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Abstract

A new bandwidth selection method for the fuzzy regression discontinuity esti-

mator is proposed. The method chooses two bandwidths simultaneously, one for

each side of the cut-off point by using a criterion based on the estimated asymp-

totic mean square error taking into account a second-order bias term. A simulation

study demonstrates the usefulness of the proposed method.
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1 Introduction

The fuzzy regression discontinuity (FRD) estimator, developed by Hahn, Todd, and

Van der Klaauw (2001) (hereafter HTV), has found numerous empirical applications in

economics. The target parameter in the FRD design is the ratio of the difference of two

conditional mean functions, which is interpreted as the local average treatment effect.

The most frequently used estimation method is the nonparametric method using the

local linear regression (LLR). Imbens and Kalyanaraman (2012) (hereafter IK) propose

a bandwidth selection method specifically aimed at the FRD estimator, which uses a

single bandwidth to estimate all conditional mean functions.

This paper proposes to choose two bandwidths simultaneously, one for each side of

the cut-off point. In the context of the sharp RD (SRD) design, Arai and Ichimura (2015)

(hereafter AI) show that the simultaneous selection method is theoretically superior to

the existing methods and their extensive simulation experiments verify the theoretical

predictions. We extend their approach to the FRD estimator. A simulation study

illustrates the potential usefulness of the proposed method.1

2 Bandwidth Selection of The FRD Estimator

For individual i potential outcomes with and without treatment are denoted by Yi(1) and

Yi(0), respectively. Let Di be a binary variable that stands for the treatment status, 0 or

1. Then the observed outcome, Yi, is described as Yi = DiYi(1)+(1−Di)Yi(0). Through-

out the paper, we assume that (Y1, D1, X1), . . ., (Yn, Dn, Xn) are i.i.d. observations and

Xi has the Lebesgue density f .

To define the parameter of interest for the FRD design, denotemY+(x) = E(Yi|Xi =

x) andmD+(x) = E(Di|Xi = x) for x ≥ c. Suppose that limx↘cmY+(x) and limx↘cmD+(x)

exist and they are denoted by mY+(c) and mD+(c), respectively. We define mY−(c) and

mD−(c) similarly. The conditional variances and covariance, σ2
Y j(c) > 0, σ2

Dj(c) > 0,

σY Dj(c), and the second and third derivatives m
(2)
Y j(c), m

(3)
Y j(c), m

(2)
Dj(c), m

(3)
Dj(c), for

1Matlab and Stata codes to implement the proposed method are available at
http://www3.grips.ac.jp/~yarai/.
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j = +,−, are defined in the same manner. We assume all the limits exist and are

bounded above.

In the FRD design, the treatment status depends on the assignment variable Xi in

a stochastic manner and the propensity score function is known to have a discontinuity

at the cut-off point c, implying mD+(c) 6= mD−(c). Under the conditions of HTV, Porter

(2003) or Dong and Lewbel (forthcoming), the LATE at the cut-off point is given by

τ(c) = (mY+(c) − mY−(c))/(mD+(c) − mD−(c)). This implies that estimation of τ(c)

reduces to estimating the four conditional mean functions nonparametrically and the

most popular method is the LLR because of its automatic boundary adaptive property

(Fan, 1992).

Estimating the four conditional expectations, in principle, requires four band-

widths. IK simplifies the choice by using a single bandwidth to estimate all functions

as they do for the SRD design. For the SRD design, AI proposes to choose bandwidths,

one for each side of the cut-off point because the curvatures of the conditional mean

functions and the sample sizes on the left and the right of the cut-off point may differ

significantly. We use the same idea here, but take into account the bias and variance due

to estimation of the denominator as well. For simplification, we propose to choose one

bandwidth, h+, to estimate mY+(c) and mD+(c) and another bandwidth, h−, to estimate

mY−(c) and mD−(c) because it is also reasonable to use the same group on each side.

2.1 Optimal Bandwidths Selection for the FRD Estimator

We consider the estimator of τ(c), denoted τ̂(c), based on the LLR estimators of the four

unknown conditional mean functions. We propose to choose two bandwidths simulta-

neously based on an asymptotic approximation of the mean squared error (AMSE). To

obtain the AMSE, we assume the following:

ASSUMPTION 1 (i) (Kernel) K(·) : R→ R is a symmetric second-order kernel func-

tion that is continuous with compact support; (ii) (Bandwidth) The positive sequence of

bandwidths is such that hj → 0 and nhj →∞ as n→∞ for j = +,−.
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Let D be an open set in R, k be a nonnegative integer, Ck be the family of k times

continuously differentiable functions on D and g(k)(·) be the kth derivative of g(·) ∈ Ck.

Let Gk(D) be the collection of functions g such that g ∈ Ck and
∣∣g(k)(x)− g(k)(y)

∣∣ ≤
Mk |x− y|α, x, y, z ∈ D, for some positive Mk and some α such that 0 < α ≤ 1.

ASSUMPTION 2 The density of X, f , which is bounded above and strictly positive at

c, is an element of G1(D) where D is an open neighborhood of c.

ASSUMPTION 3 Let δ be some positive constant. The mY+, σ2
Y+ and σY D+ are ele-

ments of G3(D1), G0(D1) and G0(D1), respectively, where D1 is a one-sided open neigh-

borhood of c, (c, c+ δ). Analogous conditions hold for mY−, σ2
Y− and σY D− on D0 where

D0 is a one-sided open neighborhood of c, (c− δ, c).

The following approximation holds for the MSE under the conditions stated above.

LEMMA 1 Suppose Assumptions 1–3 hold. Then, it follows that

MSEn(h+, h−) =
1

(τD(c))2

{[
φ1(c)h

2
+ − φ0(c)h

2
−

]
+
[
ψ1(c)h

3
+ − ψ0(c)h

3
−

]
+ o

(
h3+ + h3−

)}2

+
v

nf(c)(τD(c))2

{
ω1(c)

h+
+
ω0(c)

h−

}
+ o

(
1

nh+
+

1

nh−

)
(1)

where, for j = +,− and k = Y,D, τD(c) = mD+(c) − mD−(c), ωj(c) = σ2
Y j(c) +

τ(c)2σ2
Dj(c)−2τ(c)σY Dj(c), φj(c) = C1

[
m

(2)
Y j(c)− τ(c)m

(2)
Dj(c)

]
, ψj(c) = ζY j(c)−τ(c)ζDj(c),

ζkj(c) = (−j)

{
ξ1

[
m

(2)
kj (c)

2

f (1)(c)

f(c)
+
m

(3)
kj (c)

6

]
− ξ2

m
(2)
kj (c)

2

f (1)(c)

f(c)

}
,

C1 = (µ2
2 − µ1µ3)/2(µ0µ2 − µ2

1), v = (µ2
2ν0− 2µ1µ2ν1 +µ2

1ν2)/(µ0µ2−µ2
1)

2, ξ1 = (µ2µ3−

µ1µ4)/(µ0µ2 − µ2
1), ξ2 = (µ2

2 − µ1µ3) (µ0µ3 − µ1µ2) /(µ0µ2 − µ2
1)

2, µj =
∫∞
0
ujK(u)du,

νj =
∫∞
0
ujK2(u)du.

A standard approach applied in this context is to minimize the following AMSE,

ignoring higher order terms:

AMSE(h+, h−) =
1

(τD(c))2

{
φ+(c)h2+ − φ−(c)h2−

}2

+
v

nf(c)(τD(c))2

{
ω1(c)

h+
+
ω0(c)

h−

}
.

(2)
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As AI observed, (i) while the optimal bandwidths that minimize the AMSE (2) are well-

defined when φ+(c) ·φ−(c) < 0, they are not well-defined when φ+(c) ·φ−(c) > 0 because

the bias term can be removed by a suitable choice of bandwidths and the bias-variance

trade-off breaks down.2 (ii) When the trade-off breaks down, a new optimality criterion

becomes necessary in order to take higher-order bias terms into consideration. We define

the asymptotically first-order optimal (AFO) bandwidths, following AI.

DEFINITION 1 The AFO bandwidths for the FRD estimator minimize the AMSE

defined by

AMSE1n(h+, h−) =
1

(τD(c))2

{
φ+(c)h2+−φ−(c)h2−

}2

+
v

nf(c)(τD(c))2

{
ω+(c)

h+
+
ω−(c)

h−

}
,

when φ+(c) · φ−(c) < 0. When φ+(c) · φ−(c) > 0, the AFO bandwidths for the FRD

estimator minimize the AMSE defined by

AMSE2n(h+, h−) =
1

(τD(c))2

{
ψ+(c)h31 − ψ−(c)h3−

}2

+
v

nf(c)(τD(c))2

{
ω+(c)

h+
+
ω−(c)

h−

}

subject to the restriction φ+(c)h2+ − φ−(c)h2− = 0 under the assumption of ψ+(c) −

{φ+(c)/φ−(c)}3/2ψ−(c) 6= 0.

When φ+(c) · φ−(c) < 0, the AFO bandwidths minimize the standard AMSE (2). When

φ+(c) · φ−(c) > 0, the AFO bandwidths minimize the sum of the squared second-order

bias term and the variance term under the restriction that the first-order bias term be

removed. Inspecting the objective function, the resulting AFO bandwidths are O(n−1/5)

when φ+(c) · φ−(c) < 0 and O(n−1/7) when φ+(c) · φ−(c) > 0.3

When φ+(c) · φ−(c) > 0, Definition 1 shows that MSEn is of order O(n−6/7),

which implies that the MSE based on the AFO bandwidths converges to zero faster than

O(n−4/5), the rate attained by the single bandwidth approaches such as the IK method.

When φ+(c) · φ−(c) < 0, they are of the same order. However, it can be shown that the

ratio of the AMSE based on the AFO bandwidths to that based on IK never exceeds

one asymptotically (see Section 2.2 of AI).

2This is the reason why IK proceed with assuming h+ = h−.
3The explicit expression of the AFO bandwidths are provided in the Supplemental Material.
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2.2 Feasible Automatic Bandwidth Choice

The feasible bandwidths is based on a modified version of the estimated AMSE (MMSE)

as in AI. It is defined by

MMSEp
n(h+, h−) =

{
φ̂+(c)h21 − φ̂−(c)h2−

}2

+
{
ψ̂+(c)h31 − ψ̂−(c)h3−

}2

+
v

nf̂(c)

{
ω̂+(c)

h1
+
ω̂−(c)

h−

}
(3)

where φ̂j(c), ψ̂j(c), ω̂j(c) and f̂(c) are consistent estimators of φj(c), ψj(c), ωj(c) and

f(x) for j = +,−, respectively. A key characteristic of the MMSE is that one does not

need to know the sign of the product of the second derivatives a priori and that there is

no need to solve the constrained minimization problem.

Let (ĥ+, ĥ−) be a combination of bandwidths that minimizes the MMSE given

in (3). The next theorem shows that (ĥ+, ĥ−) is asymptotically as good as the AFO

bandwidths.

THEOREM 1 Suppose that the conditions stated in Lemma 1 hold. Assume further

that φ̂j(c)
p→ φj(c), ψ̂j(c)

p→ ψj(c), f̂(c)
p→ f(c) and ω̂j(c)

p→ ωj(c) for j = +,−,

respectively. Also assume ψ+(c)−{φ+(c)/φ−(c)}3/2ψ−(c) 6= 0. Then, the following hold.

ĥ+

h†+

p→ 1,
ĥ−

h†−

p→ 1, and
MMSEp

n(ĥ+, ĥ−)

MSEn(h†+, h
†
−)

p→ 1.

where (h†+, h
†
−) are the AFO bandwidths.

The first part of Theorem 1 shows that the bandwidths based on the plug-in version of

the MMSE are asymptotically equivalent to the AFO bandwidths and the second part

exhibits that the minimum value of the MMSE is asymptotically the same as the MSE

evaluated at the AFO bandwidths. Theorem 1 shows that the bandwidths based on the

MMSE possess the desired asymptotic properties. Theorem 1 calls for pilot estimates

for φj(c), ψj(c), f(c) and ωj(c) for j = +,−. A detailed procedure about how to obtain

the pilot estimates is given in the Supplemental Material.
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3 Simulation

We conduct simulation experiments that illustrate the advantage of the proposed method

and a potential gain for using bandwidths tailored to the FRD design over the bandwidths

tailored to the SRD design. Application of a bandwidth developed for the SRD to the

FRD context seems common in practice.4

Simulation designs are as follows. For the treatment probability, E[D|X = x] =

1√
2π

∫ x
−∞ exp[− (u+1.28)2

2
]du for x ≥ 0 and 1√

2π

∫ x
−∞ exp[− (u−1.28)2

2
]du for x < 0. This leads

to the discontinuity size of 0.8. The graph is depicted in Figure 1-(a).

For the conditional expectation functions of the observed outcome, E[Y |X = x],

we consider two designs, which are essentially the same as Designs 2 and 4 of AI for the

the SRD design. The specification for the assignment variable and the additive error

are exactly the same as that considered by IK.5 They are depicted in Figures 1-(b) and

1-(c). We use data sets of 500 observations with 10,000 repetitions.
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(a) Treatment Probability,
E[D|X = x].
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(b) Design 1. Ludwig and
Miller Data I
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Miller Data II

Figure 1: Simulation Designs. (a) Treatment probability, (b) E[Y |X = x] for Design 1,
(c) E[Y |X = x] for Design 2.

The results are presented in Table 1 and Figure 2. Four bandwidth selection

methods, MMSE-f, MMSE-s, IK-f and IK-s, are examined. MMSE-f is the new method

proposed in the paper and MMSE-s is the one proposed for the SRD design by AI. IK-f

and IK-s are the methods proposed by IK for the FRD and SRD designs, respectively.

4For example, Imbens and Kalyanaraman (2012, Section 5.1) state that the bandwidth choice for the
FRD estimator is often similar to the choice for the SRD estimator of only the numerator of the FRD
estimand.

5The exact functional form of E[Y |X = x], the specification for the assignment variable and the
additive error are provided in the Supplemental Material
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Table 1: Bias and RMSE for the FRDD, n=500

ĥ+ ĥ− τ̂
Design Method Mean SD Mean SD Bias RMSE Efficiency

1 MMSE-f 0.056 0.033 0.097 0.100 0.037 0.168 1
IK-f 0.177 0.033 0.180 0.192 0.876
MMSE-s 0.235 0.109 0.489 0.259 0.339 0.373 0.450
IK-s 0.325 0.068 0.443 0.451 0.373

2 MMSE-f 0.226 0.091 0.624 0.214 -0.002 0.072 1
IK-f 0.284 0.052 0.087 0.097 0.739
MMSE-s 0.227 0.092 0.628 0.215 -0.002 0.072 1
IK-s 0.337 0.072 0.093 0.101 0.709

The bandwidths for MMSE-s and IK-s are computed based only on the numerator of the

FRD estimator and the same bandwidths are used to estimate the denominator. Table

1 reports the mean and standard deviation of the bandwidths, the bias and root mean

squared error (RMSE) for the FRD estimates, and the relative efficiency based on the

RMSE.6 Figure 2 shows the simulated CDF for the distance of the FRD estimate from

the true value.

Examining Table 1 and Figure 2-(a), for Design 1, MMSE-f performs significantly

better than all other methods. For Design 2, Table 1 and Figure 2-(b) indicate that

MMSE-f and MMSE-s performs comparably but clearly dominate IK methods currently

widely used. In cases we examined, the new method performs better than currently

available methods and using methods specifically developed for the FRD dominates the

method developed for the SRD.

Acknowledgement

This research was supported by Grants-in-Aid for Scientific Research No. 22243020 and

No. 23330070 from the Japan Society for the Promotion of Science. Yoko Sakai provided

expert research assistance.

6The bias and RMSE are 5% trimmed versions since unconditional finite sample variance is infinite.
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Figure 2: Simulated CDF of |τ̂ − τ | for different bandwidth selection rules
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Supplement to “Optimal Bandwidth Selection for
the Fuzzy Regression Discontinuity Estimator”

Yoichi Arai∗and Hidehiko Ichimura†

Introduction

Section 1 provides an explicit expression of the AFO bandwidths. Section 2 describes

details about our simulation experiment. A sketch of the proof for Lemma 1 is pro-

vided in Section 3. Section 4 briefly describes how to obtain pilot estimates.

1 Definition of the AFO Bandwidths

DEFINITION 1 The AFO bandwidths for the fuzzy RD estimator minimize the

AMSE defined by

AMSE1n(h) =
1

(τD(c))2

{
φ+(c)h2+ − φ−(c)h2−

}2

+
v

nf(c)(τD(c))2

{
ω+(c)

h+
+
ω−(c)

h−

}
.

when φ+(c) · φ−(c) < 0. Their explicit expressions are given by h∗+ = θ∗n−1/5 and

h∗− = λ∗h∗+, where

θ∗ =

{
vω+(c)

4f(c)φ+(c)
[
φ+(c)− λ∗2φ−(c)

]}1/5

and λ∗ =

{
−φ+(c)ω−(c)

φ−(c)ω+(c)

}1/3

. (1)

∗National Graduate Institute for Policy Studies (GRIPS), 7-22-1 Roppongi, Minato-ku, Tokyo
106-8677, Japan; yarai@grips.ac.jp
†Department of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033,

Japan; ichimura@e.u-tokyo.ac.jp
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When φ+(c) · φ−(c) > 0, the AFO bandwidths for the fuzzy RD estimator minimize

the AMSE defined by

AMSE2n(h) =
1

(τD(c))2

{
ψ+(c)h31 − ψ−(c)h3−

}2

+
v

nf(c)(τD(c))2

{
ω+(c)

h+
+
ω−(c)

h−

}

subject to the restriction φ+(c)h2+ − φ−(c)h2− = 0 under the assumption of ψ+(c) −

{φ+(c)/φ−(c)}3/2ψ−(c) 6= 0. Their explicit expressions are given by h∗∗+ = θ∗∗n−1/7

and h∗∗− = λ∗∗h∗∗+ , where

θ∗∗ =

{
v [ω+(c) + ω−(c)/λ∗∗]

6f(c)
[
ψ+(c)− λ∗∗3ψ−(c)

]2
}1/7

and λ∗∗ =

{
φ+(c)

φ−(c)

}1/2

.

2 Simulation Designs

Let `1(x) = E[Y (1)|X = x] and `0 = E[Y (0)|X = x]. A functional form for each

design is given as follows:

(a) Design 1

`j(x) =

 αj + 18.49x− 54.8x2 + 74.3x3 − 45.02x4 + 9.83x5 if x > 0,

αj + 2.99x+ 3.28x2 + 1.45x3 + 0.22x4 + 0.03x5 if x ≤ 0,

where (α1, α0) = (−0.17, 4.13).

(b) Design 2

`j(x) =

 αj + 5.76x− 42.56x2 + 120.90x3 − 139.71x4 + 55.59x5 if x > 0,

αj − 2.26x− 13.14x2 − 30.89x3 − 31.98x4 − 12.1x5 if x ≤ 0,

where (α1, α0) = (0.0975, 0.0225).

The assignment variable Xi is given by 2Zi − 1 for each design where Zi have

a Beta distribution with parameters α = 2 and β = 4. We consider a normally

distributed additive error term with mean zero and standard deviation 0.1295 for the

outcome equation.
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3 Proofs

Proof of Lemma 1: As in the proof of Lemma A2 of Calonico, Cattaneo, and

Titiunik (2014), we utilize the following expansion

τ̂Y (c)

τ̂D(c)
− τY (c)

τD(c)
=

1

τD(c)
(τ̂Y (c)− τY (c))− τ(c)

τD(c)
(τ̂D(c)− τD(c))

+
τ(c)

τD(c)τ̂D(c)
(τ̂D(c)− τD(c))2 − 1

τD(c)τ̂D(c)
(τ̂Y (c)− τY (c)) (τ̂D(c)− τD(c)) . (2)

Since the treatment of the variance component is exactly the same as that by IK, we

only discuss the bias component. Observe that Lemma 1 of Arai and Ichimura (2015)

implies the bias of τ̂Y (c) and τ̂D(c) are equal to

C1

[
m

(2)
Y+(c)h2+ −m

(2)
Y−(c)h2−

]
+
[
ζY 1(c)h

3
+ − ζY 0(c)h

3
−

]
+ o

(
h3+ + h3−

)
and

C1

[
m

(2)
D+(c)h2+ −m

(2)
D−(c)h2−

]
+
[
ζD1(c)h

3
+ − ζD0(c)h

3
−

]
+ o

(
h3+ + h3−

)
,

respectively. Combining these with the expansion given by (2) produces the required

result. �

4 Procedures to Obtain Pilot Estimates

Procedures to obtain pilot estimates for m
(2)
Y j(c), m

(3)
Y j(c), f(c), f (1)(c), and σ2

Y j(c), for

j = +,−, are exactly the same as those for the sharp RD design by AI (see Appendix

A of AI). Pilot estimates for m
(2)
Dj(c), m

(3)
Dj(c), σ

2
Dj(c), for j = +,−, can be obtained

by replacing the role of Y by D in Step 2 and 3 of Appendix A of AI. Pilot estimates

for σY Dj(c), j = +,− are obtained analogously to σ2
Y j(c). We obtain a pilot estimate

for τD(c) by applying the sharp RD framework with the outcome variable D and the

assignment variable X.
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