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Abstract: In many practical applications, past results are not sufficient for evaluating a DMU’s 

performance in highly volatile operating environments, such as those with highly volatile crude oil 

prices and currency exchange rates. That is, in such environments, a DMU’s whole performance 

may be seriously distorted if its future performance, which is sensitive to crude oil price volatility 

and/or currency fluctuations, is ignored in the evaluation process. Hence, this research aims at 

developing a new system of DEA models that incorporate a DMU’s uncertain future performance, 

and thus can be applied to fully measure their efficiency. 
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1. INTRODUCTION 

Companies in most, if not all, industries can expect to 

experience a sustained level of volatility over the next 

few years. For example, crude oil prices and currency 

exchange rates have been exhibiting high volatility 

recently due to both natural and human causes, and will 

continue to do so. It is evident that every company, 

regardless of industry, is inevitably affected in different 

degrees by crude oil prices and/or currency exchange 

rates. Of particular interest in this paper are the industries 

that are highly sensitive to macroeconomic indices such 

as crude oil prices and currency exchange rates. That is, 

the entirety of company performance in those industries 

tightly depends on future volatility of the 

macroeconomic indices. It follows that to thoroughly 

evaluate such companies’ performance, the evaluator 

must assess not only their past and present records but 

also future potential. Obviously, it is very challenging to 

evaluate a company’s performance that involves a 

past-present-future time span. Hence, this research aims 

to tackle the problem of how to fully evaluate company 

performance in highly volatile future environments. 
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DEA has been well recognized as a powerful 

evaluation tool, and has been applied to a wide variety of 

practical evaluation applications. It is a non-parametric 

linear programming technique that measures the relative 

efficiency of DMUs by capturing the interaction among a 

common set of multiple inputs and outputs. It is noted 

that conventional DEA models are designed for 

measuring the productive efficiency of DMUs based 

merely on historical data. However, such past results are 

not sufficient for evaluating a DMU’s performance in 

highly volatile operating environments such as those 

with highly volatile crude oil prices and currency 

exchange rates. It is evident that, in such environments, 

if a DMU’s future performance that is sensitive to crude 

oil price volatility and/or currency fluctuations is ignored 

in the evaluation process, then its whole performance 

may be seriously distorted. Hence, the 

performance-evaluation techniques that explicitly take 

future volatility into account are unavoidable and 

indispensable in practice. 

However, to our knowledge, there are no DEA models 

proposed in the literature that take future performance 

volatility into account. We believe that Chang et al. 

(2015) is the only research work so far that 

simultaneously takes past, present and future 

performance indicators into account. Their proposed 

DEA models are, however, most suitable for conducting 

performance evaluations for DMUs in which future 

potential, e.g., R&D expenses, plays a vital role in their 

competitive success. That is, those DEA models are not 

designed for evaluating the DMUs’ performance that is 

sensitive to macroeconomic indices such as crude oil 

prices and currency exchange rates. Therefore, this 

research seeks to develop a new system of DEA models 

that incorporate the DMUs’ uncertain future performance, 

and thus can be applied to fully measure the efficiency of 

the DMUs in volatile environments. 

2. GENERALIZED DYNAMIC EVALUATION 
STRUCTURES 

Consider a past-present-future intertemporal 

evaluation structure that consists of (T+k) terms 

(1,2,…,T+k), where terms (1,…,T-1), term T and term 

(T+1,…,T+k), respectively, represent the past, present 

and future time structures. Figure 1 demonstrates such an 

evaluation structure. As shown in the figure, past and 

present terms (1,2,…,T) exhibit a typical dynamic 

structure; however, future terms (T+1,…,T+k) show a 

non-typical dynamic structure. Therefore, this 

past-present-future intertemporal evaluation structure is 

referred to as a generalized dynamic structure in this 

research. In addition, it is noted that this evaluation 

structure is an integration of three different single-term 

structures that correspond to term ( )1,...,t t T= , term 

T+1, and term ( )2,...,l l T T k= + + , respectively. 

Therefore, in what follows, we first introduce the three 

single-term evaluation structures. Then, based on these 

single-term structures, we construct the complete-term 

evaluation structure. However, to begin with, we need to 

define the carry-over activities between two consecutive 

terms. Here, we classify the carry-overs into two types to 

explicitly reflect their actual characteristics: discretionary 

(free) and non-discretionary (fixed) carry-overs. DMUs 

can freely handle free carry-overs such as current assets. 

By contrast, DMUs cannot control fixed carry-overs such 

as non-current assets. Note that in the generalized 

dynamic structure, there are carry-overs between pairs of 

terms ( ), 1t t + , 1,...,t T= ; however, there are no 

intermediate carry-overs between pairs of future terms 

( ), 1t t + , 1,..., ( 1)t T T k= + + − , due to the difficulty of 

forecasting the related values. 
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Figure 1: Generalized dynamic evaluation structure. 
 

First, the evaluation structure with respect to term 

( )1,...,t t T=  is associated with input set t, output set t, 

incoming carry-over t, and outgoing carry-over t; it is 

however noted that the incoming carry-over 1 from 

initial term 0 is usually unknown and is thus omitted (see 

Tone and Tsutsui, 2010). Second, the non-typical 

dynamic evaluation structure with respect to future term 

1T +  is comprised of h sub-terms denoted as 

1( ), 1,...,T l l h+ = . That is, it is assumed that there are h 

possible states associated with future term 1T + ; for 

example, there could have h possible crude oil prices or 

US dollar currency exchange rates in term 1T + . Each 

sub-term ( )1( ) 1,...,T l l h+ =  is associated with a 

transition probability (weight) from present term T to 

sub-term 1( )T l+  denoted as 1T
lp + , such that 

1

1

1
h

T
l

l

p +

=

=∑ . How to determine 1, 1,...,T
lp l h+ =  is 

detailed in the next section. In addition, each sub-term 

( )1( ) 1,...,T l l h+ =  is associated with input set 1( )T l+ , 

output set 1( )T l+ , and incoming carry-over 1( )T l+  

with weight 1T
lp + . Third, the structure associated with 

future terms 2, 3,...,T T T k+ + +  is slightly different 

from that which is associated with future term 1T + . 

More precisely, the only difference between the two 

structures is that there are no incoming carry-over 

activities with respect to future terms 

2, 3,...,T T T k+ + +  because of the difficulty of 

forecasting their corresponding values. However, two 

consecutive terms between future terms 

2, 3,...,T T T k+ + +  are still connected with occurrence 

conditional probability. That is, there is a transition 

probability (weight) from sub-term ( )( ) 1,...,T g z z h+ =  

of future term ( )1,..., 1T g g k+ = −  to sub-term 

( ) ( )1 ( ) 1,...,T g l l h+ + =  of future term ( )1T g+ +  

that is denoted as ( )1T g
zlp + + . How to determine these 

transition probabilities is also detailed in the next section. 

Furthermore, each sub-term ( )( ) 1,...,T g l l h+ =  of 

future term ( )2,...,T g g k+ =  is associated with input 

set ( )T g l+  and output set ( )T g l+  with weight 

1

h
T g
zl

z

p +

=
∑ . It is noted that the assumption here that there 

are also h possible states associated with future terms 

2, 3,...,T T T k+ + +  is just for presentation convenience, 

but a requirement. 

Lastly, Figure 1 demonstrates the complete 

generalized dynamic evaluation structure, displaying 

time spanning past-present-future periods that are 

constructed based on the three single-term evaluation 

structures described above.  
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3. FUTURE PERFORMANCE FORECASTS 

Notice that the forecasted inputs (e.g., production 

costs) and outputs (e.g., selling profits) depicted in 

Figure 1 are actually functions of variables (e.g., crude 

oil prices and currency exchange rates) that are sensitive 

to highly volatile operating environments. It is quite 

possible, and common, that different DMUs have 

different degrees of sensitivity to the variables. Therefore, 

in such circumstances, to completely evaluate the DMUs, 

the evaluator must take future performance volatility into 

account, which is exactly the major point of this research. 

In addition, each of these variables, e.g., currency 

exchange rates, may be measured in several different 

currencies. For example, a DMU may procure resources 

(input costs) from and sell products (output revenues) to 

different countries so that it faces different currencies 

and thus varying currency exchange rates. Theoretically, 

a variable that involves n different currencies should be 

treated as n different variables. However, in doing so, the 

numbers of inputs and outputs, and thus the size of the 

generalized dynamic evaluation structure shown in 

Figure 1, will exponentially and dramatically increase. It 

follows that the differentiation power of the 

corresponding generalized dynamic DEA models will 

significantly decrease. Hence, in this instance, we use a 

single currency to measure the variables by converting 

other currencies into that single currency. For example, 

consider crude oil prices or currency exchange rates 

based on US dollars by converting other foreign 

currencies into US dollars. 

There exist a variety of forecasting methods to predict 

the values of the above variables (Montgomery et al., 

1990). However, none of them can be considered to be 

superior to the others in every respect (see e.g., 

Armstrong, 2001; Ouenniche et al., 2014). Nonetheless, 

there are some well-accepted principles, such as 

short-term forecasts that are generally more accurate than 

medium- and long-term ones; aggregate forecasts that are 

generally more precise than single ones; and simple 

methods that are preferable to complex methods because 

they are easier to understand and explain. It is noted that 

the development and the choice of forecasting techniques 

are not the focus of this research. This study utilizes the 

moving average method (see e.g., Montgomery et al., 

1990) to estimate the future performance forecasts 

because the moving average method is one of the most 

well-known and established forecasting methods in 

practice (Sanders and Manrodt, 1994; Armstrong 2001). 

Furthermore, this research directly applies the data from 

public domain resources, which generally do not provide 

detailed information. Under such circumstances, entropy 

in information theory offers a feasible way for measuring 

the uncertainty of the probability distributions of random 

variables (future inputs and outputs in this research) (see, 

e.g., Kapur, 1989). Kapur (1989, p. 11) states that, “We 

should take all given information into account and we 

should scrupulously avoid taking into account any 

information that is not given to us.” This leads to the 

renowned maximum-entropy principle that, “aims to give 

us as uniform or as broad a distribution as possible, 

subject to the constraints being satisfied (Kapur, 1989, p. 

11).” Moreover, based on data availability, future inputs 

and outputs are treated as discrete random variables that 

take a finite number of values. 

The above analysis suggests that this research utilize 

the maximum entropy approach to determine 1T
lp + , the 

transition probability from present term T to sub-term 

1( )T l+  of future term 1T + , and ( )1T g
zlp + + , the 

transition probability from sub-term ( )T g z+  of future 

term T g+  to sub-term ( )1 ( )T g l+ +  of future term 

( )1T g+ + , that are described in the preceding section.  

4. GENERALIZED DYNAMIC DEA MODELS 

This research proposes a new system of DEA models 

with embedded the generalized dynamic structure that is 

described in Section 2. However, the dynamic DEA 



 

Chang-Tone-Wu <5> 
65 

models with typical dynamic structure such as those 

proposed in Tone and Tsutsui (2010) can be used as 

building blocks to develop the generalized dynamic DEA 

models that incorporate DMUs’ uncertain future 

performance.  

To construct the generalized dynamic DEA models, it 

is assumed that there are n DMUs (j = 1, ...,n) over (T+k) 

terms (t = 1,...,T+k). In each term t (t = 1,...,T), DMUs 

have common m inputs (i = 1,...,m) and s outputs (i = 

1,...,s). On the other hand, in each term t (t = T+1,...,T+k), 

DMUs have common r inputs (i = 1,...,r), and/or d 

outputs (i = 1,...,d). That is, it is important to note that 

depending on the considered problems, the future terms 

T+1,...,T+k may not simultaneously associate both inputs 

and outputs. Furthermore, let ijtx (i = 1,...,m) and ijty

(i=1,..., s) represent, respectively, the input and output of 

DMU  j in term t (t = 1,...,T), and ( 1,..., )ijtlu i r=  and 

( 1,..., )ijtlv i d=  represent, respectively, the input and 

output of DMU j in sub-term t(l) of future term t(t = 

T+1,...,T+k). Note and recall that both input ijtlu  and 

output ijtlv  are functions of variables, such as crude oil 

prices and currency exchange rates that are measured by 

a common currency, e.g., the US dollar.  

In addition, recall that it is assumed that each future 

term t(t = T+1,...,T+k) is comprised of h sub-terms 

(possible states) t(l),l = 1,…,h. Moreover, denote the free 

and fixed carry-overs (links), respectively, as free
ijtz (i = 

1,…,nfree; j = 1,…,n; t = 1,...,T) and fix
ijtz (i = 1,…,nfix; j 

= 1,…,n; t = 1,…,T), where nfree and nfix are the number 

of free and fixed links, respectively. Recall that there are 

no carry-over activities with respect to future terms due 

to the high degree of forecast difficulty. 

4.1. Production Possibility Sets 

Based on the notation defined above, the production 

possibility set ( ){ }, , , , ,free fix
it it itl itl it itx y u v z z  with respect 

to the generalized dynamic DEA models is defined as 

follows: 

( )

( )

( )

( )

1

1

1

1

1,..., ; 1,...,

1,..., ; 1,...,

1,..., ; 1,..., ; 1,...,

1,..., ; 1,..., ; 1,...,

unrestricted 1,...

n
t

it ijt j
j

n
t

it ijt j
j

n
t

itl ijtl jl
j

n
t

itl ijtl jl
j

free
it

x x i m t T

y y i s t T

u u i r t T T k l l

v v i d t T T k l l

z i

λ

λ

δ

δ

=

=

=

=

≥ = =

≤ = =

≥ = = + + =

≥ = = + + =

=

∑

∑

∑

∑
( )

( )

( )

( )

( )

( )

1

1

1

, ; 1,...,

1,..., ; 1,...,

1 1,...,

1 1,..., ; 1,...,

0 1,..., ; 1,...,

0 1,..., ; 1,..., ; 1,...,

n
fix fix t

it ijt j
j

n
t
j

j

n
t
jl

j

t
j

t
jl

nfree t T

z z i nfix t T

t T

t T T k l h

j n t T

j n l h t T T k

λ

λ

δ

λ

δ

=

=

=

=

= = =

= =

= = + + =

≥ = =

≥ = = = + +

∑

∑

∑

                  

In the above production possibility set, 

( )1,...,t nR t Tλ ∈ =  and t n
l Rδ ∈  ( 1,..., ;l h=  

1,..., )t T T k= + +  are the intensity vectors, and the third 

and fourth to last constraints correspond to the variable 

returns-to-scale assumption (if the constraints are 

omitted, then the production possibility set is associated 

with the assumption of constant returns to scale). 

Furthermore, it is noted that ijtx  and ijty , and ijtlu  and 

ijtlv  on the right-hand side of the above constraints are, 

respectively, observed and forecasted positive data, 

while itx , ity , itlu , and itlv  on the left-hand side of 

the constraints are all variables. Moreover, notice that the 

constraints in the production possibility set are defined 

separately for each term. Hence, to ensure the continuity 

of link flows (carry-overs) between two consecutive 

terms of the past (1,…,T-1), present (T) and the first 

future (T+1) terms, we need to include the following 
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conditions: 

( )

( )

( )

1

1 1

1

1 1

1 1

1 1 1

1,..., ; 1,..., 1 ;

1,..., ; 1,..., 1 ;

1,..., ;

n n
free t free t

ijt j ijt j
j j

n n
fix t fix t

ijt j ijt j
j j

n h n
free T T free T

ijT j l ijT jl
j l j

fix T
ijT j

z z i nfree t T

z z i nfix t T

z p z i nfree

z

λ λ

λ λ

λ δ

λ

+

= =

+

= =

+ +

= = =

= ∀ = = −

= ∀ = = −

 
 = ∀ =
 
 

∑ ∑

∑ ∑

∑ ∑ ∑

( )1 1

1 1 1

1,..., .
n h n

T fix T
l ijT jl

j l j

p z i nfixδ+ +

= = =

 
 = ∀ =
 
 

∑ ∑ ∑
 

4.2. DEA Models Involving Future Performance 

Based on the production possibility set that is 

constructed in the preceding subsection, this research 

develops the DEA models that incorporate uncertain 

future performance. It is emphasized that all the 

proposed models are non-radial slacks-based measure 

(SBM) models (Tone, 2001). That is, these models 

consider the excesses associated with inputs and/or the 

shortfalls associated with outputs as the main targets of 

the evaluation. In addition, due to that, depending on the 

considered problems, the future terms T+1,...,T+k may 

not simultaneously associate both inputs and outputs.  

The procedures for constructing input-oriented, 

output-oriented and non-oriented models are similar. 

Therefore, we here simply introduce the input-oriented 

model. For modeling convenience, we first denote 

DMUo(o = 1,…,n) as follows:  

( )
1

1,..., ; 1,...,
n

t
iot ijt j iot

j

x x s i m t Tλ −

=

= + = =∑   (1) 

( )
1

1,..., ; 1,...,
n

t
iot ijt j iot

j

y y s i s t Tλ +

=

= − = =∑   (2) 

( )
1

1,..., ; 1,...,
n

free free t free
iot ijt j iot

j

z z s i nfree t Tλ
=

= + = =∑  (3) 

( )
1

1,..., ; 1,...,
n

fix fix t
iot ijt j

j

z z i nfix t Tλ
=

= = =∑   (4) 

( )1

1 1

1,..., ; 1,..., 1
n n

free t free t
ijt j ijt j

j j

z z i nfree t Tλ λ +

= =

= ∀ = = −∑ ∑
         (5) 

( )1

1 1

1,..., ; 1,..., 1
n n

fix t fix t
ijt j ijt j

j j

z z i nfix t Tλ λ +

= =

= ∀ = = −∑ ∑
         (6) 

( )
1

1 1,...,
n

t
j

j

t Tλ
=

= =∑       (7) 

( )0 ,t
j j tλ ≥ ∀        (8) 

( )0 ,iots i t− ≥ ∀        (9) 

( )0 ,iots i t+ ≥ ∀                            (10) 

( ): unrestricted in sign ,free
iots i t∀                (11) 

1

( 1,..., ; 1,..., ;
n

t
iotl ijtl jl iotl

j

u u e i r t T T kδ −

=

= + = = + +∑
1,..., )l h=                                  (12) 

1

( 1,..., ; 1,..., ;
n

t
iotl ijtl jl iotl

j

v v e i d t T T kδ +

=

= − = = + +∑
1,..., )l h=                                  (13) 

( )1 1

1 1 1

1,...,
n h n

free T T free T
ijT j l ijT jl

j l j

z p z i nfreeλ δ+ +

= = =

 
 = ∀ =
 
 

∑ ∑ ∑
               (14) 

( )1 1

1 1 1

1,...,
n h n

fix T T fix T
ijT j l ijT jl

j l j

z p z i nfixλ δ+ +

= = =

 
 = ∀ =
 
 

∑ ∑ ∑  

(15) 

( )
1

1 1,..., ; 1,...,
n

t
jl

j

t T T k l hδ
=

= = + + =∑       (16) 

( )0 , ,t
jl j l tδ ≥ ∀                           (17) 

( )0 , ,iotle i l t− ≥ ∀                          (18) 

( )0 , ,iotle i l t+ ≥ ∀                          (19) 

The input-oriented generalized dynamic DEA model 

corresponding to DMUo(o = 1,…,n) can be expressed as 

follows:  
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1 1*

1 1 1 1

1
1

1
min

1
1

T m
t i iot

iott i
o T k T k h r

t t t i iotl
l

t iotlt T l i

s

m x

e
w

r u

ρ
α

θ
µα α

− −

= =

+ + − −
−

= = + = =

   
 −       

=  
   

+ −         

∑ ∑

∑ ∑ ∑ ∑
 

(20) 

subject to (1)-(19). 

where 
tα  is the term weight corresponding to term 

( 1,..., )t t T k= +  that is specified by the evaluator, t
lw− , 

defined in Section 3, is the evaluator-specified future 

sub-term input weight corresponding to sub-term 

( ) ( 1,..., )t l l h=  of future term ( 1,..., )t t T T k= + + , and 

iρ
− , iµ

−  are the evaluator-specified past-present input 

weight and future input weight that correspond, 

respectively, to past-present input ( )1,...,i i m=  and 

future input ( )1,...,i i r= . In addition, the weights are 

set to satisfy the following conditions:   

( )
1

1 1,...,
h

t
l

l

w t T T k−

=

= = + +∑ , 
1

m

i
i

mρ −

=

=∑ , and 

1

r

i
i

rµ−

=

=∑ . 

It is evident that the objective function involves T+hk 

efficiency-related scores measured by the relative slacks 

of inputs, where T scores are related to the T past-present 

terms, and hk scores are related to the k future terms, 

with each consisting of h sub-terms. That is, the 

objective function is defined as the weighted average of 

T+hk efficiency-related scores measured by the relative 

slacks of inputs. Note that each score is unit-invariant 

with a value less than or equal to 1 (the latter is realized 

when all the corresponding slacks are zero). It follows 

that the objective function value is less than or equal to 1. 

Recall that future sub-term input weight 

( )1,..., ; 1,...,t
lw l h t T T k− = = + +  in objective function 

(20) is derived from 1( 1,..., )T
lp l h+ =  and 

( , 1,..., ; 2,..., )t
zlp z l h t T T k= = + + . 

Let the optimal solution to the above model be, 

( )* * * * * * *, , , , , , , , ,t t free
j jl iot iot iot iotl iotls s s e e i j t lλ δ − + − + ∀ . It is 

important to note that, since free
iots  is unrestricted in sign 

(i.e., if 0free
iots > , then the current value free

iotz  is 

excessive and if 0free
iots < , then free

iotz  is deficient), 

slacks in the free links are not considered in the objective 

function of the input-oriented past-present DEA model. 

However, as shown in Tone and Tsutsui (2010), the 

slacks can be taken into account in either of the 

following two ways: (1) the ex post way; and (2) the 

binary mixed integer fractional programming approach. 

We refer the reader to Tone and Tsutsui (2010) for the 

latter approach and consider only the former method. 

That is, let { }* *max 0,free free
iot iots s− =  and 

{ }* *min 0,free free
iot iots s+ = − .  

Then, we can define the input-oriented overall 

efficiency *
oθ  as 

* *

1 1 1*

*

1 1 1 1

1
1

1

1
1

nfreeT m free
t i iot iot

free
iot iott i i

o T k T k h r
t t t i iotl

l
t iotlt T l i

s s

m nfree x z

e
w

r u

ρ
α

θ
µα α

− − −

= = =

+ + − −
−

= = + = =

   
  − +  

 +     =
   
+ −         

∑ ∑ ∑

∑ ∑ ∑ ∑
Besides, in such a generalized dynamic evaluation 

structure, *
oθ  is actually the weighted average of T+hk 

efficiency scores that are represented by * , 1,...,ot t Tθ =  

and * , 1,..., , 1,...,otl t T T k l hθ = + + = . That is, 

( )
* *

*

1 1

1
1 , 1,...,

nfreem free
i iot iot

ot free
iot ioti i

s s
t T

m nfree x z

ρ
θ

− − −

= =

 
= − + = 

 +  
∑ ∑

; 

( )
*

*

1

1
1 , 1,..., , 1,...,

r
i iotl

otl
iotli

e
t T T k l h

r u

µ
θ

− −

=

 
= − = + + =  

 
∑ . 

Therefore, the input-oriented overall efficiency, i.e., 

*
oθ , can be defined as follows:  
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* * *

1 1 1

1

1 T T k h
t t t

o ot l otlT k
t t t T l

t

wθ α θ α θ

α

+
−

+
= = + =

=

 
= +  

 
∑ ∑ ∑

∑
. 

Definition 1. (input-oriented term efficient) If 

( )* 1,..., 1ot t Tθ = =  and * ( 1,..., ,otl t T T kθ = + +

1,..., ) 1l h= = , then DMUo is referred to as 

input-oriented term efficient with respect to past-present 

term ( 1,..., )t t T=  and sub-term ( ) ( 1,..., )t l l h=  of 

future term ( 1,..., )t t T T k= + + , respectively.  

Definition 2. (input-oriented overall efficient) If * 1oθ = , 

then DMUo is referred to as input-oriented overall 

efficient.  

Theorem 1. DMUo is input-oriented overall efficient, if 

and only if all T + hk terms are input-oriented term 

efficient, i.e., * 1, 1,...,ot t Tθ = =  and 

* 1, 1,..., , 1,...,otl t T T k l hθ = = + + = . 

5. EMPIRICAL STUDY 

The proposed generalized dynamic DEA models are 

new to the DEA literature. Therefore, to analyze and 

evaluate this new system of DEA models, we conduct an 

empirical study based on the real data concerning 

high-tech IC design companies in Taiwan. It is well 

known that the IC design industry is extremely 

competitive. An IC design company usually procures 

raw materials from a few different countries, seeking to 

lower its operational costs. And, at the same time, seeks 

to sell its products to as many countries as possible to 

increase profits. Hence, an IC design company’s 

operations performance is very sensitive to today’s 

highly volatile international currency exchange rates. To 

conduct this empirical study, we extract the empirical 

data, comprising 40 IC design companies, from the 

Taiwan Economic Journal (TEJ) database, utilizing only 

the latest periods, year 2010 to year 2013. In addition, 

this research applies the moving average method to 

predict year 2014 forecasts based on the TEJ data from 

years 2010 to 2013. The results show that 12 out of the 

40 DMUs are input-oriented overall efficient. Note that a 

DMU is input-oriented overall efficient if and only if the 

DMU’s whole terms are input-oriented term efficient. 

Besides, the empirical results also show that if future 

performance indicators are omitted when conducting a 

performance evaluation, then the DMUs’ performance 

may either be overestimated or underestimated.  

6. CONCLUSIONS 

This study proposes a new system of generalized 

dynamic DEA models that simultaneously and explicitly 

take DMUs’ past, present and future actions into account 

to evaluate the DMUs’ overall performance. To date, 

there are very limited DEA studies in the literature that 

consider a DMU’s future performance. Actually, to the 

best of our knowledge, this study is the first to attempt 

developing DEA models for evaluating a DMU’s future 

performance in highly volatile operating environments, 

with, for example, highly volatile crude oil prices and/or 

currency exchange rates. In addition, it is worth 

mentioning that this study applies the maximum entropy 

approach to deal with uncertain future circumstances. 

We believe that entropy theory can play an import role in 

developing the past-present-future intertemporal DEA 

models.  

Unfortunately, due to data availability, we cannot 

estimate the cost of sales (input) and net revenue (output) 

from forecasted currency exchange rates. Recall that the 

forecasted inputs and outputs should be the functions of 

foreign exchange rates. Therefore, we have no choice but 

to apply the moving average method to directly forecast 

future inputs and outputs from historical data. That is, the 

forecasts cannot fully reflect the highly volatile operating 

environments. We believe that detailed data, if available, 

can further reveal the value of the proposed new 

past-present-future intertemporal DEA models. 
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