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Abstract: With the increasing number of quantitative models available to forecast the crude oil 

prices and its volatility, the assessment of the relative performance of competing models becomes 

a critical task. So far, competing forecasting models are compared to each other using a single 

criterion at a time, which often leads to different rankings for different criteria – a situation where 

one cannot make an informed decision as to which model performs best when taking all criteria 

into account. In order to overcome this methodological problem, we proposed a multidimensional 

framework based on Data Envelopment Analysis models to rank order competing forecasting 

models. 

Keyword: Forecasting crude oil prices’ volatility, performance evaluation, data envelopment 

analysis (DEA), commodity and energy markets.  

 

1. INTRODUCTION 

The design of quantitative models for forecasting 

continuous variables in a wide range of application areas 

has attracted the attention of a large number of 

academics and professionals for some time; however, the 

performance evaluation of competing forecasting models 

has not received as much attention. Nowadays, although 

most published research involve using several 

performance criteria and measures to compare models, 

the performance evaluation exercise remains of a 

unidimensional nature; that is, models are ranked by a 

single measure and typically the obtained rankings are 

conflicting. Therefore, one cannot make an informed 

decision as to which model performs better under several 

criteria and their measures. In order to illustrate the 

problem with the current unidimensional approach, we 

shall use the literature on forecasting crude oil prices’ 

volatility as an example. 

Oil is an important source of energy that drives 

modern economies and large swings in its price can place 

a substantial adverse impact on both oil importers and 

exporters. For example, higher oil prices may lead to 

lower aggregate demand and production outputs, induce 
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inflationary tendencies and higher interest rates for 

importing countries; whereas a sustained decline in oil 

prices supports the so-called “resource curse” hypothesis 

for commodity abundant emerging economies. Therefore, 

a proactive knowledge of future movements of oil prices 

and their volatility can lead to better decisions in various 

areas such as macroeconomic policy making, risk 

management, options pricing, and portfolio management. 

Recent dramatic surges and declines in oil prices 

before and after the global financial crisis has been a 

catalyst for an increased attention on studying the nature 

of oil prices’ volatility and their determinants, or to 

propose better volatility forecasting models. With the 

increasing number of models available to forecast the 

volatility of crude oil prices, despite the fact that the 

assessment of the relative performance of competing 

forecasting models becomes a critical task, it has not 

attracted as much attention as it deserves. To be more 

specific, our survey of the literature revealed that most 

studies tend to report inconsistent results about the 

performance of specific forecasting models in that some 

models perform better than others with respect to a 

specific criterion but worse with respect to other criteria 

– see, for example [1-3]. In this paper, we overcome this 

methodological issue by proposing a slacks-based 

context-dependent DEA (CDEA) framework for 

assessing the relative performance of competing 

forecasting models [e.g., 4-10]. Although all DEA 

models could be used to classify competing forecasting 

models into efficient and inefficient ones and rank them 

according to their scores, our proposed approach are 

motivated by the following reasons. First, in many 

applications such as the ranking of forecasting models, 

the choice of an orientation is irrelevant. Second, under 

the variable returns-to-scale assumption, input-oriented 

scores can be different from output-oriented ones, which 

may lead to different rankings. Third, radial DEA models 

could only take account of technical efficiency and 

ignore potential slacks in inputs and outputs and thus 

may over-estimate efficiency scores. Furthermore, most 

DEA models cannot differentiate between efficient 

decision making units (DMUs) as they all receive a score 

of 1. The super-efficiency DEA models allow one to do 

so, but radial super-efficiency DEA models maybe 

infeasible for some efficient ones and would lead to 

unresolved ties. In addition, the reference set changes 

from one efficient DMU evaluation to another, which in 

some contexts might be viewed as “unfair” 

benchmarking.  

The reminder of this paper is organized as follows. In 

Section 2, we describe the proposed slacks-based 

context-dependent DEA framework to evaluate the 

relative performance of competing forecasting models. 

Section 3 discusses how one might adapt the proposed 

framework to evaluate competing forecasting models for 

crude oil prices volatility. In Section 4, we present and 

discuss our empirical results. Section 5 concludes the 

paper. 

2.  A SLACKS-BASED CDEA MODEL FOR 
ASSESSING FORECASTING MODELS 

In this paper, we propose a slacks-based CDEA 

framework to assess the relative performance of 

competing forecasting models. The proposed framework 

is a three-stage process which could be summarized as 

follows: 

Stage 1 – Returns-to-scale (RTS) Analysis: Perform 

RTS analysis to find out whether to solve a DEA model 

under constant returns-to-scale (CRS) conditions, 

variable returns-to-scale (VRS) conditions, increased 

returns-to-scale (IRS) conditions, or decreased 

returns-to-scale (DRS) conditions – see [11] for details. 

Stage 2 – Classification of DMUs: Use the following 

algorithm to partition the set of DMUs into several levels 
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of best-practice frontiers or evaluation contexts, sayL : 

Initialization Step 

Initialize the performance level counter l  to 1 and the 

set of DMUs  to evaluate at level l , say lJ , to

{ }nkDMU k ,...,1, = .  

Use the relevant DEA model to evaluate lJ  and set the 

l
th-level best-practice frontier lE accordingly; that is, 

{ }1 S  =∈= lll

kcoreEfficiencyJkE ρ .  

Exclude the current performance level best-practice 

frontier lE from the set of DMUs to evaluate next; 

that is, set lll EJJ −=+1 , increment l  by 1 and 

proceed to the iterative step. 

Iterative Step 

While ∅≠lJ  Do  

{ 

Use the relevant DEA model to evaluatelJ , set the 

l th-level best-practice frontier lE  accordingly, set
lll EJJ −=+1 , and increment l  by 1; 

} 

where the relevant DEA model to use is the slacks-based 

measure (SBM) model [12]: 
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where the thi  input and thr  output of 

( )n,...,jDMU j 1=  are denoted by ( )m,...,ix j,i 1= and 

( )s,...,ry j,r 1= , respectively, jλ  is the weight assigned 

to jDMU  in constructing its ideal benchmark, −k,is  

and +
k,rs  are slack variables associated with the first and 

the second sets of constraints, respectively, and l

kρ  

denotes the SBM efficiency score of kDMU  achieved 

at performance level l . If the optimal value of 1=l

kρ , 

then kDMU  is classified as efficient; otherwise 

kDMU  is classified as inefficient. Note that model 1 

above is solved as it is if stage 1 reveals that the CRS 

conditions hold; otherwise, one would have to impose 

one of the following additional constraints depending on 

whether VRS, IRS, or DRS conditions prevail, 

respectively: 

∑∑∑ ∈∈∈
≤≥=

lll Jj jJj jJj j 1;1;1 λλλ
  

 (2) 

Obviously, once DMUs have been partitioned intoL

efficient frontiers with different levels of performance, 

one could rank order them from best to worst starting 

with 1st-level efficient frontier DMUs as best and ending 

with the thL -level efficient frontier DMUs as worst. 

Note that ties might exist between DMUs on the same 

efficient frontier and the next stage is designed to break 

those ties. 

Stage 3 – Break Efficiency Ties: First, for each 

efficient frontier ( )L2,..., =llE , compute relative 

progress scores 1
kδ s with respect to the best evaluation 

context1, 1E , by solving the following model for each 
lEDMU k ∈ and rank order DMUs on efficient frontier 

lE according to the values of these scores: 
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(3) 

where −
k,it  (respectively, +

k,rt ) denotes the amount by 

which input i  (respectively, output r ) of kDMU

should be decreased (respectively, increased) to reach the 

efficient frontier corresponding to evaluation context 
1E . Second, for DMUs belonging to the best efficient 

                                                           
1 The rationale behind this choice is to set a common global 

target for all lower level efficient frontiers for the sake of 
fairness in benchmarking. 
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frontier 1E , compute relative attractiveness scores 2
kγ s 

with respect to the second best evaluation context2, 2E , 

by solving the following model for each 1EDMU k ∈

and rank order DMUs on the best efficient frontier 

according to the values of these scores: 
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where +
kit ,  (respectively, −krt , ) denotes the amount by 

which input i  (respectively, output r ) of 
1EDMU k ∈ should be increased (respectively, 

decreased) to reach the frontier corresponding to 

evaluation context 2E . 

In the next section, we use the proposed procedure to 

rank order competing forecasting models of crude oil 

prices’ volatility and report on our empirical findings. 

3. ADAPTING SLACKS-BASED CDEA 
FRAMEWORK FOR ASSESSING THE 
RELATIVE PERFORMANCE OF 
COMPETING FORECASTING MODELS 

In order to adapt the proposed slacks-based CDEA as 

a multidimensional framework for the relative 

performance evaluation of competing forecasting models, 

two main decisions need to be made; namely, the choice 

of DMUs, and the choice of relevant inputs and outputs. 

Hereafter, we shall briefly report on how these decisions 

are made in this article – the reader is referred to [7, 9] 

for detailed descriptions of forecasting models and 

performance metrics. 

First, DMUs are volatility forecasting models. In our 

survey of the literature on crude oil prices’ volatility 

                                                           
2 The rationale behind this choice is to compare the most 

efficient DMUs with those that have the closest performance. 

forecasting, time series models tend to be the popular 

ones. We have included the following fourteen time 

series models that turned out to be valid for our 

performance evaluation exercise; namely, Random Walk 

(RW); Historical Mean (HW); Simple Moving Average 

with averaging periods of 20 and 60 – SMA20 and 

SMA60; Auto Regressive Moving Average – 

ARMA(1,1); Auto Regressive with order 1 and 5 - AR(1) 

and AR(5); Generalized Auto Regressive Conditional 

Heteroscedasticity models (GARCH(1,1)); 

GARCH-in-Mean (GARCH-M(1,1)); Exponential 

GARCH (EGARCH (1,1)); Threshold GARCH 

(TGARCH(1, 1)); Power ARCH (PARCH(1,1)); 

Component GARCH (CGARCH(1,1)).  

Second, inputs and outputs are the relevant 

performance criteria, along with their measures, to be 

used for assessing forecasting models. Our review of the 

literature on forecasting the volatility of crude oil prices 

has revealed that three performance criteria have 

typically been used; namely, goodness-of-fit, biasedness, 

and correct sign. Note that depending on the application 

context, the data features, and the decision makers’ 

preferences as to how to penalize large, small, positive, 

and negative errors, different metrics could be used. In 

this study, measures of biasedness and goodness-of-fit 

are used as input, whereas measures of correct sign are 

used as output. Note that the choice of our inputs 

(respectively, outputs) is motivated by the principle of 

“the less the better” (respectively, “the more the better”). 

Note also that we have chosen to consider several 

measures for each criterion to find out about the 

robustness of multidimensional rankings with respect to 

different measures. To be more specific, Goodness-of-fit 

is measured by one of the following metrics: MSE, Mean 

Squared Volatility Scaled Error (MSVolScE), MAE, 

Mean Absolute Volatility Scaled Error (MAVolScE), 

Mean Mixed Error Under-estimation penalized (MMEU) 
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and Mean Mixed Error Over-estimation penalized 

(MMEO); biasedness is measured by one of the 

following metrics: ME or Mean Volatility Scaled Error 

(MVolScE); and the correct sign is measured by 

Percentage of correct direction change predictions 

(PCDCP).  

4. EMPIRICAL INVESTIGATION AND 
RESULTS 

In this study, we focus on WTI crude oil daily spot 

prices and our data covers the period ranging from 

January 2nd 1986 to May 28th 2010 resulting in a total of 

6,157 observations. As crude oil prices are level 

non-stationary, in the literature there is a tendency to 

study their level stationary equivalent; namely, returns. 

We compute daily WTI crude oil returns Rt. Since 

volatility is not directly observable, we use daily squared 

returns (��
� ) as a proxy of volatility – the reader is 

referred to [7, 9] for discussions on different volatility 

proxies. Note that all chosen volatility forecasting 

models are tested out-of-sample and the specific 

implementation we performed is the one with rolling 

origin and fixed window.  

Our RTS analysis revealed that VRS conditions hold 

for our dataset and therefore models 1, 3 and 4 are 
augmented with the following constraint: ∑ ∈ =lJj j 1λ . 

Table 1 provide the unidimensional rankings of fourteen 

forecasting models of crude oil prices’ volatility based 

on 9 measures of 3 criteria: biasedness, goodness-of-fit 

and correct sign – this is a typical output presented by 

most existing forecasting studies (see for example, [1-3]). 

These unidimensional rankings are devised as follows: 

models are ranked from best to worst using the relevant 

measure of each of the criteria under consideration. 

Notice that different criteria led to different 

unidimensional rankings, which provides evidence of the 

problem resulting from the use of a unidimensional 

approach in a multi-criteria setting as discussed in 

Section 1. For example, CGARCH(1,1) outperforms 

SMA20 on measures of goodness-of-fit based on squared 

errors, whereas SMA20 performs better with respect to 

the biasedness criterion, as measured by both Mean Error 

(ME) and Mean Volatility-Adjusted or Scaled Errors  

(MVolScE), and with respect to the correct sign criterion, 

as measured by Percentage of correct direction change 

predictions (PCDCP). In order to remedy to these mixed 

performance results, one would need to a single ranking 

that takes account of multiple criteria, which we provide 

using the proposed DEA framework. 

Table 2 summarizes efficient frontiers with different 

performance levels, denoted by ��. As the same single 

measures of correct sign are used throughout, in the rest 

of the paper, we only put measures of the goodness-of-fit 

criterion and biasedness criterion in the tables to 

differentiate between results. In Table 2, forecasting 

models belonging to the first-level efficient frontier 

performs better than those belonging to the second-level 

efficient frontier, models belonging to the second-level 

efficient frontier performs better than those belonging to 

the third-level efficient frontier, and so on. For example, 

under the set of performance measures {ME, MMEU and 

PCDCP}, model 3 (i.e., SMA20) and model 14 (i.e., 

CGARCH (1, 1)) outperform model 5 (i.e., SES). These 

results suggest that the best and the worst efficient 

frontiers are insensitive to adjusting biasedness measures 

for volatility. Note that any rankings based on these 

efficient frontiers would lead to a large number of ties.  

In order to break these ties, we use relative progress 

and attractiveness scores obtained by solving models 3 

and 4, respectively, which result in the multidimensional 

rankings provided in Table 3 where models are ranked 

from best to worst based on these relative scores. Notice, 

for example, that the unidimensional ranking 

corresponding to ME, MAE PCDCP are different, on one 
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hand, and have ties, on the other hand, as compared to 

the multidimensional ranking corresponding to {ME, 

MAE, PCDCP} where ties have been resolved. In 

general, multidimensional rankings seem to have less or 

no ties – see multidimensional rankings corresponding to 

the remaining combinations of measures in Table 3. In 

addition, multidimensional rankings generally differ 

from unidimensional ones whenever these later ones are 

different, which confirms that the proposed 

multidimensional framework provides a valuable tool to 

apprehend the true nature of the relative performance of 

competing forecasting models.  

 

Table 1: Unidimensional Rankings of Competing Forecasting Models  
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Table 2: Efficient frontiers with different performance levels 

Efficient 
Frontiers 

ME 
& MAE 

ME 
&MAVolScE 

ME & MSE; 
ME & MSVolScE 

ME 
& MMEU 

ME 
& MMEO 

1E
 

{3,5,8} {3,5} {3,5,14} {3,14} {1,2,3,5,6,8,11} 
2E

 
{6,9,10,11} {6,8,9,10,11} {9,10,11,13} {5} {7,9,1012} 

3E
 

{12,14} {12,14} {12} {9,10,11} {13,14} 
4E

 
{4,7,13} {4,7,13} {4,6} {12,13} {4} 

5E
 

{1,2} {1,2} {2,8} {4}  

6E
 

  {7} {6}  

7E
 

  {1} {2,8}  

8E
 

   {7}  

9E
 

   {1}  

Panel B: Combinations of Performance Measures used as Inputs along with Output PCDCP - Continues 

Efficient 
Frontiers 

MVolScE 
& MAE 

MVolScE 
& MAVolScE 

MVolScE& MSE; 
MVolScE& MSVolScE 

MVolScE 
& MMEU  

MVolScE 
& MMEO 

1E
 

{3,5,8} {3,5} {3,5,14} {3,14} {1,2,3,5,6,8,1} 
2E

 
{6,11} {6,8,10,12} {10,13} {5} {7,12} 

3E
 

{9,12} {9} {12} {10} {9,10} 
4E

 
{4,7,13} {11,14} {9,11} {12,13} {13,14} 

5E
 

{1,2} {4,7,13} {4,6} {9} {4} 

6E
 

 {1,2} {2,8} {4,11}  
7E

 
  {7} {6}  

8E
 

  {1} {2,8}  
9E

 
   {7}  

10E
 

   {1}  

*1RW; 2 HM; 3SMA20; 4SMA60; 5SES; 6ARMA (1, 1); 7AR (1); 8AR (5); 9GARCH (1, 1); 10GARCH-M(1, 1); 
11EGARCH (1, 1); 12TGARCH (1, 1); 13PARCH (1, 1);  14CGARCH(1,1) 

 

Last, but not least, we have considered several 

measures of the goodness-of-fit criterion and the 

biasedness criterion to find out about the robustness of 

multidimensional rankings with respect to different 

measures. Our empirical results reveal that whether one 

measures biasedness by ME (Panel A, Table 3) or 

MVolScE (Panel B, Table 3), and measures of 

goodness-of-fit by MAE, MAVolScE, MSE or 

MSVolScE, the ranks of the best models (e.g., SMA20, 

SES) and the worst models (e.g.,HM, RW) remain the 

same; i.e., they are robust to changes in measures. 

Finally, whether one measures biasedness by ME or 

MVolScE, and measures goodness-of-fit by MMUO or 

MMEO, the ranks of the best and worst models differ 

significantly as compared to other goodness-of-fit 

measures combinations (e.g., RW, HM, CGARCH(1,1), 

which suggest that the performance of models such as 

RW, HM, CGARCH(1,1) is very sensitive to whether 

one penalizes negative errors more than positive ones or 

vice versa. Finally, notice that given the data set and the 

measures under consideration, our numerical results 

suggest that, with the exception of CGARCH, the family 

of GARCH models scored less as compared to 

smoothing models such as SMA20 and SES, which 

suggests that the data generation process has a relative 

long memory. 
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Table 3: Slacks-based Context-dependent DEA model scores-based multidimensional rankings of volatility forecasting 
models 

Inputs Output Models Ranked from Best to Worst 

ME; MAE PCDCP 3� 5�8�6�9&10�11�12�14�13�4�7�2�1 

ME; MAVolScE PCDCP 3� 5�11�9�10�6�8�14�12�4�13�7�2�1 

ME; MSE PCDCP 3� 5�14�9�11�10�13�12�4�6�8�2�7�1 

ME; MSVolScE PCDCP 3� 5�14�9�11�10�13�12�4�6�8�2�7�1 

ME; MMEU PCDCP 3� 14�5�9�10�11�12�13�4�6�8�2�7�1 

ME; MMEO PCDCP 3�5�2�11�1�6�8�9,10&12�14�13�4 

Panel B: Combinations of Performance Measures used as Inputs along with Output PCDCP – Continues 

Inputs Output Models Ranked from Best to Worst 

ME; MAE PCDCP 3� 5�8�6�10�9�12�14�11�13�4�7�2�1 

ME; MAVolScE PCDCP 3� 5�10&12�6�8�9�14�11�4�13�7�2�1 

ME; MSE PCDCP 3� 5�14�10�13�12�9�11�4�6�8�2�7�1 

ME; MSVolScE PCDCP 3� 5�14�10�13�12�9�11�4�6�8�2�7�1 

ME; MMEU PCDCP 3� 14�5�10�12�13�9�11�4�6�8�2�7�1 

ME; MMEO PCDCP 3� 5�2�1�11�6�8�12�7�9&10�14�13�4 

*1RW; 2 HM; 3SMA20; 4SMA60; 5SES; 6ARMA(1, 1); 7AR(1); 8AR(5); 9GARCH(1,1); 10GARCH-M(1,1); 
11EGARCH(1,1); 12TGARCH(1,1); 13PARCH(1, 1); 14CGARCH(1,1)  

 

5. CONCLUSION 

Nowadays, forecasts play a crucial role in driving our 

decisions and shaping our future plans in many 

application areas such as economics, finance and 

investment, marketing, and design and operational 

management of supply chains, among others. Obviously, 

forecasting problems differ with respect to many 

dimensions; however, regardless of how one defines the 

forecasting problem, he or she needs to assess the 

relative performance of competing forecasting models 

and finds out which ones have the potential of doing a 

good “prediction job”. Although most studies tend to 

use several performance criteria, and for each criterion, 

one or several metrics to measure each criterion, the 

assessment exercise of the relative performance of 

competing forecasting models is generally restricted to 

their ranking by measure, which usually leads to 

different unidimensional rankings.  

In this study, we proposed a slack-based 

context-dependent DEA-based methodology, and used 

forecasting crude oil prices’ volatility as an application 

area to illustrate the use of the proposed framework. The 

main conclusions of this research may be summarized 

as follows. First, the proposed multidimensional 

framework provides a valuable tool to apprehend the 

true nature of the relative performance of competing 

forecasting models. Second, models that are on the 

efficient frontier and have zero slacks regardless of the 

performance measures used (e.g., SMA20) maintain 

their ranks. Third, the multi-criteria rankings of the best 

and the worst models seem to be relatively robust to 

changes in most performance measures. Furthermore, 

when under-estimated forecasts are penalized, most 

GARCH types of models tend to perform well – 

suggesting that they often produce forecasts that are 

over-estimated. On the other hand, when over-estimated 
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forecasts are penalized, averaging models such as RW, 

HM, SES tend to perform very well – suggesting that 

these models often produce forecasts that are 

under-estimated. Finally, our empirical results seem to 

suggest that, with the exception of CGARCH, the 

family of GARCH models have an average performance 

as compared to smoothing models such as SMA20 and 

SES, which suggests that the data generation process 

has a relatively long memory. 
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