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ABSTRACT
Semi-infinite programs as related to' DEA with infinitely many DMUs will be solved by bisections -
within the framework of LPs. No gradient information Is needed, contrary fo the usual NeWton—
Raphson type methods for solving semi-infinite programs.

- The rate of cohvergence Is linear. The method has a stable convergency feature derived f rdm the

biscction rule.
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1*. Problem.

Solve the following LP with an infinite set X of DMUs for a suitable subset of elements -

typically designated by x©:

[Problem]
(P) Vp = max wTg(x9) '_ : X0 € X
w
subject to
wlg(x) = uT(-f(x)) ¢ 0 for every x € X
plf(x0) = |1
w >e-€
g o ot 2e-e

where X: a compact convex set, dim (X) = L,

WeRS, e=(l1t.,1T eRs
uw eRM, e =(I1,., Iv)TeRm
gix) € RS : continuous on X
f(x) ¢ RM . continuous on X

¢: apositive infinitesimal non-Archimedean quantity.
[Dual Problem]

(D) Vp =min(Z-¢-els™ - e- els*)

subject to
S gAK) - s = g(x0)
XeX
ST - 8t = 20-f(x0))

XeX

A(x) 2 0 : foreveryx € X and A(x) = 0 except for a finite number of points.




2'. Outline of the Method.

The method consists of three main parts: initial discretization, deletion and subdivision.
The discretized problems are solved by the simplex method throughout the iterations.

Step 0. (Discretization)

The dual pair (P) - (D) is discretized, i.e, the infinite index set X is replaced by a finite

set. Let the finite set be {x1, ..., xh}. We call such séts grid. .

Solve the resulting dual pair of linear programs (P,) - (D,) by means of the simplex

method.
(Py) Vp = max WTg(x9)
subject to
wTgxh) + pT(-f(xi» < 0 i =1,..,n
pTr(x0) = 1|
wre-e
H2e e

(D) Vp = min (Z = ¢- &Ts" -¢- elsh)

subject to

no .
2 gxDA; = s7 = g(x9)

n ! .
T X Ay = sF =z (-f(x9))
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Let optimal solutions to (P,) and (Dy) be

W= (W, ., wWeT, = (g, e BT
and

Z, A = (A, ., ART, sT= (817, ., 570, s* = (s, ., sy
Step 1. (Deletion)

Apply the ‘Deletion rule’ as explained later in Sections 3* and 4° to the grid (x;}.

Step 2. (Subdivision or Bisection)
Apply the ‘Subdivision (bisection) rule’ as explained in Sections 3° and 4° to the grid.

Step 3. (New (Pgy) and (Dy))
Formulate new dual LPs (P,) - (D,) by deleting / augmenting constraints / variables to
(Py)-(Dy). Solve them by the simpiex method.

Step 4. (Convergence Check)
Stop the process if the subdivision parameter as explained In Sections 3° and 4° becomes

less than the tolerance. Otherwise go back to Step 1.

3. Details of the Method When X is One-Dimensional.

In this section, we will show details of Ehe method in case X Is one dimensional. Cases with
dim (X) > 1 will be discussed’in Section 4°,
3.1 Inittal Discretization and Subdivision Parameter
Let the set X be [a,b] € R and arrange the@_ Xgs =~ ¥p @S
a = Xg<Xy <Xy = Db (3.1}
where
Xj = Xo + 1(b=a)/n (1=0,.,n G

We define the subdivision parameter (or mesh size) T to be

T =(-a)/n (the length of an interval) (3.3)




3.2 Soilving (Dy)
We solve the dual program (D,) by means of the simplex method. The reason for dealing

with the dual program will be clarified later on. The optimal information related to the

primal program Is easily obtained from the optimal basis of (D).
Let the optimal solution to (Py) and (D) be

wo= (wy, ., wIT, = (U, e )T (3.4)
and

2, A= g, e AT, 87 = (817, 0, 5570, 8% = (5%, ., 50T, (3.5)

3.3 Deletion / Subdivision Rules

Since the optimal solutions (3.4) - (3.5) solve the discretized problems, we have, at

grid point x;,

wl gixh) + pT (-f(xi) = 0 If Af> 0 (3.6)
and

whglxh) + T (-f(x!)) < 0 ifx; = 0. (3.7)

However, it is not cé?tain If the relations

wT g0 + uT (-rx) 2 0 (3.8)
hold for every x € X,
Let  w(x) = wTlglx) + uT(-f(x)). _ ' (3.9)
The discrepancy &(w, W) of (w, i) Ié defined as

6 (w, n) = max Y (X) (3.10)
x € [a,b]

An upper bound to & (w, p) is given by
A = (FM|T| 28 (3.11)

(Kortanek [1]),




where F is an upper bound tow. (r =1, .,s)and Ag(k=1, .., m)

S m .
M=max (I |g-" 0] + I | ) < o . (3.12)
x € [a,b] r=1 k=1

and T s defined by (3.3).

It is easy to see that if at two successive grid points x; and x; .1, we have
g (%) < =A and ¢ (X4,.1) < -4,

then it follows that

p(x) <0 for every x € [x{, Xj+1l.

Thus, we have the deletion rule for grids.
[Deletion Rule]

If at three successive grid points Xy, X.1, and X.o, we have
P(X)) < ~A, Y X)) < A and  (X.0) < -4, (3.13)
then we delete X, and hence the whole interval (x;, x;.p) from further consideratior.

Notice that the rule needs to be changed a little at the boundary points.

[Subdivision Rule]

We subdivide the remaining intervals by introducing a new grid at the mid-point of cach

interval. o

Thus, we have
new T =T/2 and’ (3.14)
new A = A/4 : . (3.13)

[(Remark 1] Usually it is not easy to determine A as defined by (3.11), lﬁ such a case, &

(actually -A) should be taken to be a threshold for deleting grid points. A smaller A

(higher -A) deletes more grid points. If y(x) is well approximated by a quadratic curve

at a local maximum, the relation (3.15) will generally hold after the subdivision.




3.4 Solving the New LP
We delete the columns corresponding to the deleted grid points from the dual tableau and
introduce new columns corresponding to the new grid points to the tableau. The new
columns will be priced out by using the optimal dual basis of the preceding iteration and
the primal simplex method will determine the new optimal solution.. |

3.5 Convergence Check

We stop the iterations if T comes to satisfy, for some toleranceTy,),
T < T - (3.16)

(Remark 2] A typical process of subdivision (or bisection) is sketched in Fig. I, where the
curves represent y(x) with x as abscissa and the tolerance (-A) for each Iteration is given by

the dashed line.
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~Fig. 1




4.

General Case.

4.1

4.2

In this section, we will deal with the dual pair of problems (P) - (D) when X is a compact

convex set withL =dim (x)> I.

Initial Discretization

We discretize X by using L - dimensional cubes with edge iength T. The mesh points are

the initial grid points (x!, .., x"}. The grid points are used to formulate (Po) and (Dy),

which are solved by the simplex method. Let the optimal solutionsbe w, y, z, A, s7, and
s*.
Deletion and Subdivision (Bisection) Rules
Every grid has at most 2L nefghbors.
[Deleting Rule]
If the relation

p(xd = wlgl) + uT(-f(x) < -A (4.1)
holds at a grid and its neighbors, then we delete the center grid point and edges connecting
the center with its neighbors from further consideration. -A is a threshold similar to
(3.11) (see also [Remark 1]). For higher dimensional Ls, it would be difficult to
estimate A by a formula such as (3.11). Apractical way to estimate A is as follows:
After the Initial LPs are solved, we estimate the discrepancy 8(w, 1) by gampiing X from
X. The value will be used as the initial A, whlch’_wlli'be updated by dividir;‘g by 4 at each
iteration.
[Subdivision Rule]
We divide the remaining edgés by introducing a new grid at the mid-point of e¢ach edge.
Thus we have

new T =T/2 . (4.2)
and

new A = A/ 4 (4.3)




4.3 Solving New LPs and Checking Convergence
These steps are quite similar to those in the one-dimensional case as explained in
subsections 3.4 and 3.5.

[Remark 3] A typical subdivision process of the two-dimensional X is depicted in Fig. 2.
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