estimator of arbitrary monotone and concave 

production functions when the (one-sided) deviations 

from such a production are degraded as stochastic 

variations in technical inefficiency.   

Several authors developed the sensitivity analysis of 

DEA scores, e. g. Charnes and Neralić [6], Neralić [11] 

and Zhu [18]. In Neralić [11], the case of the additive 

changes of inputs and outputs of an efficient DMU 

preserving its efficiency is studied first. Then, the cases 

of the proportionate changes inputs or/and outputs with 

two coefficients of proportionality are studied. This 

study utilizes mainly the sensitivity analysis regarding 

the basis matrix changes of linear programming. In Zhu 

[18], he proposed a sensitivity analysis of DEA models 

by using various super-efficiency DEA models in which 

a test DMU is not included in the reference set. This 

sensitivity analysis approach simultaneously considers 

the data perturbations in all DMUs, namely, the change 

of the test DMU and the remaining DMUs. However, the 

above researches did not explicitly deal with resampling 

problems and confidence interval issues, rather than the 

range analysis.  

Simar and Wilson [11, 12] turn to “bootstrap 

methods” which are modifications of Efron [9]. Their 

bootstrapping utilizes a subset of original DMUs and 

data variations and measurement errors are not accounted 

in their model.  

Barnum et al. [3] applied the statistical Panel Data 

Analysis (PDA) for estimating confidence intervals of 

DEA score for individual DMUs. They succeeded in 

complementing Simar and Wilson’s bootstrapping by 

using the panel data and PDA methodologies. They 

developed a statistical method for estimating DEA score 

confidence intervals for individual organizations or other 

entities. This might be a pinnacle by statistical 
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approaches. 

 In this paper, we follow the principles stated in 

Cook, Tone and Zhu [7] and believe that DEA 

performance measures are relative, not absolute, and 

frontiers-dependent. DEA scores undergo a change 

depending on the choice of inputs, outputs, DMUs and 

models. They are evaluated by corresponding 

mathematical programming methods. Our approach deals 

with measurement variations or errors in input and 

output data directly and resamples data depending on 

historical data. Thus, the production possible set for the 

entire DMUs differs at every resample. We solve the 

frontier problem using the non-oriented slacks-based 

super-efficiency model. Hence, our approach presents 

another direction for resampling DEA scores than 

Barnum et al.’s statistical one. 

Throughout this paper, we assume that the dataset is 

free from outliers,1 homogenous in the kind of DMUs 

(e.g. hospitals, banks or universities in the same 

category) and not volatile, as otherwise the results are 

unreliable. 

This paper unfolds as follows. Section 2 explains the 

dataset we used in this study and shows preliminary 

results. Section 3 (Model 1) deals with historical data for 

estimating the distribution of input/output data and thus 

we learn the distribution of input/output values from 

history. We resample data using the discrete distribution 

with Lucas number weights to past-present data. In 

section 4 (Model 2), we extend the approach presented in 

section 3 to future forecast data and resample future data 

depending on the past-present-future inter-temporal 

distribution. For forecasting, we utilize the trend, the 

weighted average or the average of the trend and 

weighted average provided by past-present data. In all 

cases, we apply Fisher’s z-transformation to check the 

resampled data, and we utilize the non-oriented 

                                                 
1 For outlier detection, see Yang et al. [17] and references therein. 

super-efficiency model and obtain the confidence 

intervals. Section 5 concludes the paper.  

 

2 The data and preliminary results 

In this section, we introduce the dataset utilized in 

this study and demonstrate preliminary results. 

2.1 The data 

Throughout this study we utilize the dataset 

concerning nineteen municipal hospitals from 2007 to 

2009 in Japan. There are approximately 1,000 municipal 

hospitals in Japan and there is large heterogeneity among 

them. We selected nineteen municipal hospitals with 

more than 400 beds. Therefore, this sample may 

represent larger acute-care hospitals with the 

homogeneous functions owned by Japanese municipals. 

The data were collected from the Annual Databook of 

Local Public Enterprises published by the Ministry of 

Internal Affairs and Communications. We chose two 

inputs Doctor ((I)Doc) and Nurse ((I)Nur), and two 

outputs Inpatient ((O)In) and Outpatient ((O)Out) for this 

study. Table 1 exhibits the data, while Table 2 shows 

main statistics. They are all average numbers per year. 

We have no daily or monthly data. The Japanese 

government’s fiscal year begins on April 1 and ends on 

March 31. The data are the yearly average of the fiscal 

year data. 

 



 

Tone<3> 
3 

 

Table 1: The data 

 
2007    2008    2009    

DMU (I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out 

H1 108  433  606  1,239 114  453 617 1,244  116  545 603  1,295 
H2 125  448  642  1,363 133  499 638 1,310  136  482 618  1,300 
H3 118  567  585  1,072 121  600 569 1,051  125  616 561  1,071 
H4 138  541  699  1,210 138  531 704 1,194  140  554 679  1,182 
H5 138  613  653  1,195 142  616 644 1,147  137  633 622  1,147 
H6 99  569  716  1,533 106  592 701 1,478  109  613 651  1,457 
H7 94  498  540  1,065 103  494 551 1,067  101  491 540  1,067 
H8 106  461  496  1,051 118  490 504 1,033  133  479 505  1,081 
H9 109  450  483  851 119  483 487 877  121  501 486  904 
H10 102  540  581  1,268 106  558 565 1,278  148  611 586  1,321 
H11 92  495  490  1,217 101  497 501 1,146  102  501 479  1,113 
H12 148  721  771  1,637 147  710 723 1,657  158  737 743  1,714 
H13 103  593  679  2,011 106  673 642 1,883  120  697 634  1,872 
H14 101  500  613  1,868 110  519 617 1,894  116  517 623  2,009 
H15 159  793  964  2,224 160  801 906 2,148  166  817 877  2,155 
H16 77  354  410  1,047 68  359 391 916  81  378 406  897 
H17 111  663  717  1,674 112  645 702 1,774  112  663 709  1,733 
H18 62  388  480  913 64  385 467 907  63  381 463  872 
H19 98  323  508  1,192 95  314 483 1,018  95  320 490  1,034 

 

Table 2: Main statistics 

 
2007    2008    2009    

 
(I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out 

Avg 110  524  612 1,349 114  538 601 1,317 120  555 593  1,328 
Max 159  793  964 2,224 160  801 906 2,148 166  817 877  2,155 
Min 62  323  410 851 64  314 391 877 63  320 406  872 
StDev 23.75  120.41  130.51 378.24 24.15  121.43 119.57 380.07 25.58  126.78 113.05  389.49 

 

2.2 The model  

In this paper, we utilize the non-oriented super 

slacks-based measure model (Tone [15]) under the 

constant returns-to-scale (CRS) assumption for 

evaluating the relative efficiency. This model is an 

extension of the SBM (slacks-based measure; Tone 

[14]).  

 The reasons why we utilize this model are as 

follows, although we can apply other models, e.g. radial 

or oriented, as well. 

  a  CRS assumption 

Hospitals in this study are located in the urban 

districts of their municipal area and have similar 

functions as hospital. Hence, we can compare them 

under the constant returns-to-scale assumption. However, 

we can apply the variable returns-to-scale model if scale 

merits or demerits are identified. 

  b  SBM model 

As a non-radial model, the slacks-based measure 

(SBM) is appropriate for taking account of input and 

output slacks which affect efficiency scores directly, 
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whereas the radial models mainly concern with the 

proportional changes of inputs or outputs. Thus, SBM 

scores are more sensitive to data variations than the 

radial models. Furthermore, the non-oriented SBM can 

deal with input-surpluses and output-shortfalls within the 

same scheme. 

  c  Super-SBM model 

Most DEA scores are bounded by unity (≤1, or ≥1). 

This encounters difficulties in comparing efficient 

DMUs. The super-efficiency models can compare them 

by removing the bound.  

2.3 Preliminary results: By Year 

We solved the data year by year and obtained the 

super-efficiency scores in Table 3. As can be seen, the 

scores fluctuate by year. This suggests need for analysis 

of data variation.  

 

 

Table 3: Super-SBM score 

 2007 2008 2009 
H1 0.883  0.905  0.754  
H2 0.875  0.801  0.779  
H3 0.623  0.615  0.592  
H4 0.700  0.765  0.680  
H5 0.619  0.620  0.604  
H6 1.004  0.942  0.848  
H7 0.719  0.732  0.725  
H8 0.676  0.651  0.631  
H9 0.588  0.583  0.568  
H10 0.758  0.764  0.631  
H11 0.757  0.740  0.698  
H12 0.711  0.741  0.714  
H13 1.034  1.025  0.831  
H14 1.039  1.107  1.145  
H15 0.858  0.857  0.811  
H16 0.831  0.847  0.742  
H17 0.847  0.948  0.937  
H18 1.034  1.050  1.074  
H19 1.071  1.072  1.100  
Avg 0.822 0.830 0.782 

 

 

Figure 2: Panel data results 

 

2.4 Preliminary results: Panel 

We merged the dataset and evaluated the efficiency 

scores relative to 57 (19 3= × ) DMUs as exhibited in 

Figure 2.Comparing the averages of these three years, we 

found that the average 0.820 of year 2007 is better than 

2008 (0.763) and 2009 (0.732). We checked the 

non-parametric Wilcoxon rank-sum test. The results 
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indicate that the null hypothesis 2007 and 2008 have the 

same distribution of efficiency scores is rejected at the 

significance level 1%. 2007 outperforms 2008. Similarly, 

2007 outperforms 2009. However, we cannot see 

significant difference between 2008 and 2009.   

3 Use of historical data for estimating data variations: 

Model 1 

In this section, we make use of historical data for 

resampling purposes.  

3.1 Historical data and weights 

Let the historical set of input and output matrix be 

( , ) ( 1, , )t t t T=X Y K where 1t =  is the first period 

and t T= is the last period with 1( , , )t t t
n=X x xL

and 1( , , )t t t
n=Y y yL . The number of the DMU is n 

and, and t m t s
j jR R∈ ∈x y are respectively input and 

output vectors of DMUj .  

  a  Super-efficiency scores of ( , )T TX Y  

First we evaluate the super-efficiency scores of the 

last period’s DMUs. Then we gauge their confidence 

interval using replicas from ( , ) ( 1, , )t t t T=X Y K as 

follows. 

  b Lucas weight 

We set the weight 
tw  to period t and assume the 

weights are increasing in t. For this purpose, the 

following Lucas number series 
1( , , )Tl lK  (a variant 

of Fibonacci series) is a candidate where we have  

2 1 1 2( 1, , 2; 1, 2).t t tl l l t T l l+ += + = − = =K  (1) 

Let the sum be 
1

T

t
t

L l
=

=∑  and we define weight 

tw by 

( 1, , ).t tw l L t T= = K            (2) 

If T=5, we have w1 = 0.0526, w2 = 0.1053, w3 = 

0.1579, w4 = 0.2631, w5 = 0.4211. Thus, the influence of 

the past period fades away gradually. 

3.2 Cumulative weight and random sampling 

We regard the historical data 

( , ) ( 1, , )t t t T=X Y K as discrete events with 

probability 
tw  and with the cumulative probability 

1

( 1, , ).
t

t i
i

W w t T
=

= =∑ K           (3) 

[Data Generation Process] 

Using a uniform random number(0 1)r r≤ ≤ , we 

resample ( , )t tX Y if 
1t tW r W− < ≤ , where we 

define 
0 0W = . We evaluate the efficiency score of 

each DMU by using the super-SBM model. We repeat 

this process for the designated times. 

3.3 Use of Fisher’s z transformation 

We compute the correlation coefficient of two inputs 

(outputs, input vs. output) items of the last period data 

over the all DMUs. Then, we calculate its ζ % 

confidence interval, e.g., 95%, using Fisher’s z 

transformation [10]. If the corresponding correlation of a 

resampled data is out of range of this interval, we discard 

this resample data. We execute the same process between 

all pair of inputs, outputs and input vs. output. Thus, 

inappropriate samples with unbalanced inputs and 

outputs relative to the inputs and outputs of the last 

period are excluded from resampling. The above noted 

95% confidence interval is not compulsory. The 

narrower the interval, the closer the resample will be to 

the last period data.  

3.4 An example of historical data and resampling 

We applied the above procedure to the historical data 

of nineteen hospitals for the two years 2008-2009 in 

Table 1. We excluded the year 2007 data, because they 

belong to a different population than 2009 as explained 

in Preliminary results (Panel) in section 2.4. 

Table 5 shows the correlation matrix of the observed 

2009 year data in Table 1 and Fisher 95% confidence 

intervals are exhibited in Table 6. 
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Table 5: Correlation matrix 

 Doc Nurse Inpatient Outpatient 

Doc 1 0.7453 0.7372 0.5178 
Nurse 0.7453 1 0.8610 0.7387 

Inpatient 0.7372 0.8610 1 0.8264 
Outpatient 0.5178 0.7387 0.8264 1 

Table 6: Fisher 95% confidence lower/upper bounds for correlation matrix 

  Lower bounds 

  Doc Nurse Inpatient Outpatien
t 

 Doc  0.4400 0.4255 0.0832 

Upper Nurse 0.8961  0.6681 0.4281 

bounds Inpatient 0.8926 0.9455  0.5959 

 Outpatient 0.7869 0.8932 0.9311  

Table 7: Fisher 20% confidence lower/upper bounds for correlation matrix 

   Lower bounds  

  Doc Nurse Inpatient Outpatien
t 

 Doc  0.71578 0.70695 0.46998 

Upper Nurse 0.77214  0.8437 0.70854 

bounds Inpatient 0.76482 0.87652  0.80525 

 Outpatient 0.56266 0.76614 0.84547  
 

For example, the correlation 

coefficient between Doc and Outpatient is 

0.5178 and its 95% lower/upper bounds 

are respectively 0.0832 and 0.7869. 

In addition, we report Fisher 20% 

confidence lower/upper bounds in Table 7. 

The intervals are considerably narrowed 

down compared with Fisher 95% case. 

Table 8 exhibits results obtained by 

500 replicas where the column DEA is the 

last period’s (2009) efficiency score and 

Average indicates the average score over 

500 replicas. The column Rank is the 

ranking of average scores. We applied 

Fisher 95% threshold and found no 

out-of-range samples. 

Figure 3 shows the 95% confidence 

intervals for the last period’s (2009) DEA 

scores along with Average scores. The 

average of the 95% confidence interval for 

all hospitals is 0.10. 

Table 8: DEA score and confidence interval with 500 replicas 

 97.50% DEA 
(2009) Average 2.50%  

Rank 
(Avg) 

HH1 0.9228 0.7540 0.8047 0.7240  8 
H2 0.8279 0.7787 0.7865 0.7415  9 
H3 0.6285 0.5918 0.5999 0.5730  18 
H4 0.7574 0.6802 0.7090 0.6694  14 
H5 0.6375 0.6042 0.6088 0.5792  17 
H6 0.9384 0.8475 0.8758 0.8159  6 
H7 0.7620 0.725 0.7284 0.6998  11 
H8 0.6902 0.6311 0.6365 0.6002  16 
H9 0.6030 0.5681 0.5732 0.5452  19 
H10 0.7963 0.6308 0.6818 0.6032  15 
H11 0.7433 0.6985 0.7116 0.6808  13 
H12 0.7684 0.7140 0.7237 0.6849  12 
H13 1.0465 0.831 0.8978 0.8081  5 
H14 1.1564 1.1448 1.1329 1.1037  1 
H15 0.8692 0.8107 0.8277 0.7886  7 
H16 0.8792 0.7418 0.7782 0.7140  10 
H17 1.0142 0.9368 0.9542 0.9076  4 
H18 1.0837 1.0745 1.0708 1.0497  3 
H19 1.1194 1.0996 1.0897 1.0618  2 
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Figure 3: 95% confidence interval 

 

3.5 Observations 

3.5.1 Historical data 

As pointed in section 3.4, we excluded 2007 data 

from the past data in this case. Historical data may suffer 

from accidental or exceptional events, for example, oil 

shock, earthquake, financial crisis, environmental system 

change and so forth. We must exclude these from the 

data. If some data are under age depreciation, we must 

adjust them properly. 

3.5.2 Lucas weight 

In this study, we put Lucas weights for past and 

present data. However, we can use other weight, e.g. 

exponential, as well. 

3.5.3 Fisher’s threshold 

In the Fisher 95% (ζ95) case, we found no discarded 

samples, whereas in the Fisher 20% (ζ20) case, 1945 

samples are discarded before getting 500 replicas. 

However, we cannot see significant differences between 

scores calculated by both thresholds. 

3.5.4 Number of replicas 

One resample produces one efficiency score for each 

DMU. We compared 500 and 5000 replicas. The 

difference was negligible small. 500 replicas may be 

acceptable in this case. However, number of replicas 

depends on the numbers of inputs, outputs and DMUs. 

Hence, we need to check the variations of scores by 

increasing the number of replicas. 

4 Resampling with future forecasts: Model 2 

In the previous section, we utilized historical data 

( , ) ( 1, , )t t t T=X Y K to gauge the confidence interval 

of the last period’s scores. In this section, we forecast 

“future” 1 1( , )T T+ +X Y by using “past-present” data

( , ) ( 1, , )t t t T=X Y K  and forecast the efficiency 

scores of the future DMUs with their confidence 

intervals. 

4.1 Forecasting future data  

Let ( 1, , )th t T= K  be the observed historical 

data for a certain input/output of a DMU. We wish to 

forecast 1Th +  from ( 1, , )th t T= K . There are 

several forecasting engines available for this purpose. 

We must choose one or try several for deciding which 
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one is best suited for the problem at hand. As candidates, 

we choose the following three scenarios: 

(a) Trend analysis: a simple linear least square 

regression, 

(b) Weighted average: weight by Lucas number, 

(c) Average of trend and weighted average. 

By applying a forecasting model, we obtain the data 

set 1 1( , )T T+ +X Y . We evaluate the super-efficiency of 

the “future” DMU 1 1( , )T T+ +X Y .  

4.2 Resampling by using past-present-future data 

We have the past-present-future inter-temporal data 

set( , ) ( 1, , 1)t t t T= +X Y K . Thus, we can apply the 

resampling scheme in the previous section and obtain 

confidence intervals. 

4.3 An example of past-present-future DEA 

In this section, we apply our scheme for the dataset 

displayed in Table 1. In this case we regard 2007-2008 as 

the past-present and 2009 as the future. 

4.3.1 Forecast by Trend case 

Table 11 reports the forecast 2009 data by Trend. 

Table 12 shows the forecast DEA score and 

confidence interval along with the actual super-SBM 

score for 2009. Figure 4 exhibits 97.5% percent, 2.5% 

percent, forecast score and actual score. 

 

 

Table 11: Forecast 2009 data: forecast by Trend Table 12: Forecast DEA score, actual (2009) score and 
confidence interval: Forecast by Trend 

DMU (I)Doc (I)Nurse (O)In- 
patient 

(O)Out- 
patient 

H1 120 473 628 1249 
H2 141 550 634 1257 
H3 124 633 553 1030 
H4 138 521 709 1178 
H5 146 619 635 1099 
H6 113 615 686 1423 
H7 112 490 562 1069 
H8 130 519 512 1015 
H9 129 516 491 903 
H10 110 576 549 1288 
H11 110 499 512 1075 
H12 146 699 675 1677 
H13 109 753 605 1755 
H14 119 538 621 1920 
H15 161 809 848 2072 
H16 59 364 372 785 
H17 113 627 687 1874 
H18 66 382 454 901 
H19 92 305 458 844 

 

DMU (I)Doc (I)Nurse (O)In- 
patient 

(O)Out- 
patient 

H1 1.0237 0.9338 0.7540 0.8245 
H2 1.0027 0.7870 0.7787 0.7220 
H3 0.6649 0.6148 0.5918 0.5641 
H4 0.8816 0.8581 0.6802 0.7319 
H5 0.6814 0.6421 0.6042 0.5771 
H6 1.0213 0.8768 0.8475 0.8062 
H7 0.8292 0.7586 0.7250 0.6945 
H8 0.7641 0.6725 0.6311 0.6066 
H9 0.6983 0.6213 0.5681 0.5390 
H10 0.8422 0.7781 0.6308 0.7111 
H11 0.8425 0.7206 0.6985 0.6679 
H12 0.8136 0.7716 0.7140 0.7068 
H13 1.0814 1 0.8310 0.8276 
H14 1.1575 1.0909 1.1448 1.0281 
H15 0.9467 0.8541 0.8107 0.7902 
H16 1.0376 0.9444 0.7418 0.7258 
H17 1.0387 1.0348 0.9368 0.8982 
H18 1.0899 1.0537 1.0745 0.9692 
H19 1.1354 1.0594 1.0996 1.0113 

 

 

It is observed that, of the nineteen hospitals, the 

actual 2009 scores of sixteen are included in the 95% 

confidence interval. The average of Forecast-Actual 

over the nineteen hospitals was 0.063 (6.3%). 

 
 



 

Tone<9> 
9 

 

Figure 4: Confidence interval, forecast score and actual 2009 score: Forecast by Trend 

 

4.3.2 Forecast by Lucas case 

Table 13 reports forecast 2009 data by Lucas weight 

and Table 14 shows forecast 2009 scores, confidence 

intervals. 

Table 13: Forecast 2009 data: Forecast by Lucas case 
Table 14: Forecast DEA score and confidence interval: 

Forecast by Lucas case 

DMU (I)Doc (I)Nurse (O)In- 
patient 

(O)Out- 
patient 

H1 112 446 613 1242 
H2 130 482 639 1328 
H3 120 589 574 1058 
H4 138 534 702 1199 
H5 141 615 647 1163 
H6 104 584 706 1496 
H7 100 495 547 1066 
H8 114 480 501 1039 
H9 116 472 486 868 
H10 105 552 570 1275 
H11 98 496 497 1170 
H12 147 714 739 1650 
H13 105 646 654 1926 
H14 107 513 616 1885 
H15 160 798 925 2173 
H16 71 357 397 960 
H17 112 651 707 1741 
H18 63 386 471 909 
H19 96 317 491 1076 

 

 97.50% Forecast 
(2009) 

Actual 
(2009) 2.50% 

H1 1.0001 0.8974 0.7540 0.8469 
H2 0.9329 0.8527 0.7787 0.7970 
H3 0.6448 0.6218 0.5918 0.5987 
H4 0.7855 0.7618 0.6802 0.7303 
H5 0.6584 0.6400 0.6042 0.6200 
H6 1.0101 0.9604 0.8475 0.9123 
H7 0.7813 0.7347 0.7250 0.7006 
H8 0.7201 0.6867 0.6311 0.6596 
H9 0.6578 0.6177 0.5681 0.5894 
H10 0.8109 0.7829 0.6308 0.7441 
H11 0.8101 0.7573 0.6985 0.7171 
H12 0.7623 0.7336 0.7140 0.712 
H13 1.0590 1.0286 0.8310 1.0000 
H14 1.1306 1.0868 1.1448 1.0409 
H15 0.9120 0.8665 0.8107 0.8263 
H16 0.9296 0.8488 0.7418 0.7869 
H17 0.9731 0.9427 0.9368 0.8984 
H18 1.0686 1.0443 1.0745 1.0115 
H19 1.1075 1.0769 1.0996 1.0417 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19

97.50% DEA(Forecast) DEA(Actual) 2.50%



 

Tone<10> 
10 

In this case, only four hospitals are included in the 

95% confidence interval. The average of Forecast-Actual 

over the nineteen hospitals was 0.056 (5.6%). 

4.3.3 Comparisons 

Although we did not report the results by the 

Average of Trend and Lucas case, the results are similar 

to the Lucas case. We compare the number of fails for 

the three forecast models that actual score is out of 

97.5% and 2.5 % interval. We have results as exhibited 

in Table 15. “Trend” gives the best performance among 

the three in this example.   

 

Table 15: Number of fails 

 
Trend Lucas Average of 

Trend and Lucas 
No. of 
fails 3 15 15 

 

5 Conclusion 

DEA scores are subject to change by data variations. 

This subject should be discussed from the perspective of 

the itemized input/output variations. From this point of 

view, we have proposed two models. The first model 

utilizes historical data for the data generation process, 

and hence this model resamples data from a discrete 

distribution. It is expected that, if the historical data are 

volatile widely, confidence intervals will prove to be 

very wide, even when the Lucas weights are decreasing 

depending on the past-present periods. In such cases, 

application of the moving-average method is 

recommended. Rolling simulations will be useful for 

deciding choice of the length of historical span.  

 The second model aims to forecast the future 

efficiency and its confidence interval. For forecasting, 

we proposed three scenarios; the trend, the weighted 

average and their average. On this subject, Xu and 

Ouenniche [16] will be useful for the selection of 

forecasting models, and Chang et al. [4] will provide 

useful information on the estimation of the pessimistic 

and optimistic probabilities of the forecast future 

input/output values. 
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