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ABSTRACT 

Research Report CCS 56 1 

A COMPUTATIONAL METHOD FOR SOLVING 

DEA PROBLEMS WITH INFINITELY MANY DMUs 

by 

A. Charnes and K Tone 

Semi-infinite programs as related to DEA with Infinitely many DMUs will be solved by bisections · 

within the framework of LPs. No gradient Information Is needed, contrary to the usual Newton

Raphson type methods for solving semi-Infinite programs. 

The rate of convergence Is 1 in ear. The method has a stab le convergency feature derived from the 

bisection rule. 
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1 •. Problem . 

Solve the following LP with an fnflnfte set X of DM.Js for a suitable subset of elements 

typically designated by xo: 

[Problem] 

( p ) 

subject to 

wTg(x) = µT(-f(x)) ! O 

µ T f(xO) 

.. 
w 2 e · e 

µ 1 2 e · e 

for every x e X 

where X: a compact convex set, dim (X) = L, 

W E R~ , e = (I, I, ... , I )T e RS 

µ E nm I e = ( 1, I, ... , I )T E Rm 

g<x> e R~ continuous on X 

f(x) E Rm continuous on X 

XO EX 

e: a positive infinitesimal non-Archfmcdean quantity. 

[Dual Problem] 

(D) Vo mfnCZ-e·eTs- €· e Ts+) 

sub jcct to 

2 Q(X)X(X) s- Q(XO) 

XEX 

.L (-f(x))X(x) s+ = z(-f(xO)) 

XEX 

XCx> 2 O : for every x e X and X(x) = o except for a f lnl te number of points. · 

,. , 
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2·. Outline of the Method. 

The method consists of three main parts: initial discretization, deletion and subdivi.sion. 

The discretized problems are solved by the simplex method throughout the Iterations. 

Step O. CDiscretlzatlon) 

The dual pa fr CP) - CD) is discretized, 1.e., the Infinite index set X is rep laced by a finite 

set. Let the finite set be {x 1, ... , xn}. We cal I such sets grid. . 

Solve the result Ing dual pa fr of 1 lnear programs CP0 ) - CD0 ) by means of the simplex 

method. 

subject to 

wl gCxl) + µl(-f(xl)) ~ o 

µ l f (XO) = 

~ 

w 2· e · e 

µ ~ e · e. 

C0 0 ) Vo ~ min CZ :... c · els- -· e · els+) 

subject to 

n 
I g(xl )Aj - s- = g(xO) 

jc=J 

n 
2 C-f(xl)) Al ·- s+ = z C-f(xO)) 

I= I 

Cf = 1, ... , n) 

I, ... , n 
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Let opt1mal solutfons to CP0 ) and CD0 ) be 

and 

- - ( - -)T . S - St , ... , Ss , 

Step 1. CDeletton) 

Apply the 'Deletion rule' as explained later 1n Sections 3· and 4· to the grid (x,}. 

Step 2. (Subdivision or Bisection) 

Apply the 'Subdivision (bisection) rule' as explained 1n Secttons 3· and 4• to the grid. 

Step 3. (New CP 0 ) and CD0 )) 

Formulate new dual LPs CP0 ) - (D0 ) by deleting I augmenting constraints I variables to 

CP 0 )-C00 ). Solve them by the simplex method. 

Step 4. (Convergence Check) 

stop the process if the subd iv Is 1 on parameter as exp 1 a I ned In Sections 3 ° and 4 • becom cs 

less than the tolerance. Otherwise go back to Step l. 

3·. De ta 11 s of the Method w·hen X f s One-DI mensf on al. 

In this sectlon, we will show details of the method In case X Is one dimensional. Cases with 

dim CX) > I w i 11 be d lscussed ln Section :4·. 

3. 1 lnltfal Discretization and Subdfvfsfon Parameter 

Let the set X be (a,b] c R and arrange the grid x0 , ... , Xn as 

a = x0 < x 1 < ... < Xn = b ( 3. I ) 

where 

x1 = x0 + l (b-a) I n Cl = 0, ... , n). ( 3.2 ). 

We define the subdlvlslon parameter (or mesh size) T to be 

T = Cb-a) I n (the length of an Interval) ( 3.3) 
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3.2 So lv Ing CD 0 ) 

We solve the dual program CD0 ) by means of the simplex method. The reason for dealing 

with the dual program wfll be clarified later on. The optimal fnformation related to the 

primal program ls easf ly obtained from the optimal basis of CD0 ). 

Let the optimal solution to (P0 ) and CD0 ) be 

(3.4) 

and 

3.3 Deletion I Subdivision Rules 

Since the optimal solutions (3.4) - (3.5) solve the discretized problems, we have, at 

grid point x.i, 

wT g(xl) + µT (-f(xf)) 0 

and 

w r g(xl) + µT (-f(xl)) ~ o 

However, it Is not certain lf the relat1ons 

wT g(x) + µT (-f(X)) ~ 0 

ho Id for every x EX. 

Let ip(X) = w T g(x) + µ T(-f(x)). 

The discrepancy sew,µ> of Cw 1 µ> fs defined as 

6 Cw,µ) = max ~ (x) 
XE (a,bJ 

An upper bound to 6 Cw, µ) Is given by 

6 = (FM /TI 2)/8 

<Kortanek [I]). 

If Al > 0 

if Ai 0. 

-----·-----.~·-·---------·-·-----·------- ----

( 3. 6) 

(3.7) 

( 3. 8) 

( 3. 9} 

( 3. I 0) 

( 3. I I ) 
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where F fs an upper bound to Wr Cr= t, ... , s) and J.i.k Ck = I, ... , m) 

s m 
M =max CL: l9r .. Cx)I + .L Jrk" (x)j) < 00 (3. I 2) 

x e [a,bJ r= I k=l 

and T 1s def f ned by (3.3). 

It fs easy to see that If at two successive grf d points x1 and xi + 1, we have 

then it follows that 

qi (x) < o 

Thus, we have the deletion rule for grids. 

[Deletion Rule] 

If at three successive grid points x1, x1+ 1, and Xt+2• we have 

(3. I 3) 

then we del~te x1+ 1 and hence the whole interval Cxi, x1 .. 2) from further consideratior. 

Notice that the rule needs to be changed a little at the boundary points. 

[Subdivision Rule] 

We subdivide the remaining intervals by introducing a new grid at the mld-point of each 

interval. 

Thus, we have 

new T = TI 2 and ( 3. I 4) 

new 6 = 6 I 4 (3. 15) 

[Remark I 1 Usually it Is not easy to determine 6 as defined by (3. I I) .. In such a case, 6 

(actually -6J should be taken to be a threshold for deleting grid points. A smaller 6 

(higher -6) deletes more grid points. If \}l(X) Is well approximated by a quadratic curve 

at a local maximum, the relation (3.15) will generally hold after the subdivision . 

.. 
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3.4 Solv1ng the New LP 

We delete the columns corresponding to the deleted grid points from the dual tableau and 

introduce new columns corresponding to the new grid points to the tableau. The new 

columns will be priced out by using the optimal dual basis of the preceding iteration and 

the primal simplex method will determine the new optimal solution. 

3.5 Convergence Check 

We stop the iterations ffTcomes to satisfy, for some toleranceTtali 

T < Ttol · (3. 16) 

(Remark 2] A tb)pical process of subdivision Cor bisection) is sketched in Fig. I, where the 

curves represent qs(x) with x as abscissa and the tolerance (-.6) for each Iteration is given by 

the dashed 1 i ne. 

~ .. ---~--·----~- ... - ............ Ir~~-··- ·--·--T~•+-"-__............__.~~·~ -~ ---~-~~--·~-----------------·---· . . 
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4• Genera 1 Case. 

In this section, we will deal wfth the dual pair of problems CP> - (D) when X is a compact 

convex set with L = dfm Cx> > I. 

4.1 lnftfal Dlscretfzat1on 

We discretize X by using L - d1mensfona1 cubes with edge length T. The mesh points are 

the initial grid points (xi, ... , xn). The grid points are used to formulate CP 0 ) and CD 0 ), 

which are solved by the simplex method. Let the optimal solutions be w, µ, z, /.., s-, and 

4.2 Deletion and Subd1vfs1on (Bisection> Rules 

Every grid has at most 2L neighbors. 

[De Jet f ng Rule] 

If the re lat ion 

l{J(x) =: wTg(x) + µT(-f(x)) < -6 ( 4. I ) 

holds at a grid and its neighbors, then we delete the center grid point and edges connecting 

the center with Its neighbors from further consideration. -6 ls a threshold similar to 

(3.11) (see also [Remark I]). For higher dimensional Ls, it would be difficult to 

estimate 6 by a formula such as (3.1 I>. A practical way to estimate 6 ls as follows: 

.~ After the Initial LPs are solved, we estimate the discrepancy sew,µ) by sampling x from 

X. The value will be used as the Initial 6, whic~,.will be updated by dividing by 4 at each 

l terat ion. 

[Subdivision Rule] 

We divide the remaining edges by Introducing a new grid at them Id-point of each edge. 

Thus we have 

new T TI 2 ( 4. 2) 

and 

new 6 6 I 4 ( 4. 3) 



4. 3 So 1v1ng New LPs and Checking Convergence 

These steps are quite similar to those 1n the one-dimensional case as explained fn 

subsections 3.4 and 3.5. 

[Remark 3] A typical subdivision process of the two-dimensional X ls depicted fn Ffg. 2. 
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