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Abstract: With the increasing number of quantitative modelsilable to forecast the crude oil
prices and its volatility, the assessment of thatike performance of competing models becomes
a critical task. So far, competing forecasting miedee compared to each other using a single
criterion at a time, which often leads to differeamnkings for different criteria — a situation wler
one cannot make an informed decision as to whicteinperforms best when taking all criteria
into account. In order to overcome this methodalalgproblem, we proposed a multidimensional
framework based on Data Envelopment Analysis mottelsank order competing forecasting
models.

Keyword: Forecasting crude oil prices’ volatility, perforntanevaluation, data envelopment
analysis (DEA), commodity and energy markets.

single measure and typically the obtained rankiags

1. INTRODUCTION conflicting. Therefore, one cannot make an informed

The design of quantitative models for forecasting decision as to which model performs better undeersé

continuous variables in a wide range of applicatiogas o . .
9 P criteria and their measures. In order to illustréte

has attracted the attention of a large number of . - .
problem with the current unidimensional approack, w

academics and professionals for some time; howéver, . . o
shall use the literature on forecasting crude oitgs

performance evaluation of competing forecasting ef®d -
volatility as an example.

has not received as much attention. Nowadays, wdtho Oil is an important source of energy that drives

most published research involve using several . . - .
P 9 modern economies and large swings in its priceptace

performance criteria and measures to compare modelsa substantial adverse impact on both oil importard

the performance evaluation exercise remains of a . L
exporters. For example, higher oil prices may léad

unidimensional nature; that is, models are rankgdb lower aggregate demand and production outputs cedu
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inflationary tendencies and higher interest rates f could only take account of technical efficiency and
importing countries; whereas a sustained declineilin  ignore potential slacks in inputs and outputs amdst
prices supports the so-called “resource curse” tigsis may over-estimate efficiency scores. Furthermorestm
for commodity abundant emerging economies. Theeefor DEA models cannot differentiate between efficient
a proactive knowledge of future movements of oit¢s decision making units (DMUs) as they all receivecare
and their volatility can lead to better decisions/arious  of 1. The super-efficiency DEA models allow onedim
areas such as macroeconomic policy making, riskso, but radial super-efficiency DEA models maybe
management, options pricing, and portfolio manageme infeasible for some efficient ones and would lead t
Recent dramatic surges and declines in oil pricesunresolved ties. In addition, the reference semngbsa
before and after the global financial crisis hagrb@  from one efficient DMU evaluation to another, which
catalyst for an increased attention on studyingnidteire = some contexts might be viewed as “unfair”
of oil prices’ volatility and their determinantsy @o benchmarking.
propose better volatility forecasting models. Witke The reminder of this paper is organized as follokvs.
increasing number of models available to forechst t Section 2, we describe the proposed slacks-based
volatility of crude oil prices, despite the factaththe context-dependent DEA framework to evaluate the
assessment of the relative performance of competingelative performance of competing forecasting medel
forecasting models becomes a critical task, it has  Section 3 discusses how one might adapt the prdpose
attracted as much attention as it deserves. To tm® m framework to evaluate competing forecasting moétals
specific, our survey of the literature revealedt thmest crude oil prices volatility. In Section 4, we prasand
studies tend to report inconsistent results abtwt t discuss our empirical results. Section 5 conclutes
performance of specific forecasting models in g@ne paper.

models perform better than others with respect to a

e . . 2. A SLACKS-BASED CDEA MODEL FOR
specific criterion but worse with respect to otbateria ASSESSING FORECASTING MODELS

— see, for example [1-3]. In this paper, we overedhis

In thi , lacks-based CDEA
methodological issue by proposing a slacks-based n thiS paper, we propose a siacks-base

framework to assess the relative performance of
context-dependent DEA (CDEA) framework for

. . . _competing forecasting models. The proposed framiewor
assessing the relative performance of competing

is a three-stage process which could be summasazed
forecasting models [e.g., 4-10]. Although all DEA gep

models could be used to classify competing foré@uogst follows:

models into efficient and inefficient ones and rahé&m Stage 1 — Returns-to-scale (RTS) Analysi®erform
according to their scores, our proposed approaeh arRTS analysis to find out whether to solve a DEA glod
motivated by the following reasons. First, in many under constant returns-to-scale (CRS) conditions,
applications such as the ranking of forecasting efsgd  variable returns-to-scale (VRS) conditions, inceshs
the choice of an orientation is irrelevant. Secamujer  returns-to-scale  (IRS) conditions, or decreased
the variable returns-to-scale assumption, inputrded  returns-to-scale (DRS) conditions — see [11] faaide
scores can be different from output-oriented omndsch

Stage 2 — Classification of DMUsUse the following

may lead to different rankings. Third, radial DEAdels algorithm to partition the set of DMUs into severalels
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of best-practice frontiers or evaluation conteséesjL :

Initialization Step

Initialize the performance level counter to 1 and the
set of DMUs to evaluate at levelr , sayJ’, to
{DMU, .k =1,...,n}.

Use therelevant DEA model to evaluate J’ and set the

¢ M-level best-practice frontieg‘ accordingly; that is,
E'= {k el Z‘Efficiency Score py = 1}.

Exclude the current performance level best-practice

frontier E‘from the set of DMUs to evaluate next;
that is, set)’™t=J'—E’, increment / by 1 and

proceed to the iterative step.

Iterative Step
While J’ =@ Do
{
Use the relevant DEA model to evaludfe set the
¢™-level best-practice frontieE’ accordingly, set

J"=3'—E', and increments by 1;

}

where the relevant DEA model to use is the slackset

measure (SBM) model [12]:

m o S ot
Min pﬁ:l—i Sk 1+EZ—'k
M= Xk S Yrk
s.t. z/ijxi’ﬁs"k:xi’k;w
jed’ (1)
zﬂj Ve =Sk =Y VT
jed!
A;20Vjed';s, 20Vi;s = 0,vr

th th

where the i input and r output  of
DMUj(j=1,...,n) are denoted byxi'j(izl,...,m)and

Y (r =1,...,s), respectively, 4; is the weight assigned

to DMU, in constructing its ideal benchmarls;,

then DMU, is classified as efficient; otherwise

DMU, is classified as inefficient. Note that model 1
above is solved as it is if stage 1 reveals thatGRS
conditions hold; otherwise, one would have to ingos
one of the following additional constraints depergdon
VRS, IRS, or

respectively:
D AEEY o H2LY, A< ()

Obviously, once DMUs have been partitioned into

whether DRS conditions prevalil,

efficient frontiers with different levels of perfmance,
one could rank order them from best to worst sigrti
with 15tlevel efficient frontier DMUs as best and ending
with the L"-level efficient frontier DMUs as worst.
Note that ties might exist between DMUs on the same
efficient frontier and the next stage is designedbreak

those ties.

Stage 3 — Break Efficiency Ties:First, for each
efficient frontier E’ (€=2,...L) , compute relative

progress scores ;s with respect to the best evaluation

context, E!, by solving the following model for each
DMU , € E” and rank order DMUs on efficient frontier

E' according to the values of these scores:

g 150 tik 1y~ b
Min & = 1——2 1+*Zi
m i1 Xi,k S r=1 yl’,k

S D A% 2 Xy~ b Vi

jeE! )

z/lj yr,j < yr,k "’tljr,k;vr

jeE!

A;=20Vj e Nt >0, Vist,, >0, vr>0
where t;, (respectively,t’, ) denotes the amount by
which input i (respectively, outputr ) of DMU,

should be decreased (respectively, increasedptthrine

and s/, are slack variables associated with the first andefficient frontier corresponding to evaluation axit

the second sets of constraints, respectively, ard
denotes the SBM efficiency score @MU, achieved

at performance level/ . If the optimal value op, =1,

73

E!. Second, for DMUs belonging to the best efficient

1 The rationale behind this choice is to set a commiobal
target for all lower level efficient frontiers fahe sake of
fairness in benchmarking.
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: 1 : : 2 . . .
frontier E*, computerelative attractiveness scores yi's  forecasting, time series models tend to be the lpopu

with respect to the second besaluation contekt E?, ones. We have included the following fourteen time

by solving the following model for eactbMU , e E* series models that turned out to be valid for our

and rank order DMUs on the best efficient frontier performance evaluation exercise; namely, RandonkWal

according to the values of these scores: (RW); Historical Mean (HW); Simple Moving Average
18t 1St with averaging periods of 20 and 60 — SMA20 and
Max g =|1-= ) 1| /114 =%t . .
M X i S Vik SMAG60; Auto Regressive Moving Average -
st Z;LJ' X.j < Xy Vi ARMA(1,1); Auto Regressive with order 1 and 5 - AR(
jeE? ) and AR(5); Generalized Auto Regressive Conditional
zij Yej 2 Yrk ~ Loy VT Heteroscedasticity models (GARCH(1,1));

jeE2

. o4 L GARCH-in-Mean  (GARCH-M(1,1)); Exponential
4;20VjeET Y, 20,Viit,, 20,vr

GARCH (EGARCH (1,1)); Threshold GARCH
where t (respectively, t ) denotes the amount by (TGARCH(1, 1)); Power ARCH (PARCH(L,1));

which input i (respectively, output r ) of  Component GARCH (CGARCH(1,1)).

! should be increased respectively, .
DMU < E (resp y Second, inputs and outputs are the relevant

decreased) to reach the frontier corresponding toperformance criteria, along with their measurespéo

H 2
evaluation contexte". used for assessing forecasting models. Our revieiveo

In the next section, we use the proposed procadure literature on forecasting the VOIatlIlty of crud@ mices
rank order Competing forecasting models of crude oi has revealed that three performance criteria have

prices’ volatility and report on our empirical fiimgs. typically been used; namelgpodness-of-fit, biasedness,

andcorrect sign. Note that depending on the application

3. ADAPTING SLACKS-BASED CDEA
FRAMEWORK FOR ASSESSING THE
RELATIVE PERFORMANCE OE preferences as to how to penalize large, smalitipes
COMPETING FORECASTING MODELS and negative errors, different metrics could beduse

In order to adapt the proposed slacks-based CDEA agjs study, measures diiasedness and goodness-of-fit

a multidimensional framework for the

context, the data features, and the decision makers

relative are ysed as input, whereas measuresonkct sign are
performance evaluation of competing forecasting@®d | ,sed as output. Note that the choice of our inputs

two main decisions need to be made; namely, theceho (respectively, outputs) is motivated by the priteipf
of DMUs, and the choice of relevant inputs and at#p e |ess the better” (respectively, “the more bedter”).

Hereafter, we shall briefly report on how theseislenas  Note also that we have chosen to consider several

are made in this article — the reader is refereefi't 9]  measures for each criterion to find out about the

for detailed descriptions of forecasting models andohysiness of multidimensional rankings with respec

performance metrics. different measures. To be more specifioodness-of-fit
First, DMUs are volatility forecasting models. lnro IS measured by one of the following metrics: MSEgavi

survey of the literature on crude oil prices’ viigt ~ Squared Volatility Scaled Error (MSVOISCE), MAE,
Mean Absolute Volatility Scaled Error (MAVOISCE),

2 The rationale behind this choice is to compare riest . . . .
efficient DMUs with those that have the closesfqenance. ~ Mean Mixed Error Under-estimation penalized (MMEU)
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and Mean Mixed Error Over-estimation penalized gpproach in a multi-criteria setting as discussed i

(MMEO); biasedness is measured by one of the gection 1. For example, CGARCH(1,1) outperforms
following metrics: ME or Mean Volatility Scaled B SMA20 on measures of goodness-of-fit based on squar
(MVoIScE); and thecorrect sign is measured by errors, whereas SMA20 performs better with respect
Percentage of correct direction change predictionsihe piasedness criterion, as measured by both Bean
(PCDCP). (ME) and Mean Volatility-Adjusted or Scaled Errors

(MVolIScE), and with respect to the correct sigresion,
4. EMPIRICAL INVESTIGATION AND

RESULTS as measured by Percentage of correct directiongehan

predictions (PCDCP). In order to remedy to theseenohi

In this study, we focus on WTI crude oil daily spot performance results, one would need to a singlkimgn

prices and our data covers the period ranging frOrrthat takes account of multiple criteria, which weyide

January 2 1986 to May 28 2010 resulting in a total of using the proposed DEA framework.
6,157 observations. As crude oil prices are level ) o ) ) )
Table 2 summarizes efficient frontiers with diffete

non-stationary, in the literature there is a temgeto )

performance levels, denoted . As the same single
study their level stationary equivalent; namelytunes. ) ]

measures of correct sign are used throughout,eirraht
We compute daily WTI crude oil returni. Since ]

of the paper, we only put measures of the goodoks-
volatility is not directly observable, we use daslguared o ) o .

criterion and biasedness criterion in the tables to
returns R7) as a proxy of volatility — the reader is ] .

differentiate between results. In Table 2, foreogst
referred to [7, 9] for discussions on different atdity ] . o .

models belonging to the first-level efficient frat
proxies. Note that all chosen volatility forecagtin .

performs better than those belonging to the setevel-
models are tested out-of-sample and the specific ] ]

efficient frontier, models belonging to the secdedel
implementation we performed is the one with rolling )

efficient frontier performs better than those begjog to
origin and fixed window. ] o )

the third-level efficient frontier, and so on. Fetample,

Our RTS analysis revealed that VRS conditions hold nder the set of performance measures {ME, MMEU and
for our dataset and therefore models 1, 3 and 4 argCpPCP}, model 3 (i.e., SMA20) and model 14 (i.e.,
augmented with the following constraink ., 4, =1. CGARCH (1, 1)) outperform model 5 (i.e., SES). Tdes
Table 1 provide the unidimensional rankings of fean results suggest that the best and the worst efficie
forecasting models of crude oil prices’ volatilipased  frontiers are insensitive to adjusting biasednesasures
on 9 measures of 3 criteribiasedness, goodness-of-fit  for volatility. Note that any rankings based on sine
and correct sign — this is a typical output presented by efficient frontiers would lead to a large numbeties.
most existing forecasting studies (see for exanjfi&]). In order to break these ties, we use relative @y
These unidimensional rankings are devised as fsllow and attractiveness scorebtained by solving models 3
models are ranked from best to worst using thevagle  and 4, respectively, which result in the multidirsiemal
measure of each of the criteria under consideration ankings provided in Table 3 where models are rdnke
Notice that different criteria led to different fom pestto worst based on these relative scotetice,

unidimensional rankings, which provides evidencéhef  for example, that the unidimensional ranking

problem resulting from the use of a unidimensional corresponding to ME, MAE PCDCP are different, oe on

Ouenniche, Xu and Tone <5>
75



hand, and have ties, on the other hand, as compared addition, multidimensional rankings generally diffe
the multidimensional ranking corresponding to {ME, from unidimensional ones whenever these later anes
MAE, PCDCP} where ties have been resolved. In different, which confirms that the proposed
general, multidimensional rankings seem to have ¢&s  multidimensional framework provides a valuable ttmwl
no ties — see multidimensional rankings correspanth apprehend the true nature of the relative perfoomanf

the remaining combinations of measures in Tablen3. competing forecasting models.

Table 1: Unidimensional Rankings of Competing Forecastingi®le

Measures Ranked from Best to Worst

ME OO~ O~~~ D)~~(O---O-O

'§MVO|SCE

MAE

EMAVOISCE

g e - B~-D~B~-D-O-O--O-@D-@—D-—Q
(O]

MSVoISCE @@@%aeeeoeeeo
MMEU W))W~~~ —()-—1O
MMEO OO~~~ B-O-@—D-E—0C)
2 @ ®
§  popce OL0 G ORCRORCRORORO e
3

*IRW; 2 HM; 3SMA20; “SMA60; 5SES; °ARMA (1, 1); AR (1); ®AR (5); ‘GARCH (1, 1); %GARCH-M(1, 1);
UEGARCH (1, 1)22TGARCH (1, 1);*PARCH (1, 1); “CGARCH(1,1)
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Table 2: Efficient frontiers with different performance ldse

Efficient ME ME ME & MSE; ME ME
Frontiers & MAE &MAVoIScE ME & MSVoIScE & MMEU & MMEO
E! {3,5,8} {3,5} {3,5,14} {3,14} {1,2,3,5,6,8,11}
E? {6,9,10,11} {6,8,9,10,11} {9,10,11,13} {5} {7,9,102}
E3 {12,14} {12,14} {12} {9,10,11} {13,14}
E* {4,7,13} {4,7,13} {4,6} {12,13} {4}
E® {1,2} {1,2} {2,8} {4}
E° {7} {6}
E’ {1} {2,8}
E® {7}
E° {1}
Panel B: Combinations of Performance Measures useb Inputs along with Output PCDCP - Continues
Efficient MVoIScE MVolScE MVoIScE& MSE; MVolScE MVoIScE
Frontiers & MAE & MAVoIScE MVoIScE& MSVoIScE & MMEU & MMEO
E! {3,5,8} {3,5} {3,5,14} {3,14} {1,2,3,5,6,8,1}
E2 {6,11} {6,8,10,12} {10,13} {5} {7,12}
E3 {9,12} {9} {12} {10} {9,10}
E* {4,7,13} {11,14} {9,11} {12,13} {13,14}
E° 1,2 {4,713} {4,6} {9} {4
ES {1,2} {2,8} {4,11}
E’ {7} {6}
E® {1} {2,8}
E° {7}
ElO {1}

*IRW; 2 HM; 3SMA20; “SMA60; 5SES; SARMA (1, 1); AR (1); 8AR (5); SGARCH (1, 1); %GARCH-M(1, 1);
UEGARCH (1, 1)22TGARCH (1, 1);*PARCH (1, 1); “CGARCH(1,1)

Last, but not least, we have considered severaMMEO, the ranks of the best and worst models differ
measures of the goodness-of-fit criterion and thesignificantly as compared to other goodness-of-fit
biasedness criterion to find out about the robsstref measures combinations (e.g., RW, HM, CGARCH(1,1),
multidimensional rankings with respect to different which suggest that the performance of models sgch a
measures. Our empirical results reveal that whedther RW, HM, CGARCH(1,1) is very sensitive to whether
measures biasedness by ME (Panel A, Table 3) oone penalizes negative errors more than posities @n
MVoIScE (Panel B, Table 3), and measures of vice versa. Finally, notice that given the datazsat the
goodness-of-fit by MAE, MAVoISCE, MSE or measures under consideration, our numerical results
MSVoIScE, the ranks of the best models (e.g., SMA20 suggest that, with the exception of CGARCH, theifam
SES) and the worst models (e.g.,HM, RW) remain theof GARCH models scored less as compared to
same; i.e., they are robust to changes in measuresmoothing models such as SMA20 and SES, which
Finally, whether one measures biasedness by ME osuggests that the data generation process hastiveel
MVolIScE, and measures goodness-of-fit by MMUO or long memory.
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Table 3: Slacks-based Context-dependent DEA model scoresdbrasltidimensional rankings of volatility foreciast

models

Inputs Output Models Ranked from Best to Worst

ME; MAE PCDCP P 5282629&10>11>12>14>13>4>7>2>1
ME; MAVoIScE PCDCP P 5211292>10>6>8->14>1254>13>7>2>1
ME; MSE PCDCP D 5214>9>112>10>13>122>4>6>8>2>7>1
ME; MSVoIScE PCDCP 3 5214>9>11>10>132>12>4>6>8>2>7>1
ME; MMEU PCDCP D 14>5>9210>11>12>13>4>6>8>2>7->1
ME; MMEO PCDCP P5>22>11>1>6>8->9,10&12>14>13>4

Panel B: Combinations of Performance Measures useab Inputs along with Output PCDCP — Continues

Inputs Output Models Ranked from Best to Worst

ME: MAE PCDCP 32> 5282362>102>92>12>14>11>13>4>7>2->1
ME: MAVOISCE PCDCP 32> 5210&12>6>8>9>14>11>4>13>7>2>1
ME: MSE PCDCP 32> 5214>10>13>12>9>11>4>6>8>2>7>1
ME: MSVoIScE PCDCP 32 5214>10>132>12>9>11>4>6>8>2>7>1
ME: MMEU PCDCP 32 14>5>10>12>132>9>11>4>6>8>2>7>1
ME:; MMEO PCDCP 32 5222121126>8>12>72>9&10>14>13>4

*IRW; 2 HM; 3SMA20; “SMA60; SSES; SARMA(L, 1); 7AR(1); AR(5); GARCH(1,1); ®GARCH-M(1,1);
LUEGARCH(1,1);2TGARCH(1,1);PARCH(1, 1):“CGARCH(1,1)

5. CONCLUSION

Nowadays, forecasts play a crucial role in driving

In this study, we proposed a slack-based

context-dependent DEA-based methodology, and used

decisions and shaping our future plans in manyforecasting crude oil prices’ volatility as an apgtion

application areas such as economics, finance anq’;lrea to illustrate the use of the proposed framkwidre

investment, marketing, and design and operational __. : . .
main conclusions of this research may be summarized

management of supply chains, among others. Obyiousl as follows. First, the proposed multidimensional

forecasting problems  differ with respect to many framework provides a valuable tool to apprehend the

dimensions; however, regardless of how one defines : _
true nature of the relative performance of compmgetin

forecasting problem, he or she needs to assess th]%recasting models. Second, models that are on the

relative performance of competing forecasting medel efficient frontier and have zero slacks regardisfsthe

and finds out which ones have the potential of gain performance measures used (e.g., SMA20) maintain

good “prediction job”. Although most studies teral t their ranks. Third, the multi-criteria rankingstbe best

use several performance criteria, and for eackrait, .
P and the worst models seem to be relatively robaoist t

one or several metrics to measure each criteriom, t :
changes in most performance measures. Furthermore,

assessment exercise of the relative performance of . .
when under-estimated forecasts are penalized, most

competing forecasting models is generally restiidte GARCH types of models tend to perform well —

their ranking by measure, which usually leads to suggesting that they often produce forecasts that a

different unidimensional rankings. over-estimated. On the other hand, when over-estiina
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forecasts are penalized, averaging models suchgs R [8] B. Xu, J. Ouenniche, Performance evaluation of
HM, SES tend to perform very well — suggesting that competing forecasting models: Multidimensional
these models often produce forecasts that areframework based on MCDA, Expert Systems with
under-estimated. Finally, our empirical resultsnsge  Applications, 39, 8312-8324 (2012).

suggest that, with the exception of CGARCH, the [9] Ouenniche J., Xu B. and Tone K. Relative
family of GARCH models have an average performanceperformance evaluation of competing crude oil [®ice
as compared to smoothing models such as SMA20 andolatility forecasting models: a slacks-based super
SES, which suggests that the data generation mocesefficiency DEA model, American Journal of Operaton
has a relatively long memory. Research, 4(4), 235-245 (2014).

[10] Quenniche J., Xu B. and Tone K. Forecasting
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